

LAND WEST OF WARRENBY, TEESWORKS, REDCAR

Contaminated Land Generic Quantitative Risk Assessment, Data Gap Areas

South Tees Development Corporation

REPORT NO: 10035117-AUK-XX-XX-RP-ZZ-623-01-Data Gap Areas GQRA

FEBRUARY 2023

ADDITIONAL DATA GAP AREAS, TEESWORKS, REDCAR

Generic Quantitative Risk Assessment

Author		Consultant Level (Arcadis)
Checke	r	Principal Level (Arcadis)
Approve	er	Senior Technical Director Level (Arcadis)
Docume	ent Ref.	10035117-AUK-XX-XX-RP-ZZ-623-01-Data Gap Areas GQRA
Date	Februar	y 2023

Version Control

Version	Date	Author	Checker	Approver	Changes
01	February 2023	Redacted	Redacted	Redacted	N/A – first draft

This report dated February 2023 has been prepared for South Tees Site Company (the "Client") in accordance with the terms and conditions of appointment dated 20 April 2020 (the "Appointment") between the Client and **Arcadis (UK) Limited** ("Arcadis") for the purposes specified in the Appointment. For avoidance of doubt, no other person(s) may use or rely upon this report or its contents, and Arcadis accepts no responsibility for any such use or reliance thereon by any other third party.

	Arcadis Consulting (UK) Limited (Arcadis) was commissioned by South Tees Development Corporation to undertake a Generic Quantitative Risk Assessment (GQRA) for three additional areas (the data gap areas (DGA)) within the plot of land known as Land West of Warrenby ("the Site"), situated at the Teesworks, located within the industrial area generally known as 'South Tees'.
	 The assessment was required by Condition 4 of Planning Decision R/2021/1048/FFM to be implemented following demolition/clearance works in areas previously not accessible: The Blast Furnace Stockhouse The Blast Furnace Workshop/stores The residual former Redcar works
Background	Activities were historically undertaken at the Site to support the production of steel, albeit operations ceased in 2015. It is understood that the consortium Net Zero Teeside are the prospective tenant for the Site and intended to redevelop the Site into a carbon capture, utilisation and storage facility.
	A number of potentially contaminative historical land uses have occurred across the entire Site. These include, but are not limited to, the steel plant, pellet plant, sinter plant, sinter and pellet stocking areas, slag, tar and macadam works, above ground storage tanks, transformers, substations, iron ponds, disposal area, blast furnace stock house, workshop, stores, railway lines.
	Following the Detailed Quantitative Risk Assessment (DQRA) undertaken in 2022, data from the three additional data gap areas has been collected and a generic (G)QRA has been undertaken to confirm if the Remediation Strategy developed for the wider site requires updating for the data gap areas.
Previous Environmental Works	A number of phases of intrusive investigation have been undertaken which included portions of the Site with the primary investigations undertaken in 2004 and 2017 / 2018 and 2021 / 2022. The bulk of the 2021 / 2022 investigations were commissioned independently by the prospective tenant and was focused solely on the Site and land to the north.
WORKS	Works undertaken have comprised desk study, trial pitting, advancement of boreholes, collection of soil and groundwater samples, geotechnical testing, environmental testing of soil, soil leachate and groundwater, geophysical investigation, hydrogeological investigation and quantitative risk assessment.
	The objective of this GQRA was to assess the potential risks to the identified receptors associated with contaminants of concern (CoC) measured in the subsurface and to determine if the CoCs beneath these additional areas are in line with the current site-wide conceptual site model (CSM). The specific objectives of this GQRA comprised:
Scope and Objectives	To further characterise pollutant linkages at the data gap areas using site-specific information.
	• To evaluate the significance of the identified impacts across the data gap areas within the existing legislative framework.
	Geology
Site Setting	Made Ground up to 7.75m bgl (metres below ground level) is present in all three areas, comprising mainly slag dominated material (granular in nature) or granular Made Ground. Made Ground is underlain by superficial deposits of Tidal Flat Deposits (typically comprising silty gravelly sands), beneath which is Glacial Till (sandy gravelly clay). Beneath the superficial deposits is bedrock of the Redcar Mudstone Formation and the Mercia Mudstone

Group (within the area of the former Redcar works). Blown Sands are indicated as being present across the wider site.

Hydrogeology

	Though only one monitoring well is present across all three areas (with groundwater in this well resting between 4.9 to 6.1m bgl), groundwater across the wider site is typically resting within the Made Ground. Groundwater in the Made Ground is likely to be in hydraulic continuity with groundwater in the underlying moderately permeable Tidal Flat Deposits and flowing in a northerly direction towards the North Sea. The more cohesive superficial deposits were considered to potentially act as an aquitard between the overlying granular superficial deposits and bedrock. Groundwater within the low permeability Redcar Mudstone Formation was indicated to be flowing towards the north / northeast.
	The Tidal Flat Deposits are designated as Secondary A Aquifers, while the Glacial Till is Secondary Undifferentiated and Glaciolacustrine Deposits are as Unproductive Strata. The Redcar Mudstone Formation is designated as a Secondary Undifferentiated Aquifer while the Penarth Group and Mercia Mudstone Group (in the northwestern tip of the Site) are designated as Secondary B Aquifers. The Site is not located within a Source Protection Zone (SPZ).
	Hydrology
	The nearest surface water feature is a pond, which is located approximately 20m to the north of the Site, albeit this is unlikely to be in hydraulic continuity with groundwater beneath the Site. The North Sea is located approximately 450m to the north, with the land immediately to the north designated a Ramsar site, Site of Special Scientific Interest (SSSI) and a Special Protection Area (SPA).
Sources	Potential sources of contamination exist on-Site, associated with the Made Ground and historical use of the site. Previous review of the contaminant distribution across the entire site identified a single primary source comprising Made Ground . Made Ground (including slag) was considered to represent a single diffuse soil source across the entirety of the Site footprint. It is the purpose of this GQRA to determine if this conclusion holds true within the three additional data gap areas.
	Diffuse groundwater contaminants found throughout the Site associated with Made Ground included metals, hydrocarbons including PAH and TPH, inorganics including cyanide, thiocyanate, ammoniacal nitrogen and sulphate.
	The following fate and transport pathways are potentially active:
Pathways	 Lateral migration of potentially impacted groundwater towards the identified water resource receptors. Dilution in an overlying air space. Dermal contact with soils Soil and dust ingestion and inhalation
	The primary water resource receptor associated with the DGA and the wider site was considered to be the North Sea, which is additionally noted to be designated as a Ramsar site, SPA and a SSSI.
Receptors	Groundwater associated with the designated aquifers underlying the DGA and the wider site (primarily the Tidal Flat Deposits and Blown Sands) were also considered a potential receptor, albeit it is considered likely to be of low resource potential based on the industrial history of the Site and its surroundings, the brackish nature of groundwater identified in the north of the Site, the absence of potable groundwater abstractions in the vicinity of the Site

and that it would be unlikely that future potable abstraction would be viable.

Executive Summary	
	A GQRA was undertaken to determine if the site-wide CSM still stands given the additional data collected from the DGA.
Generic Quantitative Risk Assessment	The GQRA found a number of exceedances of both the human health and water resources Generic Assessment Criteria (GAC) in soil, soil leachate and groundwater.
	The CoC identified beneath the DGA were in type and magnitude broadly in line with CoCs identified across the wider site, with similar and often lower concentrations.
	Based on the findings of the assessment undertaken, the CSM established for the wider site is considered valid when the additional DGA data is included.
	The CoC measured do not imply any significant separate sources are present below any of the additional areas, and that Made Ground is likely to be the single diffuse soil source across the entire site.
Conclusions	To address the identified active Human Health pollutant linkages at the DGA it is considered appropriate to apply the Remediation Strategy developed for the wider site which does not need to be updated to account for the additional data.
	The additional data from the DGA is not considered to change of outcome of the DQRA that remediation to protect Controlled Waters is not required, and therefore the Remediation Strategy developed for the wider site does not need to be updated to account for controlled waters or the additional data.

Contents

Intre	oduction	6
2	Environmental Investigations and Site Setting	.11
3	Conceptual Site Model	.18
4	Generic Quantitative Risk Assessment	.21
5	Review of Conceptual Site Model	.28
6	Conclusions	.31
7	References	.32

Tables (in text)

Summary of Contaminants Exceeding Human Health GAC in Soil	19
Summary of Contaminants Exceeding Water Quality Standards in Soil Leachate	20
Summary of Contaminants Exceeding Water Quality Standards in Groundwater	21

Figures

Figure 1	Site Location Plan
Figure 2	Data gap area locations
Figure 3	Proposed Site Layout
Figure 4	Additional data gap areas and intrusive investigation and monitoring well locations
Figure 5	Environmental Site Setting
Figure 6	Conceptual Site Model Cross Section

Appendices

Appendix A **NQMS** Declaration Reference Appendix B Figures Appendix C **Decision Notice** Appendix D **Study Limitations** Appendix E **Summary of Previous Site Investigation Data** Appendix F Arcadis 2022 Groundwater Monitoring Summary Appendix G **Summary of Sample Deviations** Appendix H Comparison of Measured Concentrations of Contaminants of Concern in Soil with Human Health GAC Appendix I Comparison of Measured Concentrations of Contaminants of Concern in Soil Leachate with GAC Appendix J

Comparison of Measured Concentrations of Contaminants of Concern in Groundwater with GAC

Introduction

Arcadis (UK) Limited (Arcadis) was commissioned by South Tees Development Corporation (STDC) to undertake a Generic Quantitative Risk Assessment (GQRA) of Data Gap Areas ("the DGA") within the development plot known as Land west of Warrenby, Teesside (the "Site"). The Site is a land parcel situated within the wider Teesworks area located across the Redcar, Lackenby, Grangetown and South Bank conurbations of the Borough of Redcar & Cleveland, set in the industrial area generally known as 'South Tees'. Activities historically undertaken on-Site included the production of steel, alongside ancillary activities associated with steelworks.

Under the instruction of STDC the Phase 1 Contaminated Land Desk Study has been documented as technically adequate under the National Quality Mark Scheme (NQMS) to provide visible identification that the Remediation Strategy has been checked for quality by a Suitably Qualified and experienced Person (SQP). In this instance the SQP is Ian Evans. The NQMS Declaration Reference is 0822-H0102, a copy of the declaration is contained as Appendix A.

The site is under consideration as a potential location for the Teesside Net Zero carbon capture and storage facility, this facility is to be constructed by a third party under a Development Consent Order (DCO). Although some documentation pertinent to the DCO has been used to produce this report the two projects are not formerly linked and should be assessed separately and in isolation within their respective planning frameworks.

The work was carried out in accordance with the proposal "Teesworks, Net Zero Teeside Plot – Planning and design technical Support" dated 20th October 2020. All works have been carried out in reference to English legislation and regulatory guidance for the assessment of land contamination.

A Site location plan is presented as Figure 1, while the current location of the DGA within the current Site layout showing presented on Figure 2. The proposed layout, as presented by the prospective tenant / STDC, is presented as Figure 3 (Figures in Appendix B).

1.1 South Tees Regeneration Masterplan

The South Tees Regeneration Masterplan has been developed detailing the industrial-led regeneration of the former Redcar Teesworks site into a world class employment-generating zone and economic growth enabler for the Tees Valley. The Masterplan has identified the Site as being located within the North Industrial Zone. The Site is a priority development area.

1.2 Regulatory Context

Outline planning for remediation of the site has been granted under Planning Decision R/2021/1048/FFM. This document is intended to support the discharge of Planning Condition 4 associated with remediation of the DGA at the plot, as defined under Outline Planning Approval. The planning redline is shown on drawing TSWK-STDC-NZT-ZZ-DR-C-0005 Net Zero Teesside – Remediation Zones – Rev D, contained within Appendix C alongside the Decision Notice detailing Condition 4, redlines on all other drawings should be considered indicative.

Planning guidance relating to the development of land potentially affected by contamination is detailed in the National Planning Policy Framework (NPPF), updated July 2021 and constitutes guidance for Local Planning Authorities (LPA). In this case the LPA is Redcar and Cleveland Borough Council (RCBC). RCBC within their planning portal/guidance strongly recommend Developers to use the The Yorkshire and Lincolnshire Pollution Advisory Group (YALPAG) guidance documents which they have adopted, to prevent any delays (Contaminated land | Redcar and Cleveland (redcar-cleveland.gov.uk)). As such the report has been documented as technically adequate under the NQMS.

The NPPF sets out the Government's planning policies for England and how these should be applied. Under the NPPF the planning process aims to ensure that land is suitable for its proposed future use, in particular:

'Planning policies and decisions should also ensure that new development is appropriate for its location taking into account the likely effects (including cumulative effects) of pollution on health, living conditions and the natural environment, as well as the potential sensitivity of the site or the wider area to impacts that could arise from the development.'

The NPPF also states that:

- Strategic policies should set out a clear strategy for accommodating objectively assessed needs, in a way that makes as much use as possible of previously-developed or 'brownfield' land.
- Give substantial weight to the value of using suitable brownfield land within settlements for homes and other identified needs, and support appropriate opportunities to remediate despoiled, degraded, derelict, contaminated or unstable land.

Therefore, planning policies and decision should ensure that:

- A site is suitable for its proposed use taking account of ground conditions and any risks arising from land instability and contamination. This includes risks arising from natural hazards or former activities such as mining, and any proposals for mitigation including land remediation (as well as potential impacts on the natural environment arising from that remediation).
- After remediation, as a minimum, land should be capable of not being determined as contaminated land under Part IIA of the Environmental Protection Act 1990.
- Adequate site investigation information, prepared by a competent person, is available to inform these assessments.
- The planning system should contribute to and enhance the natural and local environment by:
- preventing both new and existing development from contributing to or being put at unacceptable risk from, or being adversely affected by, unacceptable levels of soil, air, water or noise pollution or land instability.
- Remediating and mitigating despoiled, degraded, derelict, contaminated and unstable land, where appropriate.

The statutory definition of contaminated land is given under Part 2A of the Environmental Protection Act (EPA) 1990 (Part 2A). This does not include land that is already regulated through other means, such as Waste Management Legislation or the Environmental Permitting Regulations 2010.

1.3 Background

Early historical maps indicate that the Site comprised tidal mudflats and sand, with reclamation activities occurring from around the 1930s to 1970s to facilitate the construction of Site features. Reclamation is thought to have included tipping of slag and the placement of hydraulic fill dredged from the River Tees. The Site was operated until 2015 as a steel works, which included ancillary activities and plants over the course of its operation, including pellet production, sinter and pellet stocking areas, sinter plant and slag, tar and macadam plant.

A number of geo-environmental investigations were undertaken across the Site and wider area to characterise the subsurface (see Section 1.4 for further details on related reports). The investigation phases included trial pitting, the advancement of boreholes, installation of monitoring wells, geo-environmental analytical testing (including soils, soil leachate and groundwater) and collection of parameters to allow the assessment of hydrogeological conditions beneath the Site. Following the investigation phases a Remediation Strategy was developed for the Site based on the output of both GQRA and Detailed Quantitative Risk Assessment (DQRA). These documents have been accepted under Planning Decision Planning Decision R/2021/1048/FFM for the remediation of the Site.

However, it was recognised at the time of the grant of Planning that insufficient information was available to undertake an appropriate GQRA/DQRA and define a Remediation Strategy for three areas of the site (the DGA)

due to the presence of structures undergoing demolition which precluded access for ground investigation, namely:

- The Blast Furnace Stockhouse
- The Blast Furnace Workshop and Stores Area
- The residual former Redcar works

Following completion of demolition activities additional ground investigation has now been completed in the DGA. This GQRA report reviews the additional information for the DGA in the context of the current site-wide Conceptual Site Model (CSM) to identify if changes to the Remedial Strategy adopted for the wider Site are required for the DGA or if the current strategy can be adopted for these additional areas.

1.4 Previous Reports

Arcadis have prepared or overseen the preparation of following reports for or to include the Site:

- Phase 1 Environmental Contaminated Land Desk Study, Land west of Warrenby, Teesworks, 10035117-AUK-XX-XX-RP-ZZ-0520-04-Land West of Warrenby Redcar Preliminary Risk Assessment, prepared by Arcadis and dated August 2022 [Arcadis 2022a].
- The Former SSI Steelworks, Redcar: Priority Areas within SSI Landholdings Contract 1 and 2A: Site Condition Report, Redcar Steelworks-AUK-XX-XX-RP-GE-0001-02-SSI1_SSI2A_GI_SCR, prepared by Arcadis and dated August 2018 [Arcadis 2018a], based on factual data within:
 - 4153 & 4154 Area A Former Steelworks Redcar Contract 1 & 2 (Area A) (Final report), prepared by Allied Exploration and Geotechnics Limited (AEG) for South Tees Site Company Ltd, dated June 2018 [AEG 2018].
- Contaminated Land Generic Quantitative Risk Assessment and Detailed Quantitative Risk Assessment, Land West of Warrenby, Teesworks, Redcar, 10035117-AUK-XX-XX-RP-ZZ-0428-04-LWoW_DQRA, prepared by Arcadis and dated August 2022 [Arcadis 2022b]. Supersedes:
 - The Former SSI Steelworks, Redcar: Priority Areas within SSI Landholdings Contract 1 and 2A: Environmental Risk Assessment, Redcar Steelworks-AUK-XX-RP-GE-0001-P1-SSI1_SSI2A_GI_ERA, prepared by Arcadis and dated August 2018 [Arcadis 2018b].
- The Former SSI Steelworks, Redcar: Priority Areas within SSI Landholdings Contract 1 and 2A: Geotechnical Risk Assessment Report, Redcar Steelworks-AUK-UK-XX-XX-RP-GE-0001-P1-SSI1_SSI2A_GI_GRA, prepared by Arcadis and dated November 2018 [Arcadis 2018c].
- Enabling Earthworks and Remediation Strategy Report, Land West of Warrenby, Teesworks, Redcar, 10035117-AUK-XX-XX-RP-ZZ-0417-06-Rem_Strat_LWoW, prepared by Arcadis and dated August 2022 [Arcadis 2022c]. Supersedes:
 - The Former SSI Steelworks, Redcar: Priority Areas within SSI Landholdings Contract 1 and 2A: Ground Remediation Options Appraisal Report, Redcar Steelworks-AUK UK-XX-XX-RP-GE-0001-01-SSI1_SSI2A_GI_ROA, prepared by Arcadis and dated December 2018 [Arcadis 2018d].
- Earthworks Specification, Land West of Warrenby, Teesworks, Redcar, 10035117-AUK-XX-XX-RP-ZZ-0420-05-LWoW_Earthworks, prepared by Arcadis and dated May 2022 [Arcadis 2022d].

In addition STDC have provided the following reports for or pertinent to the Site:

- Soil and Groundwater Baseline Characterisation Study, Teesside Works, prepared by Enviros for Corus UK Ltd [Enviros 2004], comprising:
 - Volume 1 Factual Report, Ref. Rlp250604corusteessidefactual.Doc dated 25th June 2004 and marked Final;
 - Volume 2 Interpretive Report Ref. Mwicorusdraftinterpretivemmdv#2.Doc dated 25th June 2004 and marked Final; and,

- Volume 3 Summary Report dated June 2004
- SSI1 Redcar Works Phase 1 Geo-Environmental Desk Study, 678079_SSI1_001 prepared by CH2M, dated August 2017 [CH2M 2017a]
- SSI2 Redcar Works Phase 1 Geo-Environmental Desk Study, 678079_SSI2_001 prepared by CH2M, dated August 2017 [CH2M 2017b]
- *Factual Report Initial Trial Pitting* SSI Redcar SSI1, prepared by CH2M and dated November 2017 [CH2M 2017c];
- *Factual Report Initial Trial Pitting* SSI Redcar SSI2, prepared by CH2M and dated November 2017 [CH2M 2017d];
- Former Steelworks Land, South Tees Outline Remedial Strategy, Prepared for South Tees Development Corporation by Wood, ref 41825-wood-XX-XX-RP-OC-0001_S0_P01 dated 25th June 2019 [Wood 2019].

In addition, Arcadis have been provided with the following reports by BP.

- Net Zero Teesside Environmental Statement Volume III Appendices, EN010103-001064-NZT DCO 6.4.11 ES Vol III Appendix 9C WFD Assessment, Prepared by AECOM for BP [AECOM 2021a].
- Preliminary Onshore Ground Investigation for Net Zero Teesside (NZT) South Tees Development Corporation (STDC) 'Main Site' and Onshore CO2 Export Pipeline Corridor Final Factual Report, prepared by AEG for AECOM and dated January 2022 [AEG 2022].
- Net Zero Teesside Long Term Groundwater Monitoring First Interim Report, prepared by AECOM for BP and dated July 2022 [AECOM 2022]
- Ground Investigation Factual Report, Net Zero Teesside Onshore Ground Investigation Front End Engineering Design (FEED), prepared for BP by AECOM and dated 19th January 2023 [AECOM 2023].

This GQRA should be read in conjunction with the aforementioned reports, in particular, the DQRA, which form the basis for the conceptual understanding of the Site.

1.5 Objectives

The objective of this GQRA was (for the DGA only) to assess the potential risks to the identified receptors associated with Contaminants of Concern (CoC) measured in the subsurface and to determine if the CoCs beneath these additional areas are in line with the current site-wide conceptual site model (CSM). The specific objectives of this GQRA comprised:

- To further characterise pollutant linkages within the DGA using site-specific information.
- To evaluate the significance of the identified impacts across the DGA within the existing legislative framework.

1.6 Scope of Works

The scope of works was developed with reference to the Environment Agency's (EA) Land Contamination Risk Management (LCRM) guidance, published October 2020 and last updated in April 2021.

1.7 Reliability of Information / Limitations

The scenarios overleaf are not considered in the derivation of site-specific assessment criteria (SSAC):

- Risks to Construction Workers any redevelopment and construction work should be conducted in full recognition of HS(G)66 (no longer current but has not been updated and is cited in The Building Regulations, 2010) and with reference to CIRIA Report 132¹; and,
- Nuisance health effects the Statutory Nuisance Act considers olfactory impacts from odours and allows comparison of enclosed space air concentrations with odour threshold concentrations.

Arcadis' liability, pursuant to the terms of the appointment of Arcadis by STDC, is strictly limited to the work undertaken and the matters contained and specifically referred to in this report.

A copy of Arcadis' Study Limitations is presented in Appendix D.

1.8 Reliance

It is understood that the current report has been prepared for the use of STDC in their planning process. The contents of this report may not be used or relied upon by any person other than this party without the express written consent and authorisation of Arcadis.

¹ Construction Industry Research and Information Association, 1996. CIRIA report 132 – A Guide for Safe Working on Contaminated Sites

2 Environmental Investigations and Site Setting

2.1 Ground Investigation Works

A number of investigations have been undertaken for the overall Site, including desk study, trial pitting, advancement of boreholes, collection of soil and groundwater samples, geotechnical testing, environmental testing of soil, soil leachate and groundwater, geophysical investigation, hydrogeological investigation (comprising collection of data pertaining to tidal conditions, hydraulic continuity of underlying geological units and aquifer permeability testing), alongside quantitative risk assessment.

The following additional works have been completed as part of the assessment of the DGA and are considered sufficient to robustly assess the sub surface conditions within each area:

- 10 trial pits
- 11 BH
- Collection of 89 soil, 35 leachate and 5 groundwater samples

The site data referenced in this report is summarised below and key information has also been compiled in Appendix E, which includes trial pit and borehole logs, soil and groundwater analysis and monitoring summary.

The information gathered from these investigations has been used to develop the environmental Site setting, as reported within. A plan showing the intrusive investigation and monitoring well locations within the data gap areas is presented as Figure 4.

2.2 Description of Data Gap Areas

The wider Land West of Warrenby (LWoW) Site including the DGA comprises reclaimed land, with reclamation activities commencing in the 19th century, albeit the majority of reclamation in the north of the Site where the DGA are located occurred in the 1930s. The reclamation is thought to have included end tipping of slag from railway sidings and the placement of hydraulic fill dredged from the River Tees. The DGA are all located in the north western quarter of the site adjacent to the western boundary, at the time of writing all major structures have all been demolished to ground level 7-8m AOD (above ordnance datum). Prior to demolition the DGA comprised:

- Blast Furnace Stockhouse Comprised a series of large above ground bunkers containing raw
 materials (including coal and ore) for the Blast Furnace, linked to the surrounding complex by overhead
 conveyors. A substation was associated with the facility. Located immediately south of the former
 Redcar Workshops and Stores and immediately north of Red Main site road and a utility corridor which
 includes the coke over gas main and heavy fuel oil lines. Underground diesel storage tanks are located
 on the northern border.
- Redcar Workshops and Stores A series of offices, stores and workshops for maintenance of equipment and infrastructure.
- Residual Former Redcar Works Located in the northwest of the site adjacent to the Blast Furnace ancillary buildings. This is an area of the former Redcar Works demolished in the 1970 to clear the site for the construction of the most recent plant.

2.3 Geology

The focus of this section is on geology as identified beneath the DGA, although additionally considers geology within the wider area, where pertinent.

2.3.1 Published Geology - Site wide

Review of the British Geological Survey (BGS) online map viewer and BGS map for the area (Guisborough, 1:50,000 Solid and Drift Edition, Sheet 34) indicates that the Site is directly underlain by worked ground. Worked ground is indicated to be underlain by superficial deposits comprising primarily Tidal Flat Deposits of sand and silt, albeit within the northeastern portion of the Site Blown Sand are recorded. Blown Sand, and subsequently Beach and Tidal Flat Deposits are noted to the north of the Site, between the Site and the coast, with Glaciolacustrine Deposits and Glacial Till noted in the general area, and potentially present at depth beneath the Tidal Flat Deposits and Blown Sand.

Bedrock beneath the majority of the entire Site comprises the Redcar Mudstone Formation, up to 250m thick. The Redcar Mudstone Formation is described as mudstones and siltstones with subordinate thin beds of shelly limestone in the lower part and argillaceous limestone concretions throughout. The Penarth Group outcrops in the northwestern most portion of the Site and is described as mudstones with subordinate limestones and sandstones (from 0 to >12m thickness). The Mercia Mudstone Group, described as mudstones and subordinate siltstones (greater than 1,350m thick) is indicated to be present beneath the northwestern most tip of the Site.

2.3.2 On Site: Site Specific Geology

The information presented in this section is based on a review of readily available investigation data collected during ground investigation by AECOM (AECOM 2023).

Two main types of Made Ground have been noted across the Site:

- Slag-dominant material (SMG >50% slag): Generally ranging from gravel to boulder size fragments
 and intermixed with other types of manmade fragments including brick, concrete, coal, sandstone, and
 clinker. The slag material generally ranged from light grey to dark grey/black in colour, but a wide range
 of other colours were also noted including grey brown, red brown and orange brown. Discolouration of
 the slag surface was also noted with white crystallisation/discolouration often noted on the outer
 surface.
- Granular Made Ground (GMG <50% slag): Generally described as a sandy gravel with varying amounts of clay, cobbles and gravel. Gravel and cobbles include brick, concrete and other demolition materials, slag was not the dominant constituent although often still present within the soil matrix.

In addition to the above, cohesive Made Ground, Hydraulic Fill material, and sinter have been encountered beneath the wider Site, albeit to a far lesser extent. A summary of the geology identified in the DGA is provided in the table below.

Unit	Description	Maximum Depth
Made ground: SMG	Silty slightly sandy subangular to angular fine to coarse slag GRAVEL with medium cobble content of slag cobble.	
GMG	Silty very gravelly fine to coarse SAND with medium cobble content. Gravel is subangular to angular slag, brick, clinker, and metal. Cobbles are slag and brick.	5.20 bgl (F-BH125)

2.3.2.1 Blast Furnace Stockhouse

Unit	Description	Maximum Depth
	Slightly gravelly fine to medium SAND. Gravel is slag and flint (potentially reworked ground). AND	
Superficial: Tidal Flat Deposits	Medium dense slightly to very gravelly fine to coarse organic SAND with shell fragments. Gravel is subrounded to angular fine to coarse chert, limestone, sandstone, and mudstone. AND Soft silty gravelly sandy CLAY.	14.70m bgl (F-BH128)
Devensian Till	Stiff to very stiff sandy gravelly silty CLAY. Gravel is subangular to subrounded fine to coarse limestone, mudstone, and sandstone.	19.50m bgl (F-BH119)
Bedrock: Redcar Mudstone Formation	Extremely weak to locally very weak fractured thinly to thickly laminated MUDSTONE.	34.00m bgl (F-BH124)

2.3.2.2 Workshop/Stores

Unit	Description	Maximum Depth	
Made ground: SMG	Sandy angular to subrounded fine to coarse slag GRAVEL with low to medium cobble content of slag cobbles.	5.30m bgl (F-BH114)	
GMG	Very gravelly fine to coarse SAND with low to high cobble content. Gravel is brick and slag with metal fragments. Cobbles are slag.		
Superficial: Tidal Flat Deposits	Very loose to locally dense gravelly fine to coarse organic SAND with shell fragments. Soft silty sandy very organic CLAY.	15.50m bgl (F-BH116)	
Devensian Till	Firm gravelly sandy CLAY	21.2m bgl (F-BH115)	
Bedrock: Redcar Mudstone Formation	Weak friable thinly laminated MUDSTONE	31.50m bgl (F-BH115)	

2.3.2.3 Residual Former Redcar Works

Unit	Description	Maximum Depth	
Made ground: SMG	Subrounded to subangular medium to coarse slag GRAVEL with high cobble content of slag cobbles.		
	Slightly gravelly fine to coarse SAND. Gravel is subrounded to angular slag.	7.75m bgl (F-BH102)	
GMG	Silty gravelly fine to coarse SAND with fragments of plastic, metal, and textiles. Gravel is subangular to angular fine to coarse chert, concrete, brick and sandstone.		
	Dense fine to coarse SAND with shell fragments		
Superficial:	AND	16.00m hel (E. BU102)	
Tidal Flat Deposits	Dense to very dense slightly gravelly fine to coarse SAND with shell and coal fragments. Gravel is rounded to subrounded fine to medium mudstone and sandstone.	16.00m bgl (F-BH102)	
Devensian Till	Stiff silty slightly sandy slightly gravelly CLAY. Gravel is rounded to angular fine to medium coal, mudstone, and sandstone.	23.20m bgl (F-BH102)	
Bedrock:			
Redcar Mudstone Formation	Extremely weak fractured thinly laminated grey MUDSTONE	32.00m bgl (F-BH104)	
Mercia Mudstone Group	Extremely weak and fractured thinly laminated reddish brown MUDSTONE	39.00m bgl (F-BH102)	

2.4 Hydrogeology

The Site was reclaimed from the Tees Estuary on low lying areas immediately above high water by the placement of biproducts from the steel making process. As discussed, a significant thickness of Made Ground has been identified across the DAG and the wider Site, in addition to off-Site between the Site and coast. The following describes the hydrogeological regime beneath the additional data gap areas.

2.4.1 Groundwater Elevation

Only 1no. monitoring well is located within the additional areas, F-BH102.

Groundwater in F-BH102 was found to be resting within the slag made ground (SMG) at a depth of between 6.32m bgl to 8.775m bgl (0.313m AOD to 3.018m AOD) (Appendix F).

No further location specific hydrogeological information is available. In line with the remediation strategy, monthly monitoring will be conducted throughout the remediation earthworks on the Site. The September to December 2022 monthly monitoring data aligns broadly with what can be seen across the wider site (Arcadis 2022b), the general site-wide conditions are as follows:

The vertical hydrogeological regime beneath the Site is complex, with evidence for upward head between units in some instances, and downward head on other instances, even within the same dual well installation. Groundwater within the Made Ground is likely to be in continuity with groundwater within the underlying Tidal Flat Deposits based on the small head difference typically observed. It is considered that the cohesive superficial deposits (primarily the Glacial Till, which was identified in all 38 wells monitored across the wider site), may be in part acting as an aquitard in relation to the overlying superficial and underlying bedrock aquifers.

Review of groundwater elevation data collected from the Made Ground indicates a northerly/north-easterly flow direction towards the coast. However, a north to south flow direction was inferred off-Site on the basis of the findings of groundwater elevations in LF\BH02, which were consistently higher than the closest on-Site monitoring well monitored.

Review of the groundwater elevation data collected from the Redcar Mudstone Formation aquifer indicates a flow direction towards the north / northeast.

Tidal monitoring across the Site indicated no tidal influence is present. The absence of any notable cyclical tidal variation is likely due to the presence of cohesive deposits and provides evidence that the horizontal migration pathway between the Site and the North Sea may be limited by their presence. Groundwater underlying the Site may be brackish, which may be either attributable to saline intrusion from the North Sea, or due to the fact that the land is reclaimed from the sea and therefore likely to have residual salts within the underlying ground.

2.4.2 Aquifer Classification

The Tidal Flat Deposits beneath the Site are designated as a Secondary A Aquifer by the EA, although within the local area are noted to be designated as a Secondary Undifferentiated Aquifer. The Glacial Till is designated as a Secondary Undifferentiated Aquifer, while the underlying Redcar Mudstone Formation is also designated as a Secondary Undifferentiated Aquifer.

2.4.3 Source Protection Zones

The Site is not located within a groundwater Source Protection Zone (SPZ).

2.5 Hydrology

An ornamental pond is located approximately 120m west of the Redcar Workshops and Stores (beyond the Site boundary), this is understood to be lined and is not considered a receptor.

The North Sea is present approximately 450m to the north of the wider Site boundary, considering the mean high-water mark as the boundary. The River Tees which flows into the North Sea at the Tees Estuary, is located approximately 1500m to the west of the Site at its closest point. Another river, the River Fleet, is located approximately 150m to the southeast of the Site (and 740m from the DGA) at its nearest point.

In addition, a number of ponds (closest within 20m of the Site) were formerly present between the Site and coastline within an area of off-Site Made Ground associated with the South Gare and Coatham Dunes. It is thought that these ponds may have been fed by surface runoff from operation of the Redcar Blast Furnace (to the west of the Site), and have reduced significantly in size since termination of operations at the steelworks. During a Site walkover undertaken by an Arcadis representative on 8 November 2021, only a single pond was observed to be present (located 20m north of the Site boundary and named 'Pond 14'). Pond 14 has been found unlikely to be in continuity with groundwater beneath the Site, and as such, is not considered as a potential receptor in relation to the Site, further discussion can be found in Arcadis (2022b). On this basis, the primary surface water feature in relation to the Site is the North Sea (located approximately 450m to the north).

2.6 Ecologically Protected Sites

Review of DEFRA's magic map website (accessed 23 November 2021) indicates that the land immediately to the north of the Site has ecologically protected status, as detailed in Arcadis (2022b) and summarised below.

- Site of Special Scientific Interest (SSSI) associated with the Teesmouth and Cleveland Coast;
- Special Protection Area (SPA) associated with the Teesmouth and Cleveland Coast; and
- Ramsar Site associated with the Teesmouth and Cleveland Coast.

2.7 Soil and Groundwater Quality

The collection of soil and groundwater samples for laboratory analysis, which included leachate testing, has been undertaken at the Site to assess the quality of the soil, soil leachate and groundwater. Where noted during the site works, visual and olfactory evidence of impacts were recorded. The former uses of the DGA and as such potential contaminants of concern associated with the DGA, informed the laboratory analysis undertaken on collected samples. No evidence of non-aqueous phase liquids (NAPL) or tar was observed during the investigation. Observations made can be found on the borehole and trial pit logs in Appendix E Pertinent observations are summarised below:

Location	Geological Unit	Description			
Workshop/Stores	'				
F-BH116	SMG	Elevated PID readings up to 26.6ppm			
	Blast Furnad	ce Stockhouse			
F-BH119	GMG	Elevated PID readings up 9.4ppm			
F-BH124	GMG	Sulphurous odour @0-0.5m bgl			

Location	Geological Unit	Description			
Workshop/Stores					
F-BH125	GMG	Elevated PID readings up to 15.8ppm			
F-BH128	TFD	Elevated PID readings up to 10.4ppm			
Residual Former Redcar Works					
F-BH102	SMG	Sulphur and iron-stained cobbles with sulphurous odour @ 1.00-3.00m bgl Sulphurous odour @4.20-4.50m bgl			
F-BH104	SMG	Elevated PID readings up to 65.4ppm			
F-TP121	GMG	Slightly sulphurous odour @1.50-2.50m bgl			

2.7.1 Laboratory Deviations

The reported laboratory deviations are presented in Appendix G. The majority of deviations relate to holding times being exceeded. Where holding times are recorded as being exceeded by 365 days, this is due to the sample date not being supplied to the laboratory. The reported laboratory deviations have been reviewed and are not considered to have a material impact on the quality of data reported.

3 Conceptual Site Model

3.1 Sources

A number of potential sources associated with the historical use of the Site have been identified both on-Site and off-Site in the Phase 1 Environmental Assessment (Arcadis 2022a). In brief, these include Made Ground both on and off-site which often comprises slag, on and off-site historical industrial land uses associated with iron and steel making and railways, including the workshops and stores which have been investigated as part of the DGAs. Analytical testing of soils, soil leachate and groundwater has incorporated the following CoC based on the identified sources: total petroleum hydrocarbons (TPH), polyaromatic hydrocarbons (PAH), volatile organic compounds (VOC), semi volatile organic compounds (SVOC), metals and inorganics, polychlorinated biphenyls (PCBs) and asbestos (soil only).

3.2 Receptors

3.2.1 Human Health

On the basis of the proposed redevelopment of the DGA along with the rest of the Site for commercial / industrial use, the primary human health receptors are considered to comprise future on-Site industrial workers. There are no neighbouring residents in the vicinity of the Site and it is considered unlikely that residential properties would be constructed hydraulically down-gradient of the Site within the ecologically protected area. As such, neighbouring residents have not been considered a receptor. Consideration of the risk to on-Site industrial workers is considered to provide protection to off-Site commercial/industrial workers, provided that any remedial measures, if undertaken, are based on source reduction or pathway management which also cuts the pathway for off-Site commercial/industrial workers.

3.2.2 Controlled Waters

The primary water resource receptor is considered to be surface water associated with the North Sea, located approximately 450m to the north of the Site. It is noted that the North Sea also has ecologically protected status and is therefore also considered a receptor in relation to ecological receptors.

In addition to surface water, groundwater within the underlying superficial deposits (primarily Tidal Flat Deposits, and additionally the Blown Sands which are present immediately north of the Site and with the same designation) is also considered a potential receptor. Groundwater within bedrock beneath the Site is considered a potential receptor given their designations as a Secondary Undifferentiated Aquifer (Redcar Mudstone Formation) and Secondary B Aquifers (Penarth Group and Mercia Mudstone Formation), albeit the cohesive Glacial Till (and where present, Glaciolacustrine Deposits) are considered to offer a degree of protection to this aquifer.

3.3 Pathways

The following fate and transport pathways are potentially active:

- Lateral migration of potentially impacted groundwater towards the identified water resource receptors.
- Dilution in an overlying air space.
- Dermal contact with soils.
- Soil and dust ingestion and inhalation.

In addition to the above, the Phase 1 Environmental Assessment (Arcadis 2022a) identified the potential for shallow tunnels to be present and also the potential for relic pile foundations. These features, if present, may represent preferential pathways and may require further assessment.

3.4 Potentially Active Pollutant Linkages

As such, the following linkages have been identified which require further consideration:

- Dermal contact, soil and dust ingestion and inhalation of dusts (indoor and outdoor) in relation to future on-Site industrial workers derived from shallow on-Site Made Ground;
- Inhalation of contaminants in vapours in a future indoor or outdoor air space associated with an on-Site unsaturated soil or groundwater source in relation to future on-Site industrial workers;
- Lateral migration off contaminants in groundwater associated with potential off-Site sources (Made Ground and historical industrial land uses) on to Site and subsequent inhalation of vapours in an outdoor or indoor air space in relation to on-Site industrial workers;
- Leaching of contaminants from on-Site Made Ground into groundwater, and subsequent lateral migration towards the identified surface water resource receptors (e.g., North Sea);
- Leaching of contaminants from on-Site Made Ground into groundwater, and subsequent lateral migration towards the identified water resource receptors (Secondary Aquifers);
- Leaching of contaminants from on-Site Made Ground into groundwater, and subsequent lateral migration towards the identified ecologically protected receptors associated with the North Sea; and
- Lateral migration of contaminated groundwater associated with off-Site sources such as Made Ground across the wider Teesworks site, on to Site in relation to the identified water resource receptors.

In addition to the above, the following linkages are also noted to exist across the Site and are considered to apply to the DGA, but have not been assessed further in this report:

- The potential presence of permanent ground gas and human health or built receptors. No unacceptable risk
 to human health or built receptors from the accumulation of ground gas was identified based on the findings
 of Arcadis 2018b. However, as the ground investigation was not designed with a particular redevelopment
 scenario in mind, the gas data monitoring was limited and may not be representative of the entire extent of
 the Site under a particular redevelopment.
- Pipe permeation in relation to new water supply pipes, if installed within the Made Ground, primarily in relation to organic contaminants;

Arcadis understand from STDC that it is expected that any risks associated with the above linkages and any subsequent mitigation measures required (e.g. building controls) would be the responsibility of the developer. As such, these linkages have not been considered further.

A risk to construction workers may be present in relation to potential contaminants in the subsurface during the redevelopment phase. However, these risks can be mitigated through best practice and employment of suitable mitigation measures which would be considered standard practice in brownfield site redevelopment.

A preferential pathway could be created if piled foundations are included within the design which penetrate through the Glacial Till and Glaciolacustrine Deposits; a piling risk assessment may be required to inform pile design, this would be the responsibility of the developer.

4 Generic Quantitative Risk Assessment

In order to assess the CoCs beneath the additional data gap areas a GQRA was undertaken. The GQRA comprised comparison of measured concentrations of contaminants of concern, in the various media tested, against Generic Assessment Criteria (GAC) for commercial / industrial end use. The GAC have been derived using conservative assumptions to enable potential pollutant pathways that do not pose unacceptable risks to be identified and discounted. Exceedance of a GAC does not imply that an unacceptable risk is necessarily present, rather that further assessment may be required to assess the potential risk. The GAC have not been developed to assess potential preferential pathways.

The GAC have been developed assuming that the Site will be redeveloped as a typical commercial/industrial development, represented by office buildings, hardstanding and some areas of soft landscaping. Given the planned industrial development, this conceptualisation is likely a conservative assumption.

4.1 Datasets included in the Comparison

The data included in the comparison comprised:

- Soil and soil leachate data collected by AEG on behalf of AECOM/BP during ground investigation works in 2022 (AEG 2022);
- Soil and soil leachate data collected by AECOM on behalf of BP during ground investigation works in 2022 (AECOM 2023);
- Groundwater data collected by AECOM on behalf of BP during ground investigation works in 2022 (AECOM 2022);
- Additional soil and soil leachate data collected by Arcadis during trial pit investigation works in 2022 (Appendix E); and
- Additional groundwater data collected by Arcadis during 2022 (Appendix E);

It is noted that a GQRA was undertaken previously by Arcadis (Arcadis 2018b superseded by 2022b) to assess the Site **and** wider area. This GQRA will focus on the data collected from the additional data gap areas only.

4.2 Human Health GQRA

4.2.1 Selection of Soil Generic Assessment Criteria

Potentially active pollutant linkages and CoC in relation to human health risks requiring further assessment have been identified as follows, based on the discussion in Section 3:

- A. Dust inhalation from Made Ground from Site (potential CoC include primarily asbestos and heavy metals)
- B. Vapour inhalation of indoor or outdoor air from volatile contaminants in soil (potential CoC include primarily VOCs and SVOCs)
- C. Vapour inhalation of indoor or outdoor air from contaminated groundwater (potential CoC include primarily VOCs and SVOCs)
- D. Direct contact and ingestion of contaminated soil (potential CoC include primarily heavy metals, organic/inorganic compounds)

The DGA are to be re-developed for commercial / industrial end use, and as such, on-Site industrial workers are the primary receptor of concern for any contamination risk. The risk would be influenced by the duration and

location of the staff work regimes. For the basis of this assessment, it is assumed that Site workers will be on-Site for a "standard" 8 hour working day.

Industry best-practice for commercial/industrial end-use is to develop GAC assuming a pre-1970s commercial property is present at the Site, with some open areas uncovered by hardstanding.

To assess the identified potential linkages GAC have been adopted based on the proposed industrial end use.:

The GAC comprise (in order of priority):

- Land Quality Management / Chartered Institute of Environmental Health (LQM / CIEH) Suitable for Use Levels (S4UL) (LQM / CIEH, 2015),
- DEFRA Category 4 Screening Levels (C4SL) (DEFRA, 2014),
- Arcadis derived generic assessment criteria, using CLEA v1.07, and adopting the model set up for the S4ULs,
- USEPA Regional Screening Levels (RSLs) (US EPA, November 2021)

Wood derived GAC using CLEA v1.07, which were presented in Wood 2019², for benzo(a)pyrene and naphthalene. It is understood that these values were acceptable to the regulator for the wider area (which included the Site) and as such they have been retained here.

In the absence of suitable GAC, Arcadis derived site specific assessment criteria for free cyanide for the Prairie site ³ (part of the wider area). It is understood that these values were acceptable to the regulator for the Prairie site and as such they have been retained here as the underlying conceptual model used in their development is consistent with the conceptual site model for this Site.

Soil organic matter (SOM) for the Made Ground for the Site ranged from 0.1 to 14% (average of 1.5%) although the upper values are considered to be influenced by hydrocarbons in the sample. As such, the S4UL selected as GAC are those for a commercial end use assuming a SOM content of 1% (the lowest, and most conservative, value).

The selected human health GAC for soil and maximum recorded concentrations in soil in Made Ground, superficial deposits and bedrock for all contaminants are listed in Appendix H.

4.2.2 Soil Screen

Contaminant concentrations in soil samples collected from the Site have been compared with the soil GAC in Appendix H. Contaminants which exceed the GAC are summarised below.

Compound	Sample	Sample depth (Unit screened)	GAC (mg/kg)	Exceedances (mg/kg)
Lead	F-TP113	3.3m bgl (GMG)	2,300	3,900
Dibenz(a,h)anthracene	F-BH102	1.0m bgl (SMG)	3.5	4.2

The risks associated with lead and dibenzo(a,h)anthracene are driven by the direct contact pathways, i.e. assuming that the soils at these locations remain uncovered by hardstanding, buildings or another suitable cover

² Former Steelworks Land, South Tees Outline Remedial Strategy, Prepared for South Tees Development Corporation by Wood, ref 41825-wood-XX-XX-RP-OC-0001_S0_P01 dated 25th June 2019

³ Grangetown Prairie Area, Former Steelworks, Redcar, Detailed Conceptual Site Model Review and Risk Assessment, prepared by Arcadis, report reference 10035117-AUK-XX-XX-RP-ZZ-0062-01-Prairie_ESA and dated July 2020

system. The depth at which the lead and PAH exceedances were identified are such that direct contact exposure is unlikely. The Remediation Strategy agreed for the wider site area (Arcadis 2022c), includes capping incorporated into the development which would address the above exceedances by breaking the direct contact pathways (including dust).

4.2.3 Compounds for which no GAC are readily available

In addition to the above, a number of compounds were detected for which no GAC criteria were readily available. These included a limited number of metals (aluminium, iron, manganese, magnesium and silicon), inorganics (sulphur species, total / complex cyanide and nitrate), asbestos and a limited number of VOC and SVOC (including 1,1-dichloropropene, 1,2,4-trimethylbenzene, n-butylbenzene, p-isopropyltoluene, 4-nitrophenol, 4-chlorophenyl phenyl ether and 2-methylnaphthalene). These are discussed further below.

Metals and Inorganics

The metals and inorganics detected are all elements present naturally in soil at relatively high concentrations (with the exception of total / complex cyanide), with some noted to be biologically required nutrients. They may be elevated above natural levels where slag and other steelmaking wastes are incorporated into soil due to the Site's former use, particularly manganese and iron. These substances are typically considered to be those with low known toxicity, and none of the compounds that have been reviewed are expected to pose a significant human health risk under an industrial redevelopment scenario. Other effects, such as phytotoxicity, are not assessed as the Made Ground is likely to be unsuitable as a growing medium and some form of capping is likely to be incorporated into the development if any areas remain uncovered by hardstanding or buildings.

The potential risks associated with total and complex cyanide were assessed based on the detections of free cyanide, which is of higher toxicity and of a similar composition, with none of the measured concentrations of free cyanide in soil in excess of the GAC.

Volatile Organic Compounds and Semi Volatile Organic Compounds

The VOC / SVOC 1,2,4-trimethylbenzene, n-butylbenzene, p-isopropyltoluene were typically measured in a limited number of samples and marginally above the laboratory method detection limit (MDL) (concentrations typically less than 0.03mg/kg). On this basis, the risk from these compounds is not considered significant. Similarly, the SVOC 4-chlorophenyl phenyl ether was detected in only 1 of 83 samples analysed, marginally above the MDL of 0.1mg/kg at a concentration of 0.2mg/kg, and therefore is not considered to represent a significant risk.

The SVOC 2-methylnaphthalene was detected in 10 of 83 samples analysed and was measured at a maximum concentration of 1.2mg/kg. The SVOC 2-methylnaphthalene is a type of PAH, with detections of this compound corresponding with samples in which the remaining PAH analysed were also measured. The remaining PAH are considered to represent suitable indicator compounds for the assessment of risk from 2-methylnaphthalene in soil.

The VOC 1,1-dichloropropene was detected in 17 of the 85 samples analysed, albeit the maximum measured concentration was the laboratory MDL of 0.01mg/kg. While a GAC was not readily available for the assessment of 1,1-dichloropropene, it is noted that the US EPA presents a value of 8.2mg/kg for 1,3-dichloropropene (used in pesticides), which is likely to behave in a similar way in the environment and be of similar toxicity. On the basis that the maximum measured concentrations of 1,1-dichloropropene were two orders of magnitude lower than this value, further consideration of the risk to human health from measured concentrations of 1,1dichloropropene are not considered warranted.

The SVOC 4-nitrophenol was detected in 3 of 83 samples analysed at a maximum concentration of 2mg/kg. Based on its chemical properties, 4-nitrophenol is unlikely to represent a risk via the vapour inhalation pathways. Two of the three samples in which 4-nitrophenol was detected were at depth, with concentrations of 4nitrophenol in shallower soil samples collected from the same locations below the laboratory MDL, indicating the direct contact pathways in these locations is unlikely to be significant. The third location in which 4-nitrophenol was detected was at a depth of 1 - 1.2m bgl (MS\BH17), at a concentration of 0.2mg/kg (in the same order of magnitude as the laboratory MDL), with no shallower soil sample collected. Given the relatively low concentration of 4-nitrophenol detected at shallow depths and a review of compounds with similar chemical composition, the measured concentration of 4-nitrophenol is not considered to represent a risk to human health via the direct contact pathways.

Asbestos

A total of 50 samples were analysed for the presence of asbestos (DGA only), with asbestos identified in 6No. of the samples analysed (approximately 10% of samples).

Sample depths where asbestos was detected ranged from 0.3m to 2.3m bgl, with maximum asbestos quantification total being 0.003%.

Asbestos quantification was carried out on 4No. samples by gravimetric methods. 4No. samples recorded asbestos between 0.002 and 0.003% m/m primarily as fibre bundles (mostly amosite and chrysotile), albeit the highest concentration was identified in a sample containing loose fibrous asbestos debris. The Remediation Strategy agreed for the wider site area (Arcadis 2022c), includes capping incorporated into the development which would address the presence of asbestos fibres by breaking the inhalation pathways..

4.3 Risks to Controlled Waters and Ecological Receptors

3.3.1 Selection of GAC

Potentially active pollutant linkages in relation to Controlled Waters have been identified in the initial CSM as:

- E. Leaching of contaminants from on-Site Made Ground into groundwater, and subsequent lateral migration towards the identified surface water resource receptors (e.g., North Sea);
- F. Leaching of contaminants from on-Site Made Ground into groundwater, and subsequent lateral migration towards the identified water resource receptors (Secondary Aquifers);
- G. Leaching of contaminants from on-Site Made Ground into groundwater, and subsequent lateral migration towards the identified ecologically protected receptors associated with the North Sea;
- H. Lateral migration of contaminated groundwater associated with off-Site sources such as Made Ground across the wider Teeswork site, on to Site in relation to the identified water resource receptors.

An assessment of the potential for contaminants in the Made Ground on the Site to impact the Controlled Waters receptors identified in the CSM has been undertaken.

Concentrations of CoC in groundwater and leachate samples collected from F-BH102, screening the Tidal Flat Deposits and the Mercia Mudstone Group have been compared to Water Quality Standards (WQS). The WQS chosen are UK Drinking Water Standards (DWS) protective of aquifer water resources, and Environmental Quality Standards (EQS) considered protective of surface waterbody quality. The EQS are for saline waters protective of the North Sea receptor.

While the Tidal Flat Deposits / Blowing Sands are a Secondary A Aquifer in the vicinity of the site, they are regarded as having low resource value given the site setting, relatively low permeability, and the brackish nature of groundwater. Therefore, screening against DWS is regarded as a very conservative approach but will provide a context for the assessment.

4.3.1 Soil Leachate

The results of 36 soil leachate tests (from on-Site soils within the DGA) were compared to WQS as shown in Appendix I Contaminant concentrations that exceeded the WQS are shown in the table below. The majority of the samples subject to leachate testing comprised Made Ground. Samples were taken across the site from depths ranging from -14.17 m AOD to 7.84m AOD. 4no. samples are below the remediation dig level of 4.80m AOD (Arcadis 2022c), all of which have exceedances.

Compound	No. exceedances	GAC (m	g/kg)	Maximum exceedance (µg/L)
Compound		EQS	DWS	
Aluminium	15 x DWS	-	200	1,275
Arsenic	1 x EQS 2 x DWS	25	10	53
Chromium (hexavalent)	7 x EQS	0.6	-	101
Copper	13 x EQS	3.76	2,000	19
Iron	1 x DWS	1000	200	350
Lead	13 x EQS 4 x DWS	1.3	10	25
Mercury	8 x EQS	0.07	1	0.22
Molybdenum	1 x DWS	-	70	310
Selenium	1 x DWS	-	10	14
Vanadium	2 x EQS	100	-	239
Zinc	1 x EQS	7.9	3000	9.5
Ammoniacal Nitrogen as N	21 x EQS	0.021	-	0.24
Cyanide Total	6 x EQS	1	50	5.9
Fluoride	1 x DWS	-	1500	1500
Nitrite (as NO2-)	2 x DWS	-	0.5	2
Thiocyanate (as SCN)	13 x EQS	9	-	280
Fluoranthene	24 x EQS	0.0063	-	1.3
Anthracene	2 x EQS	0.1	-	0.66
Benzo(b)fluoranthene	5 x DWS	-	0.025	0.11

LAND WEST OF WARRENBY, TEESWORKS, REDCAR Contaminated Land Generic Quantitative Risk Assessment, Data Gap Areas REPORT NO: 10035117-AUK-XX-XX-RP-ZZ-623-01-Data Gap Areas GQRA

Compound	No. exceedances	GAC (m	g/kg)	Maximum exceedance (µg/L)
Compositu		EQS	DWS	
Benzo(k)fluoranthene	7 x DWS	-	0.025	0.295
Benzo(a)pyrene	11 x DWS 11 x EQS	0.00017	0.01	0.488
Benzo(g,h,i)perylene	6 x DWS	-	0.025	0.295
Indeno(1,2,3- c,d)pyrene	6 x DWS	-	0.025	0.346
>C6-C8 Aliphatics	1 x EQS	4.55	-	20
TPH >C5-C35 Aliphatics/Aromatics	2 x DWS	-	10	21

4.3.2 Groundwater

The maximum measured concentrations of CoC measured in groundwater samples collected from F-BH102 during monthly visits in September, November, and December 2022 by Arcadis were compared to WQS as shown in Appendix J

Contaminant concentrations that exceeded the WQS which may require further consideration are summarised below.

Compound	No. exceedances	WQS (m	ng/kg)	Maximum exceedance (µg/L)
		EQS	DWS	
Chromium (Filtered)	4 x EQS	0.6	50	12.2
Copper (Filtered)	2 x EQS	3.76	2,000	57.2
Lead (Filtered)	1 x EQS	1.3	10	7.1
Mercury (Filtered)	4 x EQS 2 x DWS	0.07	1	187
Molybdenum (Filtered)	3 x DWS	-	70	248
Selenium (Filtered)	2 x DWS	-	10	7640
Ammoniacal Nitrogen as N	7 x EQS	0.021	-	424,000
Nitrate (as NO2-)	2 x DWS	-	0.5	75
Chloride	1 x DWS	-	250	982,000

Compound	No. exceedances	WQS (mg/kg)		Maximum exceedance
Compound		EQS	DWS	(µg/L)
Cyanide Total	3 x EQS 1 x DWS	1	50	114
Sodium (Filtered)	3 x DWS	-	200	903,900
Sulphate	3 x DWS	-	250	633.7
Thiocyanate (as SCN)	5 x EQS	9	-	140
Fluoranthene	7 x EQS	0.0063	-	0.209
Anthracene	2 x EQS	0.0063	-	0.076
Benzo(b)fluoranthene	3 x DWS	-	0.025	0.185
Benzo(k)fluoranthene	1 x DWS	-	0.025	0.233
Benzo(a)pyrene	1 x EQS 1 x DWS	0.00017	0.01	0.041
Benzo(g,h,i)perylene	1 x DWS	-	0.025	0.213
Indeno(1,2,3- c,d)pyrene	1 x DWS	-	0.025	3.642
>C5-C6 Aliphatics	7 x EQS	4.55	-	98
>C6-C8 Aliphatics	7 x EQS	4.55	-	564
>C8-C10 Aliphatics	5 x EQS	4.55	-	989
>EC8-EC10 Aromatics	4 x EQS	4.55	-	68
TPH >C5-C35 Aliphatics/Aromatics	5 x DWS	-	10	1344
TPH Aliphatics & Aromatics >C5-44	2 x DWS	-	10	1321

A number of compounds have been measured in excess of either the DWS, EQS or both. In addition, a number of compounds were detected for which no GAC criteria were readily available. Exceedances are spread generally equally over the shallow and deep wells.

5 Review of Conceptual Site Model

5.1 Environmental Site Setting

The environmental setting of the site including the DGA is summarised on Figure 5. Thisl identifies potentially sensitive land uses in the vicinity of the Site, alongside identified water resource and ecological receptors. Figure 6 includes a simplified profile of the geological conditions, alongside a conceptual cross-section identifying potentially active pollutant linkages.

5.2 Sources

5.2.1 On-Site Sources

A number of potential sources were identified, these included Made Ground, localised sources and background conditions, as detailed below.

Made Ground – Site Wide

The DGA and the wider site is reclaimed land from the River Tees Estuary. The Made Ground used for the land reclamation is primarily composed of by-products from surrounding industrial processes, including slag. The Made Ground has therefore been considered as a single diffuse source of CoC beneath the entire site.

Contaminants primarily associated with Made Ground are found dispersed throughout the site in varying concentrations. Diffuse contaminants found throughout the site associated with Made Ground include metals, hydrocarbons including PAH, inorganics including cyanide, ammonia and sulphate, asbestos and limited amounts of other organic compounds.

GAC exceedances for the three additional areas indicate that contaminants beneath these locations is broadly in line with that of the rest of the site.

Other Potential On-Site Sources – Localised

The other potential sources, identified in addition to Made Ground, represent more localised potential sources of historical contamination with the additional areas, and included with respect to the DGA:

- Blast Furnace Stockhouse;
 - Raw materials storage
 - Transformers
 - Storage tanks
- Redcar Workshop and Stores;
- Residual Former Redcar works extends onto the wider Site
 - Storage tanks
 - Transformers

Other sources on the wider site and previously investigated (Arcadis 2022b) but outside the DGA include:

- Additional above ground storage tanks (various central eastern portion of the Site and additionally southern portion of the site);
- Transformers and substations (central portion of the site);
- Diesel storage tanks (adjacent to Redcar Worksop's and Stores
- Iron ponds & disposal area (northeast of the site);
- Workshop and stores (eastern portion of the site);

- D Jones Haulage and Construction (vehicle storage and maintenance located in the eastern portion of the site) with Tube city IMS [former on-site service provider] occupying this area prior to this;
- Railway lines (and potential for spills associated with transport of materials primarily in the northern portion of the site);
- Pellet Plant (southeastern portion of the site);
- Sinter Plant and sinter stocking area (southern portion of the site) the sinter stocking area was formerly used for pellets; and,
- Slag, Tar and Macadam works (northern portion of the site).

Contaminants associated with the above include asbestos, metals, hydrocarbons, PAH, inorganics including cyanide, ammonia and sulphate, polychlorinated biphenyls (PCB), and VOC and SVOC.

Other Potential On-Site Sources – Background

In addition to the above, it is important to note that certain CoC are naturally occurring in the environment as well as potentially present as a result of anthropogenic sources. This includes metals, PAH (which could be present as a result of the underlying geology) and certain inorganics (e.g. sulphate, which is a major ion in seawater).

5.2.2 Off-Site Sources

In addition, a number of off-site sources were historically present associated with the wider Teesworks area. These included the following. Those in **bold italics** are considered to be hydraulically up-gradient of the Site:

- Tar lagoons (southwest of the Site),
- Blended ore stocks (west of the Site),
- Coal stocks area (southwest of the Site),
- Blended coal stocks (southwest of the Site),
- Coke crushing / blending (west of the Site),
- Blast furnace (west of the Site)
- Steel Works (west of the Site)
- Water treatments works (south of the Site),
- Landfills (south and east of the Site),
- Reclaimed land (wider area)
- Power station (west of the Site)
- Fuel storage (west of the Site).

Associated contaminants with the potential to affect groundwater quality include metals, hydrocarbons, PAH, inorganics including cyanide, ammonia and sulphate and other VOC and SVOC. Contaminants identified in 5.5.1 are in line with the those expected from these sources.

5.3 Contaminant Distribution

The CoC distribution discussed in the sections below is based on the recent site. The focus is on those compounds found to exceed the GACs during screening undertaken in Section 4.2 and 4.3.

5.3.1 Soil & Soil Leachate

Metals and Inorganics

Lead is found to exceed in soil in only one area, within the area of the Blast Furnace Stockhouse. Further metals (copper, iron, lead, manganese, vanadium, zinc) and inorganic species (including cyanide species) are found

throughout the three areas in soil leachate. In general, the distribution of metals and inorganics is relatively well dispersed, but metals are generally less abundant in the area of the old workshop/stores.

The presence of metals and inorganics is likely in part due to the Made Ground which includes slag from which the DGA areas are formed. Levels are of similar magnitude if not slightly lower than found across the wider site. As such within the DGA, the presence of metals and inorganics in soils is generally considered to be associated with a diffuse source associated with Made Ground, this conclusion is in line with that for the wider site (Arcadis 2022b)

Organic Compounds

The levels of PAH and TPH are generally of similar magnitude across the three DGA, however only Dibenzo(a,h)anthracene is shown to exceed the GAC.

In soil, maximum sum PAH and TPH concentrations were measured at 1.00m bgl in F-BH102 within the former Redcar works area. Sum PAH and TPH across the rest of the DGA is one to two orders of magnitude lower than this, potentially indicating the presence of a point source in F-BH102 with more diffuse source within the Made Ground elsewhere. A similar distribution is noted for PAH in soil leachate, sum TPH was only measured above MDL in two locations, in the area of the workshops/stores.

As such the distribution of organic compounds within the DGA is considered in line with the site-wide CSM (Arcadis 2022b), namely the presence of PAH and TPH in soil is considered to predominately be a diffuse source associated with Made Ground, although isolated and localised areas of higher concentrations associated with historical land uses are present.

5.3.2 Groundwater

As only one groundwater well is located within the DGA contaminant distribution cannot be discussed in any detail, instead, contaminants will be discussed more generally.

Contaminants in excess of the appropriate WQS are found in both the shallow (Tidal Flat Deposits) and deep (Mercia Mudstone) wells and include selected metals (chromium, copper, lead, mercury, molybdenum, and selenium), PAH, TPH, and inorganic ions (including ammoniacal nitrogen, cyanide, sulphate, and thiocyanate). The contaminants identified above WQS in F-BH102 are in line with, and of similar magnitude to those observed for the wider site (Arcadis 2022b).

6 Conclusions

Additional ground investigation work has been conducted in the three DGA previously not accessible at the Site. The additional investigation in terms of the site coverage and CoC considered is appropriate given the PAOC identified within the DGA by the Desk Study (Arcadis 2022a). Soil, soil leachate and groundwater samples have been collected for laboratory analysis and screened against appropriate GAC as part of a GQRA to confirm if the CSM for the DGA is in line with that for the wider site.

6.1 Human Health

The results of the human health GQRA indicate that the CoC present beneath the three DGA are broadly in line with those measured across the wider site, and the CSM for the wider site stands when the additional data is included. The CoC measured do not imply any significant separate sources in terms of contaminant type or levels are present below any of the additional areas, and that Made Ground is likely to be the single diffuse soil source across the entire site.

As such to address the identified active Human Health pollutant linkages at the DGA it is considered appropriate to apply to the DGA the Remediation Strategy developed for the wider site which **does not** need to be updated to account for the additional data.

6.2 Controlled Waters

The results of the controlled waters GQRA indicate that the CoC present beneath the three DGA are broadly in line with those measured across the wider site, data does not imply any separate sources in terms of contaminant type or levels are present below the DGA.

The additional data collected as part of the DGA has been assessed to GQRA level within this report, whereas for the wider site a DQRA has been completed (Arcadis 2022b). Based on the findings in Section 5.3.2 the DQRA methodology and conclusions are considered appropriate to retrospectively assess the additional data collected without further modelling. As such the additional data **is not considered to change the outcome of the DQRA** that remediation to protect Controlled Waters is not required.

In conclusion, the Remediation Strategy (Arcadis 2022c) developed for the wider site to address Human Health risk only **does not** need to be updated to account for controlled waters or the additional data.

7 References

Department for Environment, Food and Rural Affairs (DEFRA), 2012. Contaminated Land Statutory Guidance, which came into force on 6th April 2012.

Environment Agency (EA), 2020. Land Contamination Risk Management (LCRM). Last updated 19th April 2021

Appendix A

NQMS Declaration Reference

Figures

Figures

ARCADIS Design & Consult for natural and built assets

SCALE

ORDNANCE SURVEY © CROWN COPYRIGHT 2023. ALL RIGHTS RESERVED. LICENCE NUMBER 100022432. CONTACT ARCADIS UK IN CASE OF ANY QUERIES

	KEY	
		ER ELEVATION
`		
NORTH		
	NOTE	S
	MADE GROUND IS CONSIDER	ED A SOURCE OF
	DIFFUSE CONTAMINANTS - NO SIMPLICITY.	OT DEPICTED FOR
SEA		
and the second second		
n fer fan Stear Stear Stear Stear waar stear Stear Stear Staar Stear Stear Stear		
	CROSS SE	CTION
	SITE:	WARRENBY
	CLIENT: SOUTH	TEES
`````````````````````````````````````	DEVELOPMENT C	ORPORATION
	PROJECT: 10035117	FIGURE 9
	DATE: 07/01/22 DRAWN: B	NB REV: -
	DRG.No.: 10035117-AUK-XX-XX	-DR-ZZ-0461-P1 PRINT:A3
	ARCAD	Discretional and full assets

Decision Notice

TOWN AND COUNTRY PLANNING ACT 1990

NOTICE OF PLANNING PERMISSION

Applicant / Agent Name And Address

LICHFIELDS MR ADRIAN ARMSTRONG ST NICHOLAS BUILDING ST NICHOLAS STREET NEWCASTLE UPON TYNE NE1 1RF

Reference No: R/2021/1048/FFM

The Council as the Local Planning Authority **HEREBY GRANT PLANNING PERMISSION** for the development proposed by you in your application valid on: 7 December 2021

Details: ENGINEERING OPERATIONS ASSOCIATED WITH GROUND REMEDIATION AND PREPARATION OF THE SITE

Location: FORMER REDCAR STEELWORKS (TEESWORKS) LAND TO WEST OF WARRENBY REDCAR

Applicant: SOUTH TEES DEVELOPMENT CORPORATION

Subject to the following condition(s):

1. The development shall not be begun later than the expiration of THREE YEARS from the date of this permission.

REASON: Required to be imposed pursuant to Section 91 of the Town and Country Planning Act 1990.

2. The development hereby permitted shall be carried out in accordance with the following approved plans:

Location Plan (Dwg No. SD-00.01) received by the Local Planning Authority on 07/12/21 Dig Depths Plan (Dwg No. 10035117-AUK-XX-DR-ZZ-0422-02-Net_Zero_Rem_Ex) received by the Local Planning Authority on 07/12/21 Data Survey Plan (Dwg No. 10035117-AUK-XX-XX-DR-ZZ-0508-01-Net_Zero_Plot_Data_Gaps) received by the Local Planning Authority on 12/05/22

REASON: To accord with the terms of the planning application.

- 3. No phase of development shall take place until a Construction Environmental Management Plan (CEMP) for that phase of the development has been submitted to and approved in writing by the Local Planning Authority. The approved CEMP shall be adhered to throughout the construction period of that phase. The CEMP shall include details of any phasing of the approved works across the site and shall demonstrate how the mitigation measures set out in the Ecological Impact Assessment, INCA, dated November 2021 have been incorporated in the construction methods. The CEMP shall also include the following details:
 - i The method to be used to control the emission of dust, noise and vibration from construction works, including any details of any mitigation measures required;
 - ii Measures to control the deposit of mud and debris on adjoining public highways
 - iii Site fencing and security
 - iv Temporary contractors' buildings, plant, storage of materials, lighting and parking for site operatives
 - v The use of temporary generators
 - vi The arrangement or turning of vehicles within the site so that they may enter and leave in forward gear
 - vii A risk assessment of construction activities with potentially damaging effects on local ecological receptors including any measures to protect those receptors during construction
 - viii Roles and responsibilities for the implementation of the CEMP requirements and measures.
 - ix Measures to control invasive plant species
 - x Measures to control surface water and other water generated as part of the works

REASON: In the interest of neighbour amenity, highways safety and protection of sites of ecological value in accordance with policies SD4 and N4 of the Redcar and Cleveland Local Plan.

REASON FOR PRE-COMMENCEMENT: The information is required prior to any works commencing on site as it relates to construction details which are often the first works on site and relate to site preparation.

4. No development hereby approved shall commence within the areas outlined in blue on the submitted 'Net Zero Data Gaps' plan (Plan Ref. No. 10035117-AUK-XX-DR-ZZ[1]0508-01- Net_Zero_Plot_Data_Gaps) until a report of findings arising from Phase II intrusive site investigations including a risk assessment (generic or detailed quantitative assessment as required), and if required by the risk assessment an updated Remediation Strategy (any updated Remediation Strategy shall be subject to independent review through the National Quality Mark Scheme) has been submitted to and approved in writing by the Local Planning Authority (the submitted information shall consider the areas within the blue lines shown on the aforementioned plan only). The Assessment shall include measures and timescales for Remediation, Monitoring and Verification Reports include mitigation measures. REASON: To ensure that risks from land contamination to the future users of the land and neighbouring land are minimised, together with those to controlled waters, property and ecological systems, and to ensure that the development can be carried out safely without unacceptable risks to workers, neighbours and other offsite receptors, in accordance with the Local Plan and the National Planning Policy Framework.

5. Where required, the remediation and monitoring measures approved under Condition 4 shall be implemented in accordance with the timescales approved and in full accordance with the approved details.

REASON: To ensure that risks from land contamination to the future users of the land and neighbouring land are minimised, together with those to controlled waters, property and ecological systems, and to ensure that the development can be carried out safely without unacceptable risks to workers and other offsite receptors, in accordance with the Local Plan and the National Planning Policy Framework.

6. The development within the application boundary (with the exception of the areas outlined in Blue on the submitted 'Net Zero Data Gaps' plan - Plan Ref. No. 10035117-AUK[1]XX-XX-DR-ZZ-0508-01- Net_Zero_Plot_Data_Gaps) shall be implemented in accordance with the measures set out in the submitted Enabling Earthworks and Remediation Strategy Report (Report Ref: 10035117-AUK-XX-XXRP-ZZ-0417-03). That Remediation Strategy Report shall be subject to independent review through the National Quality Mark Scheme. Should that review result in amendments being necessary, a revised Strategy Report shall be submitted and approved by the Local Planning Authority and development carried out in accordance with it.

REASON: To ensure that risks from land contamination to the future users of the land and neighbouring land are minimised, together with those to controlled waters, property and ecological systems, and to ensure that the development can be carried out safely without unacceptable risks to workers and other offsite receptors, in accordance with the Local Plan and the National Planning Policy Framework.

7. Following completion of the approved remediation and monitoring measures, a verification report that demonstrates the effectiveness of the remediation carried shall be submitted to and approved in writing by the Local Planning Authority.

REASON: To ensure that risks from land contamination to the future users of the land and neighbouring land are minimised, together with those to controlled waters, property and ecological systems, and to ensure that the development can be carried out safely without unacceptable risks to workers, neighbours and other offsite receptors, in accordance with policies of the Local Plan and the National Planning Policy Framework. 8. In the event that contamination is found at any time when carrying out the approved development that was not previously identified it must be reported in writing immediately to the Local Planning Authority. prior to implementation of any amendments to the agreed strategy. An investigation and risk assessment must be undertaken, and where remediation is necessary a remediation scheme must be prepared which is subject to the approval in writing of the Local Planning Authority. The development shall then be carried out in accordance with the approved scheme.

REASON: To ensure that risks from land contamination to the future users of the land and neighbouring land are minimised, together with those to controlled waters, property and ecological systems, and to ensure that the development can be carried out safely without unacceptable risks to workers, neighbours and other offsite receptors.

9. A scheme for managing and/or decommissioning any borehole installed for the investigation of soils, groundwater or geotechnical purposes shall be submitted to and approved in writing by the Local Planning Authority. The scheme shall provide details of how redundant boreholes are to be decommissioned and how any boreholes that need to be retained, postdevelopment, for monitoring purposes will be secured, protected and inspected. The scheme as approved shall be implemented prior to the occupation of any part of the permitted development.

REASON: To ensure that redundant boreholes are safe and secure, and do not cause groundwater pollution or loss of water supplies in line with paragraph 174 of the NPPF and 'The Environment Agency's approach to groundwater protection'.

10. There shall be no site vegetation clearance between March to the end of August unless the project ecologist has first undertaken a checking survey immediately prior to the clearance and confirms in writing to the Local Planning Authority that no active nests are present.

REASON: To conserve protected species and their habitat in accordance with policy N4 of the Local Plan.

Statement of Co-operative Working: The Local Planning Authority considers that the application as originally submitted is a satisfactory scheme and therefore no negotiations have been necessary.

f. letter

Signed:

Andrew Carter Assistant Director Economic Growth

Date: **11 August 2022**

YOUR ATTENTION IS DRAWN TO INFORMATIVE NOTES BELOW:

INFORMATIVE NOTE:

The conditions above should be read carefully and it is your (or any subsequent developers) responsibility to ensure that the terms of all conditions are met in full at the appropriate time (as outlined in the specific condition).

Please note that in order to discharge any conditions, a fee is payable in respect to this.

Failure on the part of the developer to fully meet the terms of any conditions which require the submission of details prior to the commencement of development may result in the development being considered unlawful and may render you liable to formal enforcement action.

Failure on the part of the developer to observe the requirements of any other conditions could result in the Council pursuing formal action in the form of a Breach of Condition notice.

APPROVAL INFORMATIVE:

This permission refers only to that required under the Town and Country Planning Acts and does not include any consent or approval under any other enactment, byelaw, order or regulation.

Consent under the current Building Regulations may also be required for the development before work can commence.

CATS Pipeline

In addition to the statutory consultees, applicants should also consider what other stakeholders should be consulted. For example, in the case of any development taking place that may affect High Pressure Gas Pipelines, operated by CATS North Sea Limited on behalf of the owners of the pipeline, please consult with CATS North Sea Limited at <u>CATSpipeline@woodplc.com</u> 01642 546404 CATS Terminal, Seal Sands Road, Seal Sands, Teesside TS2 1UB.

County of Cleveland Act, 1987 – Facilities for Fire Fighting

Section 5 of this Act requires that, where building regulation plans for the erection or extension of a building are deposited with the Council, the Council must reject the plans if it is not satisfied:

- That there will be adequate means of access for the Fire Brigade
- That the building or extension will not make means of access for the Fire Brigade to any neighbouring building inadequate
- If the building could be used for commercial or industrial purposes, that there is provision for installation of fire hydrants or other provision for an adequate supply of water for firefighting purposes.

Appeals to the Secretary of State

If you are aggrieved by the decision of your local planning authority to refuse permission for the proposed development or to grant it subject to conditions, then you can appeal to the Secretary of State under Section 78 of the Town and Country Planning Act 1990.

If you want to appeal, then you must do so within the timeframes stated below:

• **12 weeks** of the date of this notice for a householder application/minor commercial application;

- six months of the date of this notice for other planning applications
- 8 weeks in the case of any advertisement

using a form which you can get from the Secretary of State at **Temple Quay House, 2 The Square, Temple Quay, Bristol BS1 6PN, (Tel: 0303 444 5000)** or online at

https://www.gov.uk/planning-inspectorate. The Secretary of State can allow a longer period for giving notice of an appeal, but will not normally be prepared to use this power unless there are special circumstances, which excuse the delay in giving notice of appeal.

The Secretary of State need not consider an appeal if it seems to them that the local planning authority could not have granted planning permission for the proposed development or could not have it granted without the conditions it imposed, having regard to the statutory requirements, to the provisions of any development order and to any directions given under a development order. In practice, the Planning Inspectorate does not refuse to consider appeals solely because the local planning authority based its decision on a direction given by them.

Purchase Notices

If either the Local Planning Authority or the Secretary of State refuses permission to develop land or grants it subject to conditions, the owner may claim that they can neither put the land to a reasonably beneficial use in its existing state nor can they render the land capable of a reasonably beneficial use by the carrying out of any development which has been or would be permitted.

In the circumstances, the owner may serve a purchase notice on the Council (District Council, London Borough Council or Common Council of the City of London) in whose area the land is situated. This notice will require the Council to purchase his interest in the land in accordance with the provisions of part VI of the Town and Country Planning Act 1990.

Compensation

In certain circumstances compensation may be claimed from the local planning authority if permission is refused or granted subject to conditions by the Planning Inspectorate on appeal or on reference of the application to them. These circumstances are set out in Section 114 and related provisions of the Town & Country Planning Act 1990.

The Highways Act 1980 (Sections 131, 133 and 171)

Prior to commencing work on any development which entails interference with an adopted Highway a developer/contractor is required to obtain the consent of the Engineering (Highways Team). Such consent will not unreasonably be withheld but will be conditional upon obtaining a "Road Opening And Reinstatement" Consent and signing an "Undertaking To Pay For Works".

The Building Act 1984 (Section 80)

Prior to commencing work on any development which entails the demolition of part, or all of a building a developer or contractor is required to obtain the consent of the Engineering Team. Consent will be conditional on the Local Authority receiving the appropriate forms. Forms can be obtained direct from the Engineering Team.

Study Limitations

IMPORTANT. This appendix should be read before reliance is placed on any of the information, opinions, advice, recommendations or conclusions contained in this report.

1 This report has been prepared by Arcadis (UK) Limited ('Arcadis'), with all reasonable skill, care and diligence within the terms of the Appointment and with the resources and manpower agreed with South Tees Development Corporation (UK) Limited (the 'Client'). Arcadis does not accept responsibility for any matters outside the agreed scope.

2 This report has been prepared for the sole benefit of the Client unless agreed otherwise in writing. otherwise in writing. The contents of this report may not be used or relied upon by any person other than this party without the express written consent and authorisation of Arcadis.

3 Unless stated otherwise, no consultations with authorities or funders or other interested third parties have been carried out. Arcadis is unable to give categorical assurance that the findings will be accepted by these third parties as such bodies may have unpublished, more stringent objectives. Further work may be required by these parties.

4 All work carried out in preparing this report has used, and is based on, Arcadis' professional knowledge and understanding of current relevant legislation. Changes in legislation or regulatory guidance may cause the opinion or advice contained in this report to become inappropriate or incorrect. In giving opinions and advice, pending changes in legislation, of which Arcadis is aware, have been considered. Following delivery of the report, Arcadis has no obligation to advise the Client or any other party of such changes or their repercussions.

5 This report is only valid when used in its entirety. Any information or advice included in the report should not be relied upon until considered in the context of the whole report.

6 Whilst this report and the opinions made are correct to the best of Arcadis' belief, Arcadis cannot guarantee the accuracy or completeness of any information provided by third parties. provided by third parties. Arcadis has taken reasonable steps to ensure that the information sources used for this assessment provided accurate information, and has therefore assumed this to be the case.

7 This report has been prepared based on the information reasonably available during the project programme. All information relevant to the scope may not have been received.

8 This report refers, within the limitations stated, to the condition of the site at the time of the inspection. No warranty is given as to the possibility of changes in the condition of the site since the time of the investigation.

9 The content of this report represents the professional opinion of experienced environmental consultants. Arcadis

does not provide specialist legal or other professional advice. The advice of other professionals may be required.

10 Where intrusive investigation techniques have been employed they have been designed to provide a reasonable level of assurance on the conditions. Given the discrete nature of sampling, no investigation technique is capable of identifying all conditions present in all areas. In some cases the investigation is further limited by site operations, underground obstructions and above ground structures. Unless otherwise stated, areas beyond the boundary of the site have not been investigated.

11 If below ground intrusive investigations have been conducted as part of the scope, safe location of exploratory holes has been carried out with reference to the Arcadis ground disturbances procedure. No guarantee can be given that all services have been identified. Additional services, structures or other below ground obstructions, not indicated on the drawing, may be present on site.

12 Unless otherwise stated the report provides no comment on the nature of building materials, operational integrity of the facility or on any regulatory compliance issues.

13 Unless otherwise stated, an inspection of the site has not been undertaken and there may be conditions present at the site which have not been identified within the scope of this assessment.

14 Unless otherwise stated, samples from the site (soil, groundwater, building fabric or other samples) have not been obtained.

15 Arcadis has relied upon the accuracy of documents, oral information and other material and information provided by the Client and others, and Arcadis assumes no liability for the accuracy of such data, although in the event of apparent conflicts in information, Arcadis would highlight this and seek to resolve.

16 Unless otherwise stated, the scope of works has not included an environmental compliance review, health and safety compliance review, hazardous building materials assessment, interviews or contacting Local Authority, requests for information to the petroleum officer, sampling or analyses of soil, ground water, surface water, air or hazardous building materials or a chain of title review.

17 Unless otherwise stated, this assessment has considered the ongoing use of the site and has not been prepared for the purposes of redevelopment which may act as a trigger for site investigation and remediation works not needed for ongoing use

LAND WEST OF WARRENBY, TEESWORKS, REDCAR Contaminated Land Generic Quantitative Risk Assessment, Data Gap Areas REPORT NO: 10035117-AUK-XX-RP-ZZ-623-01-Data Gap Areas GQRA

Appendix E

Summary of Previous Site Investigation Data

Project Teeswork	s - LWW Site		Project No. 10047374 Easting (OS mE)	Gro 7.4 Nor	und Level 13 thing (OS	(mAOD) mN)	Start I 05/1 End I	Date 2/2022 Date	2 1	^{:26}	
STDC			456879.33	52	5664.8	37	05/1	2/2022	2 S	heet 1	of 1
SAMPLES	TESTS		S	TRATA			\neg	Legend	Depth (Thickness)	Level	Install/ Backfill
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MADE GROUND: Soft light brown s	andy very grave	Ily CLAY with	n grass a	nd rootlets.		 XXXX		-	
		-							(0.20)	7.02	
		MADE GROUND: Loose to medium – Slag Rich Made Ground	dense grey slig	htly sandy gr	avel of a	ngular slag.			0.20	1.23	
		-								ŧ	
		-								ŧ	
		-							(0.90)	Į	
		-								ŧ	
(FSL)404/	DID(1) 1.00m <1mm	-								+	
TP01-S1) 1.00			donco brownich		and y yor	weekly angular gravely		>>>>	1.10	6.33	
		- SLAG. Slag Rich Made Ground		i grey very sa	andy ver	y cobbly angular graver o	"	>>>		ŧ	
										ł	
		-								ļ	
		-								ŧ	
		-								ł	
										Į	
(ESLWW- TP01-S2) 2 00	PID(2) 2.00m <1ppm	_								ŧ	
										ł	
								>>>		Į	
		_								ŧ	
		-								ł	
										Į	
		_							(3.30)	ŧ	
	$PID(2) = 2.00 \mathrm{m}$ < 1 mm										
TP01-S3) 3.00		-								ļ	
		_								ŧ	
								>>>		ł	
		_								ļ	
		-								ŧ	
		-								+	
										Į	
(ESLWW- TP01-S4) 4 00	PID(4) 4.00m <1ppm	_								ŧ	
										ŧ	
		_								ł	
		-					_		4.40	3.03	ᇤᄪᇳ
		-								ŧ	
		_								ł	
		-								Į	
		-								1	
PLAN DETAI	LS			WATER	OBSER	VATIONS			INSTRUM	IENTS	
-	3.0	4	Date/Time	Strike Rest	Mins	Remarks No groundwater encounte	red	Nam	ie	Туре	m AGL
		Shoring / Support: Stability: Very Stable	Cable extendin	g diagonally	across c	REMARKS corner of TP, was not pick	(ed u	p with C/	AT/GENNY	and not o	on utility
1.5		Long Axis Orientation:	plans. Remediation D	ig Depth to 2	633m A	OD.					2
		J	<u> </u>								
Unless Depth	otherwise stated: (m), Diameter (mm), Time (hhmm),	Equipment Used		Terr	mination D	Depth		Lo	ogged By	Checke	ed By

Teesworks Client	s - LWW Site		Project No. 10047374 Easting (OS mE)	Ground Level (mAOD) 7.90 Northing (OS mN) 525509 16	Start Date 05/12/2022 End Date 05/12/2022	2 1:	^{ale} :25 boot 1 of 1
	теото		457.005.00	525509.10	05/12/202	2 3	
SAMPLES	Tupo Dopth Recult		Description	IA	Logond	Depth (Thickness)	Level Backfill
Беріп - Туре	Type - Deptil - Result	MADE GROUND: Soft brown clayes	v sand with roots and	fine to medium sub-rounded to sub-		(
		angular gravel of bituminous surfaci	ng.	\/EI	-	(0.15) 0.15	7.75₩≡₩≡
						(0.15)	
		MADE GROUND: Beige fine to med	lium SAND (Utility Ba	ackfill)		(0.25)	
		-				0.55	
		 MADE GROUND: Dark grey very sa brick (whole and fragments) 	andy cobbly coarse a	ngular Gravel of Slag with beige refra	ctory	0.00	
		Slag Rich Made Ground				\$	
(ESLWW-	PID(1) 1.00m <1ppm	_					
TP02-S1) 1.00		-					
		-					
						(1.55)	
		_					
		-					
		-					
(ESLWW-	PID(2) 2.00m <1ppm						
TP02-S2) 2.00	····(-) -·····		nd black veny gravelly	SAND with occasional cobbles of sl		2.10	5.80
		- ash and crushed brick.	nd black very gravely	SAND with occasional cobbles of sig	^{ay,}	<	
		Granular Made Ground				<	
						<	
						<	
		-				<	
		-				<	
		-				<	
(ESLWW- TP02-S3) 3.00	PID(3) 3.00m <1ppm]				< -	
						<	
		-				(2.40)	
		-				4	
		-				4	
		-					
(ESLWW- TP02-S4) 4.00	PID(4) 4.00m <1ppm	-					
,							
		-					
						4.50	3.40
		-					
]					ŧ I
		4					
		_				.	+
PLAN DETAIL	LS			WATER OBSERVATIONS		INSTRUM	ENTS
	3.0	4	Date/Time Strik	Rest Mins Remarks No groundwater enco	untered	ne	Type m AGL
		Shoring / Support: Stability: Unstable, sides undercut due to collapse	Remediation Dia De	REMARKS epth to 3.103m AOD.			
1.5		Long Axis Orientation:					
Unless	otherwise stated:	Equipment Used	I	Termination Depth	L	ogged By	Checked By
AGS Restriction of the legent	Above Ground Level (m AGL)	75 tonne exca	vator	4.50m	c)G	JM

Project Teesworks Client	s - LWW Site		Project No. 10047374 Easting (OS mE)	Grou 7.2 Norti	ind Level 5 hing (OS	(mAOD)	Start Date 05/12/2022 End Date	2 1:	ale 25	
STDC			456884.57	52	5505.8	57	05/12/2022	2 S	heet 1	of 1
SAMPLES	TESTS		STR	RATA				Depth		Install/
Depth - Type	Type - Depth - Result		Descriptio	n			Legend	(Thickness)	Levei	Backfill
		MADE GROUND: Grey/black fractur	red bituminous sur	facing.				(0.10)	7 15	
		MADE GROUND: Light grey angula	ar GRAVEL.			· · · ·		(0.10) 0.20	7.05	
		 MADE GROUND: Greyish brown me cobbles of slag. 	ealum aense very	sandy GRA	VEL WIT	n occasional angular			1	
		_ Slag Rich Made Ground							ŧ	
		_							ł	
		-							-	≣≝≣
		-							1	
]							Ī	
(ESLWW-	PID(1) 1.00m <1ppm	_							+	⋓≡⋓ ⋿⋓⋿
TP03-S1) 1.00		_							+	
		_						(2.00)	ŧ	
		-							I	
		-							-	≡≡≡ ⊯≡⊯
		-								
									Ī	≣⊒≣
		_							-	
		-							+	
(ESLWW-	PID(2) 2.00m <1ppm	_						-	ŧ	║═║ ═║═
1903-32) 2.00		-							ļ	
		MADE GROUND: Dark grey occasio	onally black very sa	andy GRAV	'EL with	angular cobbles of slag	. 🗱	2.20	5.05	
		 Slag Rich Made Ground 							ŧ	
									ļ	≡≡≡ ⊯≡⊯
		_							+	≡∥≡ ⊮≡⊮
		_							1	
		-							ŧ	
		-							I	
(ESLWW- TP03-S3) 3.00	PID(3) 3.00m <1ppm	-						-	+	║═║ ═║═
		-							ţ	
									Ī	
		_							-	
		_						(2.60)	+	≡≡ ≡≡≡
		_							ŧ	
		-							I	
		-							+	
		-							1	┉═┉ ═║═
(ESLWW- TP03-S4) 4.00	PID(4) 4.00m <1ppm							-	Ī	
		_							ļ	Ľ≞≣
		_							ł	
		_							ŧ	
		-							Ŧ	≡≡ ₩≡₩
		-							-	
		-						4.00	1 0.15	
								4.80	2.45	
		_						-	+	
PLAN DETAIL	_S			WATER	OBSER	/ATIONS		INSTRUM	ENTS	
	3.0		Date/Time S 05/12/2022 00:00 4	trike Rest	Mins	Remarks Groundwater encountered	Nam	e .	Гуре	m AGL
]								
		Shoring / Support: Stability: Very stable	Dama II II Di	D	457 -	REMARKS	•			
1.5			Remediation Dig	Depth to 2.	457 m A	עט.				
		Long Axis Orientation:								
Unlas -	othonwise stated			_					0.	
Depth ((m), Diameter (mm), Time (hhmm),	Equipment Used		Term	nination D	lepth	Lo	ogged By	Checke	d By

Project Teesworks Client STDC	s - LWW Site		Project No. 10047374 Easting (OS mE) 457027.03	Ground Level 7.06 Northing (OS 1 525409.9	(mAOD) S (mN) E (5 0	tart Date)6/12/202 ind Date)6/12/202	22 1 22 S	^{ale} :25 heet 1	of 1
	тгете		CTDATA						
Depth - Type	Type - Depth - Result		Description			Legend	Depth (Thickness)	Level	Install/ Backfill
		MADE GROUND: Dark brown loose	e very sandy GRAVEL w	ith occasional	cobbles of brick and slag].	(0.50)		
		MADE GROUND: Brownish orange	loose GRAVEL of fragn	nented, crushe	ed and powdered brick.		0.50 (0.30)	6.56	
		MADE GROUND: Black loose occas Granular Made Ground	sionally light grey ashy s	slightly sandy (GRAVEL.		0.80	6.26	
(ESLWW- TP04-S1) 1.00	PID(1) 1.00m <1ppm	MADE GROUND: Brown loose fine GRAVEL with cobbles of refractory b Granular Made Ground	to coarse SAND and be prick.	ige sub-round	ed to sub-angular		1.00	6.06	
							(0.80)		
(ESLWW- TP04-S2) 2.00	PID(2) 2.00m <1ppm	MADE GROUND: Reddish brown lo brick and slag. Granular Made Ground	ose very sandy fine to o	coarse angular	GRAVEL with cobbles o	f	1.80	5.26	
(ESLWW- TP04-S3) 3.00	PID(3) 3.00m <1ppm						(2.90)		
(ESLWW- TP04-S4) 4.00	PID(4) 4.00m <1ppm								
		-					4.70	2.36	
PLAN DETAIL	LS		WA	TER OBSERV	ATIONS	_	INSTRUM	IENTS	
	3.0	4	Date/Time Strike	Rest Mins	Remarks No groundwater encounter	ed Na	me	Туре	m AGL
1.5		Shoring / Support: Stability: Stable Long Axis Orientation:	Remediation Dig Dept	h to 3.264m A	REMARKS OD.				
Unless AGS Freitheit uter aut	i otherwise stated: (m), Dlameter (mm), Time (hhmm), ess (m), Level (mAOD), Above Ground Level (m AGL)	Equipment Used	vator	Termination D	epth		Logged By	Checked JM	i By

Project Teeswork	s - LWW Site		Project No. 10047374 Easting (OS mE)	Ground Le 7.51 Northing (evel (mAOD) OS mN)	Start Date	2022	2 1:	ale 25	
	1		456931.49	52530	9.61	06/12/	2022	2 3		11
SAMPLES	TESTS		STR/	ATA				Depth	Level Ir	nstall/
Depth - Type	Type - Depth - Result		Description	fine to coorce	vonucendu fine te coerce	Le	gend	(THICKHESS)		
		- gravel.	ish grey dense grey	line to coarse	very saridy, line to coarse		\times	(0.15)	7 36	
		_ MADE GROUND: Beige and grey m angular gravel with frequent cobbles	nedium dense slight s of sub-rounded to	ly sandy mediu angular slag.	Im to coarse sub-rounded	to 🔀	\times	0.10		
							\bigotimes			
		_					\otimes	(0.65)		
		-					\otimes			
		-					\bigotimes	0.00	0.74	
		MADE GROUND: Brown medium de frequent angular cobbles of slag.	ense to coarse sligh	ntly sandy medi	ium to coarse GRAVEL wit	h 🕅		0.80	0.71	
(ESLWW-	PID(1) 1.00m <1ppm	Slag Rich Made Ground					\otimes	-		
1905-51) 1.00		-					\times			
							\times	(1.00)		
							\bigotimes	(1.00)		
		_					\otimes			
		-					\otimes			
		-					\mathbf{X}	1 80	5 71	===
		MADE GROUND: Brownish dark gro – Granular Made Ground	ey loose very sandy	GRAVEL with	cobbles of slag.		>>>	1.00		
(ESLWW- TP05-S2) 2 00	PID(2) 2.00m <1ppm	_					\times	-		===
		-					\bigotimes			===
							\bigotimes			
		-					\bigotimes			
		_					\sim	-	┆	===
		-					XX		┆	==
		_					\otimes		┆	==
		-					\times		┆ ║	
(ESLWW- TP05-S3) 3.00	PID(3) 3.00m <1ppm	_					\bigotimes	(2.50)	╞	
							\otimes		[■	
		-					\otimes			
		-					>>>			
		_								
		_					\times			
		_					\times			
		-					\otimes			=# #=
(ESLWW- TP05-S4) 4.00	PID(4) 4.00m <1ppm						\otimes	-		
		_			Dig Depth to 1.035m A		\bigotimes			
		-				-	~~~	4.30	3.21 Ⅲ	=
		-								
		_							+ +	
		-							Į I	
		-							ł	
								-	Ļ	
PLAN DETAI	LS			WATER OBSI	ERVATIONS			INSTRUM	ENTS	
	3.0	4	Date/Time Str	ike Rest Mi	ns Remarks No groundwater encount	ered	Nam	e -	Type n	n AGL
		Shoring / Support: Stability: Very stable	Remediation Dig F	Depth to 3.717r	REMARKS					
1.5		Long Axis Orientation:		F 10 0.7 171						
Unless Depth	otherwise stated: (m), Diameter (mm). Time (hhmm)	Equipment Used		Terminatio	on Depth		Lo	ogged By	Checked E	Ву
AGS Thickn Height	ess (m), Level (mAOD), Above Ground Level (m AGL)	75 tonne exca	vator	4.30m			0	G	JM	

Project Teesworks Client STDC	s - LWW Site		Project No. 10047374 Easting (OS mE) 457115.41	Ground Level (mAOD) 7.30 Northing (OS mN) 525261.83	Start Date 06/12/2022 End Date 06/12/2022	2 1: 2 S	ale :25 heet 1	of 1
SAMPLES	TESTS		STRATA			Denth		Install/
Depth - Type	Type - Depth - Result		Description		Legend	(Thickness)	Level	Backfill
(ESLWW- TP06-S1) 1.00	PID(1) 1.00m <1ppm	MADE GROUND: Greyish brown loo and whole bricks. Rare Boulders and Granular Made Ground	ose very sandy GRAVEL d metal fragments.	of slag with frequent cobbles of a	slag	(1.80)		Ë = = = = = = = = = = = = =
		MADE GROUND: Light creamish gr gravel of ash and slag. Granular Made Ground	ey loose very sandy sub	p-rounded to sub-angular fine to c	Darse	1.80 (0.20)	5.50	: = = = = = = =
(ESLWW- TP06-S2) 2.00	PID(2) 2.00m <1ppm	MADE GROUND: Grey loose sandy angular cobbles of slag. Slag Rich Made Ground	rangular GRAVEL of sla	g with frequent sub-rounded to su	ib-	2.00 -	5.30	= = = = = = = =
(ESLWW- TP06-S3) 3.00	PID(3) 3.00m <1ppm PID(4) 4.00m <1ppm					(2.30)		= = = = = = = =
ŤP06-S4) 4.00						4.30	3.00	
PLAN DETAIL	LS	1	WA Date/Timo	TER OBSERVATIONS	NIc	INSTRUM	ENTS	mACI
	3.0	4	Date/Time Strike	No groundwater enco	ountered	9	туре	III AGL
1.5		Shoring / Support: Stability: Unstable, sides undercut due to collapse. Long Axis Orientation:	Remediation Dig Depth	REMARKS n to 3.509m AOD.	3			
Unless Depth AGS Former unter	otherwise stated: (m), Diameter (mm), Time (hhmm), ess (m), Level (mAOD), Above Ground Level (m AGL)	Equipment Used 75 tonne exca t	vator	Termination Depth 4.30m	La	ogged By	Checked JM	d By

Project Teesworks Client STDC	s - LWW Site		Project No. 10047374 Easting (OS mE) 457225.76	Ground Level (mAOD) 7.04 Northing (OS mN) 525179.07	Start Date 06/12/2022 End Date 06/12/2022	2 1: 2 S	:25 heet 1 c	of 1
SAMPLES	TESTS		STRATA	۱.				
Depth - Type	Type - Depth - Result		Description		Legend	Depth (Thickness)	Level E	Backfill
(ESLWW- TP07-S1) 1.00	PID(1) 1.00m <1ppm	MADE GROUND: Greyish brown loc with frequent cobbles and boulders of Slag Rich Made Ground	Description pse very sandy sub-rou of slag and whole brick	unded to sub-angular GRAVEL of sla (s.	g	(2.10)		
(ESLWW- TP07-S2) 2.00	PID(2) 2.00m <1ppm					- 2.10	4.94	
		MADE GROUND: Dark grey very sa - cobbles of slag. Granular Made Ground	ndy sub-rounded to su	ib-angular GRAVEL with occasional		¢		
		-				(0.90)		
(ESLWW- TP07-S3) 3.00	PID(3) 3.00m <1ppm	Beige rounded slightly gravelly fine t Gavel is rounded medium to coarse. Tidal Flat Deposits	to medium SAND with	occasional broken shell fragments.		3.00 -		
(ESLWW- TP07-S4) 4.00	PID(4) 4.00m <1ppm					4.50		
	s					INSTRUM		
	3.0		Date/Time Strike	Rest Mins Remarks	Nam	into into into into into into into into	Туре	m AGL
1.5	0.0	Shoring / Support: Stability: Very unstable, collapsing in. Long Axis Orientation:	Remediation Dig Dep	REMARKS th to 2.242m AOD.	Intered			
Unless	otherwise stated: (m). Diameter (mm). Time (hhmm)	Equipment Used		Termination Depth	L	ogged By	Checked	Ву

Project Teeswork Client STDC	s - LWW Site		Project No. 10047374 Easting (OS mE) 456676.95	Ground Le 5.83 Northing (525212	evel (mAOD) OS mN) 2.62	Start Dat 07/12 End Date 07/12	te /2022 /2022	50 1 S	:25 heet 1	of 1
SAMPLES	TESTS		STRA	TA						
Depth - Type	Type - Depth - Result		Description			Le	egend	Depth (Thickness)	Level	Install/ Backfill
		MADE GROUND: Grass over purpl	ish red fine powdered	sub-rounded	to sub-angular GRAVEL	of 🔀	\times	(0.10)	-	<u>∭≣</u> ∭
(50) 100		 Coke. MADE GROUND: Grey slightly san 	dy sub-rounded to su	b-angular GR	AVEL of Coke.	—Ř	XX	0.10 (0.10)	5.73	
(ESLWW- TP08-S5) 0.20	PID(5) 0.20m <1ppm	MADE GROUND: Brownish grey lo	ose very sandy sub-re	ounded to sub	o-angular GRAVEL with	Ř	\times	0.20	5.63	
		Slag Rich Made Ground					>>>>		ł	
(ESLWW-		_					>>>		ļ	
TP08-S6) 0.50		-					\otimes		ŧ	
		-					\otimes		ŧ	
		-					\otimes		ł	
		-					***		ł	
(ESLWW- TP08-S1) 1.00	PID(1) 1.00m <1ppm	-					\otimes		ŧ	
						Ř	\otimes		ł	
						Ř	\sim		ł	
		-				X	\times		ļ	
		-					\sim		ŧ	
		-					\otimes	(2.00)	ŧ	
		-					\otimes	(2.90)	I	
		-				8	\otimes		ţ	
		1					\otimes		ţ	
(ESLWW- TP08-S2) 2.00	PID(2) 2.00m <1ppm	1				Ŕ	\otimes		Ť	
						Ř	>>>		I	
		_					$\times\!\!\times\!\!\times$		ļ	
		_					\times		ţ	
		-					\times		ŧ	
		-					\otimes		ł	
		4					\otimes		ł	
		1					\otimes		ţ	
		1				Ř	\otimes		ŧ	
(ESLWW- TP08-S3) 3.00	PID(3) 3.00m <1ppm	7				X	\sim	3 10	† 0.70	
		MADE GROUND: Loose greyish be material	ige brown hydraulic f	ill of silts and	fine sands from dredged	X	\times	3.10	2.73	
		Tidal Flat Deposits					\times		ļ	
		-					\otimes		ŧ	
		-					\otimes		ŧ	
		-				8	\otimes	(1.00)	ł	
		-					\otimes		ł	
		-				Ř	\sim		ļ	
		1				Ř	>>>>		ļ	
(ESLWW-1P8- S4) 4.00	PID(4) 4.00m <1ppm	1					\times	4 10	1 1 73	
								4.10	1.75	,
		-							ţ	
		4							ļ	
		-							ŧ	
		-							ł	
		-							ţ	
		1							ļ	
		1							ŧ	
	<u> </u>		1					INCTOUR		
PLAN DE IAI	LO		Date/Time Strik	ke Rest Mi	ns Remarks		Name	e	і≟іят S Туре	m AGL
	3.0	4	06/12/2022 00:00 3.9	0	Groundwater encountere side at base of MG and a	d from above				
		Shoring / Support:	l		TFD.					
		Stability: Unstable, water entering from side causing collapse.	Remediation Dig De	epth to 1.035n	n AOD.					
1.5		Long Axis Orientation:	_							
Unless	otherwise stated:	Equipment Used	1	Terminatio	on Depth		Lo	gged Bv	Checke	ed Bv
Depth	(m), Diameter (mm), Time (hhmm),	_qupmon obdu			•		20			

				AECOM				Trial Pit No.	F-TP120		
			JIVI	5th Floor 2 City Walk Leeds LS11 9AR		Tel: 0113 391 68 Fax: 0113 391 68 www.aecom.con	00 899 REGISTERED USER 2022	Sheet: 1 of 1			
Equ Exc	uipment & cavator	Vlethods: Tra	cked 14T 360	Project Name: N Project Location: Client: BP	let Zero Teess Redcar, Nort	side Onshore Groun th Yorkshire	d Investigation - Front	End Engineering Design	(FEED)	Job No: 60678042	2
				Co-ordinates: E: 456881.428			Ground Level (m): 7.	590 AOD	Date Started: (Date Complete	06/10/2022 d: 06/10/2022	
	Sam	ples and In si	itu Testing	Field Becorde					Reduced		Depth (Thick)
0.0	Depth (m)	Sample Ref & Type FS	Test Type and Result				DESCRIPTION		(m)		(m)
- 0.2	20	D	PID = 0.1ppm		MADE GF silty fine to fragments to coarse (MADE G	ROUND: Grass o coarse SAND s of plastic and r of chert, concre ;ROUND)	over: Dark and ligr with abundant roo netal. Gravel is any te, brick and sands	it brown slightly grav tlets and frequent gular to subangular t stone	fine 7.31		(0.28) 0.28
- 0.5 - -	50	ES	PID = 0.0ppm		MADE GF abundant subangula (MADE G	ROUND: Dark g fragments of m ar fine to coarse ROUND)	rey very gravelly fir etal, wood and text of slag, concrete a	ne to coarse SAND v ille. Gravel is angula and asphalt	with r to		* * * *
- - - 1.0 -	00		PID = 0.0ppm		From 0.2 trial pit. At 0.72m	8m bgl: Bricks a n bgl: Metal rope	and mortar present	in northern half of t	he		* * * * * *
- - - 1.5 - -	50	ES	PID = 0.0ppm								× × × × × ×
nber 2022	30	ES	PID = 0.0ppm								(3.72)
3.GLB Date: 29 Nover	00	ES	PID = 0.0ppm								
SS 4_0 LIBRARY V1	50		PID = 0.0ppm								× × × × × × ×
NZT GI.GPJ Library: NZT A.	00		PID = 0.0ppm		At 4.00m Orientated	bgl: Two pipes, d north east to s	3cm diameter. On outh west. End of Trial Pit 4 Thickness of basa not proven)	e broken, one intact. . 00 m I layer	. 3.59		4.00
G Project: V11.01											
	Groundwa Strike	ter Observati Post	ons Post	Flow	in View	1. Trial Pit locate	Remark d in the Main Site area	s of Teesworks, Redcar. Lo	ocated in the west	of Remediation 2	Zone
: ID: STANDARD TRIAL F	Depth	Mins	Depth	~-1	1m→ B C 4.4m	PR2A, to the nor brickwork. 2. Trial Pit termir 3. Topography: L 4. Groundwater 5. Slag and refra olfactory evidenc 6. Trial Pit backfi	th of the haul road. The nated at 4.00m bgl due evel Ground. Iot encountered during ctory material encounte e of contamination. Iled with arisings upon	trial pit was re-orientated to the presence of two pit excavation. red in material recovered completion.	I north-south due to	to 4.00m bgl. No	ried
Note	es: For exp	lanation of sy	/mbols and abbrevia	tions, see Key Sheet.		Scale: 1:25	Log	ged By: NS	Checked	By: JW	

					AECOM					Trial Pit No.	F-]	FP121		
	A=	.(.(JN	5th Floor 2 City Walk		Tel: 0113 391 Fax: 0113 391	6800 6899	AGS					
					Leeds LS11 9AR		www.aecom.c	com	REGISTERED USER 2022	Sheet: 1 of 1			1	
	Equipment & Excavator	Metho	ds: Tra	icked 14T 360	Project Name: N	let Zero Teess	ide Onshore Gro	ound Invest	gation - Front Er	nd Engineering Design	(FEED)	Job No:	
					Project Location:	Redcar, Nort	h Yorkshire						60678042	2
					Client: BP			Ground	ovol (m):		Dot	Startad: 0	6/10/2022	
					E: 456855.393			Giounu	2ever (111). 8.34	40 AOD	Date	- Completer	10/2022 1. 06/10/2022	
	Sar	nples a	nd In si	itu Testina	N: 525639.131						Duk	Reduced		Depth
	Denth	Sa	ample	Test Type	- Field Records			DE	SCRIPTION			Level (m)	Legend	(Thick) (m)
	(m)	1	Ker & Type	and Result										()
	- 0.10		D	PID = 0.3ppm		MADE GF	ROUND: Gras	ss over: E rse SANI	ark brown mo D with abunda	ottled black slightly ant roots and rootle	ts			- (0.23)
	- 0.23- 0.72 - 0.30	0	.72 B D			and occas	sional fragmer	nts of pla	stic and textile	e. Gravel is angular	to	8.11		- 0.23
	-					(MADE G	ROUND)							- (0.49)
	- 0.50		ES	PID = 0.3ppm		MADE GF	ROUND: Brow	vn mottle	d dark grey sli	ightly gravelly claye	ey and			
	0.72- 1.20	1	1.2 B			textile. Gr	avel is angula	r to suba	ngular fine to	coarse of chert,	ana	7.62		- 0.72
	- 0.80		ES			sandstone	e, limestone ai i ROUND)	nd brick						
	_					MADE GF	ROUND: Light	t brown n	nottled dark b	rown gravelly claye	y fine			(^{0.48})
	- - 1.20		D	PID = 0.4ppm		to coarse	to subrounde	equent p ed fine to	ckets of soft	dark grey clay. Gra alk, concrete and	avel	7.14		1.20
	_ 1.20- 1.50	1	1.5 B			limestone								(0.30)
	- - 1.50- 1.80	1	1.8 B			MADE GF	ROUND: Light	t grey ma	trix supported	I CONCRETE with		6.84		1.50
	-					10mm ret	oar. Aggregate ne	e is subai	ngular to subr	ounded fine to med	lium			1
	- 1.80		D	PID = 0.8ppm		(MADE G	ROUND)							
	-		ES			MADE GF	ROUND: Black	k very gra	avelly fine to c	coarse SAND with	of			
	-	2				metal and	textile. Cobbl	es are ar	igular of brick	. Gravel is angular	to			
	_					(MADE G	ROUND)	se or sia	j, drick, ciirike	er and concrete				
	-					From 1 F	0m to 2 50m	hali Cliak	taulahuraua	adaur natad				
	- 2.50		D	PID = 1.0ppm			0111 10 2.5011	bgi. Siigi	it sulphurous	odour noted.				
	_													
	- 2.80		ES											
22	- 3.00		D	PID = 0.1ppm										-(3.00)
er 202	- 3.00- 3.30		5.5 6											
/emb	_													
9 No	- 3.50		D	PID = 0.1ppm										
ate: 2	-													
BIID	- 3.80		ES											$\left \right $
.3.GL	- 4.00		D	PID = 0.7ppm										
۲V /1	4.00- 4.50	4	4.5 B											}
BRAF	-													[
0 LI	-											3.84		4 50
VGS 4	- 4.50		ט	нD = 0.1ppm								0.04		<u>, 1.00</u>
\ZT ≠														
rary: I								End of (Thickn	Trial Pit 4.5 ess of basal I	0 m aver				
Lib,									not proven)	y				
GPJ.														
격데														
1.0 N.														
ж: V1														
Projec														
100							1							
	Groundw Strike	ater Ob Po	servati ost	ons Post	Flow Pla	in View	1. Trial Pit loca	ated in the	Remarks Main Site area of	Teesworks, Redcar. Lo	ocated i	n the west c	of Remediation Z	Zone
RIAL F	Depth	Mi	ins	Depth		B	PR2A, to the n 2. Trial Pit adv	north of the anced to 4	naul road. 50m bgl. ping to the south					
RD TI							4. Groundwate 5. Slag and re	er not enco fractory ma	intered during external encountere	 cavation. d in material recovered	from 1	.50m to 4.50)m bgl. Sulphurc	ous
NDA					A	c _{4m}	odour noted in 6. Trial Pit bac	n material fo kfilled with	m 1.50m to 2.50 arisings upon co	m bgl. mpletion.				
STA														
ort ID						┏ ♦								
Rep	Notes: For ex	planatio	on of sy	mbols and abbrevi	ations, see Key Sheet.		Scale: 1:30		Logge	ed By: NS		Checked I	By: JW	

	ΛΞ			AECOM		Tel: 0113 301 6800		Trial Pit No.	F-TI	P115		
			JIVI	2 City Walk Leeds		Fax: 0113 391 6899 www.aecom.com	AGS	Sheet 1 of 1				
ŀ	Equipment & N	Methods: Tra	cked 22T 360	LS11 9AR Project Name: N	let Zero Teess	side Onshore Ground I	registered user 2022	nd Engineering Design	(FEED)		Job No:	
	Excavator			Project Location:	Redcar, Nort	h Yorkshire	-				6067804	12
				Client: BP								
				Co-ordinates: E: 456823.795 N: 525461.784		Gro	ound Level (m): 7.26	68 AOD	Date S	Started: 2 Completed	7/09/2022 d: 27/09/2022	
Ē	Samp	ples and In si	itu Testing	Field Records		I			F	Reduced Level		Depth (Thick)
	Depth (m)	Ref & Type	Test Type and Result				DESCRIPTION			(m)		(m)
-					MADE GF	ROUND: Dark gre <u>:</u> ; ROUND)	/ and black ASPH	ALT	r	7.17		(0.10)
ŀ	0.20- 0.50 0.30	B D FS	PID = 0.8ppm		MADE GF	ROUND: Greenish ar fine to coarse G	grey mottled grey RAVEL of sandst	v sandy angular to one, brick and slag	,	7.07		
ļ	- 0.50- 1.00	В			MADE GF	ROUND: Dark brow h low cobble conte	wn and dark grey ant. Cobbles are a	silty gravelly coarse	e ivel is			\$
					angular to	subangular fine to	coarse of slag a	nd brick. Sand is c	oarse			8
	0.80	D	PID = 1.1ppm			iround)						(1.30)
+	-											}-
F												\$
	1.30	D	PID = 0.9ppm									\$
+	- 1.50- 2.00 1.50	B ES			MADE GF	ROUND: Brown ve	ry sandy angular	to subangular fine	to	5.77		1.50
					coarse GF content. C	RAVEL of slag, bri Cobbles are angula	ck, metal and clin Ir of slag and brick	ker with low cobble c. Assessed as ver	y			X
ł	1.80	D	PID = 1.6ppm		dense (MADE G	ROUND)	-		-			ł
+	- 2.00- 2.50	В										(1.00)
												\$
	2.30	D ES	PID = 1.5ppm									₹
2	_									4.77		2.50
ber 202												
lovem						Er	d of Trial Pit 2.5	0 m				
e: 29 N						(Th	ickness of basal l not proven)	ayer				
Date												
3.GLB												
Y V1.3												
BRAR												
4_0 LI												
AGS												
y: NZT												
Librar												
II LdS												
<u>77 GI.(</u>												
1.0 NZ												
ect: V1												
ll Proj												
I LOG	Groundwat	ter Observati	ons	Pla	In View	4.7.4.00	Remarks		l	41	-(D- ""	. 7.
AL PI	Strike Depth	Post Mins	Post Depth	+low -	Im	1. Irial Pit located in PR2B. 2. Trial Pit refused a	n the Main Site area of t 2.50m bgl, on hard s	r reesworks, Redcar. Lo tratum.	ocated in	tne south	ot Remediation	n ∠one
RD TRI					<u>в</u>	3. Topography: Leve 4. Groundwater not 5. Slag and refrects	el Ground. encountered during ex	cavation.	from are	und level f	0 2 50m hal 1	lo
NDAF				А	C 3.8m	olfactory evidence of 6. Trial Pit backfilled	f contamination. I with arisings upon co	mpletion.	nom gro		o 2.Juni byl. N	
D: STA							- •					
eport	Notes: For over	lanation of ou	mbols and abbrovia	tions see Key Short		Scale: 1.25	Logo	ed By: RM		Checked	Bv: .IW	
۳L	NUCES. FUI EXPI	anadon OI Sy	ninone and addievia	uono, oce ney oneel.		Juane: 1.20	Logge	Ju Dy. 13191	[y. 0 ۷ ۷	

Λ			AECOM	Trial Pit No. F						
A		JIVI	5th Floor 2 City Walk Leeds LS11 9AR		Tel: 0113 391 6 Fax: 0113 391 www.aecom.co	6899 om registered use	S 2022	Sheet: 1 of 1		
Equipment Excavator	& Methods: Tra	acked 22T 360	Project Name: N Project Location: Client: BP	et Zero Teessi Redcar, North	de Onshore Grou Yorkshire	und Investigation - F	ront Er	nd Engineering Design	(FEED)	Job No: 60678042
			Co-ordinates: E: 456905.451 N: 525436 703			Ground Level (m):	7.47	76 AOD	Date Started: Date Complete	06/10/2022 ed: 07/10/2022
Sa Depth	amples and In s Sample Ref &	itu Testing Test Type	- Field Records			DESCRIPTI	ON		Reduced Level (m)	Legend Depth (Thick) (m)
(m) - - 0.20- 0.50 - 0.20 - 0.30	B ES D	PID = 1.2ppm		MADE GR 10mm reb sandstone (MADE GR	COUND: Pale ar. Aggregate and igneous ROUND : Grevi	yellow matrix su is angular to su rock sh brown gravel	pporte bangu	d CONCRETE wit lar fine to medium	h of 7.28	(0.20) 0.20 (0.30) 0.50
- - - 0.80 - - - -	D ES	PID = 1.6ppm		Gravel is s (MADE GR N.B. Bene MADE GR medium cc subangula (MADE GR	aubangular to ROUND) eath the concr COUND: Dark obble content. r to subround ROUND) ROUND: Light	subrounded fine rete is a thin blac brown gravelly f Cobbles are su ed fine to coarse grey subrounde	k plas ine to broun e of sla	arse of brick and s stic liner. coarse SAND with ded of slag. Gravel ag ubangular medium	is 6.28	(0.70) 1.20 (0.20)
- - 1.50 - - - - - - - - -	ES	PID = 0.9ppm		Coarse GR subrounde (MADE GF MADE GR medium cc subangula (MADE GF	AVEL of slag round) OUND: Dark obble content. r to subround ROUND)	brown gravelly f Cobbles subrou ed fine to coarse	ine to inded of sla	coarse SAND with of slag. Gravel is		
- 2.50 	ES	PID = 0.7ppm PID = 0.5ppm								
* - 4.10 - 4.10 - 4.50	ES	PID = 4.4ppm PID = 0.1ppm							2.98	4.50
G Froject: V 11.0 NZ1 Shuary IL Lunary. NZ1 A00						End of Trial P (Thickness of t not prov	Pit 4.5 Dasal I en)	0 m ayer		
Ground	water Observat	ions Post	Pla	n View	1. Trial Pit loca	Re ted in the Main Site	marks area of	Teesworks, Redcar Lo	cated in the centr	e of Remediation
	Mins	Depth		m→ B C 3.8m	2 Jone PR 16L 2. Trial Pit adva 3. Topography: 4. Groundwate 5. Slag and ref evidence of coi 6. Trial Pit back	anced to 4.50m bgl. Level Ground. root encountered du ractory material enco tamination. filled with arisings u	uring ex ountere	cavation. d in material recovered	from 0.20m to 4.5	0m bgl. No olfactory
Notes: For e	explanation of s	ymbols and abbreviat	ions, see Key Sheet.		Scale: 1:30		Logge	ed By: HR	Checked	By: JW

	ΛΞ			AECOM				Trial Pit No.	F-	TP117		
	A=			5th Floor 2 City Walk Leeds LS11 9AR		Tel: 0113 391 68 Fax: 0113 391 68 www.aecom.com	00 399 REGISTERED USER 2022	Sheet: 1 of 1				
	Equipment & Excavator	Methods: Track	ked 22T 360	Project Name: N Project Location: Client: BP	et Zero Teess Redcar, Nort	side Onshore Groun h Yorkshire	d Investigation - Front Er	nd Engineering Design	(FEEC))	Job No: 60678042	
				Co-ordinates: E: 456931.072			Ground Level (m): 7.20	04 AOD	Dat Dat	e Started: 2 e Completed	1 7/09/2022 1: 27/09/2022	
	San Depth	nples and In situ Sample Ref &	Testing	- Field Records		I	DESCRIPTION		1	Reduced Level (m)	Legend	Depth (Thick) (m)
	(m) -	Type	and Result			ROUND: Dark g	rey and black ASPH	ALT		7.10		- (8:18)
	- 0.20 - 0.30- 0.80	D ES B			MADE GF coarse GF	ROUND: Grey s RAVEL of slag a	lightly sandy angular and concrete. Sand is	to subangular fine s coarse	e to	6.90		- (0.20) _ 0.30
	- 0.50 - -	D ES			MADE G MADE GF coarse SA slag and b brick, clini (MADE G	ROUND: Dark g AND with mediul prick. Gravel is a ker and metal ROUND)	rey mottled dark bro m cobble content. C angular to subangula	wn silty very gravel obbles are angular r fine to coarse of	lly of slag,	J		- - - - (1 10)
	- 1.00- 1.50 1.00 -	B D										- (1.10)
	- - 1.50 - - -	D ES			MADE GF subangula high cobb angular of (MADE G	ROUND: Grey a ar fine to coarse le content and c f brick, slag and iROUND)	nd brown slightly sar GRAVEL of slag, br occasional fragments conrete. Sand is coa	ndy angular to ick and clinker witl of metal. Cobbles arse	h are	_ 5.80		_ 1.40 - -
	- 2.00- 2.50 _ 2.00 	B D										- - - -
29 November 2022	— 2.50 - -	D ES								_ 4.35		- - 2.85
RY V1.3.GLB Date:						(End of Trial Pit 2.8 Thickness of basal I not proven)	5 m ayer				
0G Project: V11.0 NZT GI.GPJ Library: NZT AGS 4_0 LIBRA												
- PIT LO	Groundwa Strike Depth	ater Observatior Post Mins	Post Depth	Flow -1	n View	1. Trial Pit locate Zone PR1B.	Remarks d in the Main Site area of	Teesworks, Redcar. Lo	ocated	in the centre	of Remediation	
rt ID: STANDARD TRIAL	p u .				C 3.9m	 Trial Pit termin Topography: L Groundwater T Slag and refra olfactory evidenc Trial Pit backfi 	ated at 2.85m bgl due to evel Ground. not encountered during ex ctory material encountere e of contamination. Iled with arisings upon co	unstable pit sidewalls. ccavation. d in material recovered mpletion.	from g	round level t	o 2.85m bgl. No	
Repo.	Notes: For exp	planation of sym	l bols and abbrevia	tions, see Key Sheet.		Scale: 1:25	Logge	ed By: HR		Checked E	By: JW	

				AECOM					Trial Pit No.	F-1	TP112		
	A=		JIVI	5th Floor 2 City Walk Leeds LS11 9AR		Tel: 0113 391 68 Fax: 0113 391 68 www.aecom.con	00 899 Registered user	S 2022	Sheet: 1 of 1				
F	Equipment & I	Methods: Tra	cked 22T 360	Project Name: N	et Zero Teess	side Onshore Groun	d Investigation - F	ront En	d Engineering Design	(FEED)	Job No:	
	Excavator			Project Location:	Redcar, Nort	th Yorkshire						6067804	2
				Client: BP			Cround Lovel (m);			Det	o Stortodi 1	00/2022	
				E: 456905.844			Siound Level (m).	7.86	1 AOD	Dat	e Complete	d: 26/09/2022	
\vdash	Sam	ples and In si	tu Testing	N: 525356.093							Reduced		Depth
	Depth	Sample Ref &	Test Type	 Field Records 			DESCRIPTIC	NC			(m)	Legend	(Thick) (m)
$\left \right $	(m)	Туре	and Result			ROUND: Dark g	rev mottled bla	ck silt	v verv gravellv fine	to	7.81	××××	(0:05)
F	0.10- 0.50	в			coarse SA	AND with mediu	m cobble conte	ent. Co	bbles are angular	of			X
E	0.30	D ES	PID = 0.5ppm		brick, clin	ker and metal fr	agments	Ingula		siay,			ł
-	- 0.50- 1.00	В			(MADE G	ROUND: Grev n	ottled dark are	w eliat	ntly sandy angular	to			¥-
ŀ	0.60	D	PID = 0.8ppm		subangula	ar fine to coarse	GRAVEL of sl	ag an	d brick with mediu	m			X
+					(MADE G	ntent. Cobbles d GROUND)	of angular slag	and bi	rick. Sand is coars	е			}
þ	- 100	р	PID = 1 2ppm										Ł
		ËS											8
	1.20- 1.70	В											(2.35)
													}
ļ	- 1.50	D	PID = 1.8ppm										7
													ł
													X
ł	- 2.00-2.50	B	PID = 1.1ppm										}-
	2.00	ËS											X
F											5.46		2.40
	- 2.50	D	PID = 1.1ppm		Light brov	vn mottled brow	n slightly grave	elly fine	e to medium slight	у			
					SILY SAIN	D. Graver is ang		ided o	r siag and film			· · · · ·	ł
					N.B. Slag	inclusion is fror Itamination from	n possibly rewo pit collapse.	orked	ground or				·
t	- 300-350	в	PID = 0.8ppm		(TIDAL F	LAT DEPOSITS	s) .						,È
2022	3.00	D FS	1 ID - 0.0ppm									· · · · · ·	}
nber	3.30	ES										· · · · · · · · · · · · · · · · · · ·	, <u></u>
Nove												·	(2 12)
e: 29	- 3.50- 4.00	В											, _ ()
Dat	3.70	D FS	PID = 1.5ppm										<u> </u>
GLB												· · · · · · ·	<u></u>
<1.3.	- 4.00- 4.50 4.00	B ES										· · · · · ·	,E
MRY	4.20- 4.50	в			From 4.0	00m bgl: Become	es very gravelly	<i>.</i>				· · · · · ·	}
EIE E	4.30	D	PID = 1.0ppm									· • · · · · · •	, <u>†</u>
S 4 0	-										3.34	· · · · a · · ·	- 4.52
TAG													
y: NZ							End of Trial P	it 4.52	2 m				
Librar						(Thickness of b	asal la	ayer				
ll Ld								<i>j</i>					
GI.G													
IZN C													
V11.													
oject:													
I D													
TLO	Groundwa	ter Observati	ons Doct	- Pla	n View	1 Trial Dit looste	Rer	marks	Teesworks Podeor La	ncated	in the south	of Remediation	Zone
AL PI	Depth	Mins	Depth	- 10WV	m -	PR1B. 2. Trial Pit advan	ced to 4.52m bal	ured Of	TOOSWOINS, NEUCAL LC	Joalea	ເມຣ ຣບແທ		20110
D TRI					▶	3. Topography: L 4. Groundwater r	evel Ground. ot encountered du	ıring ex	cavation.	,			
DAR				А	C 3.9m	5. Slag and refra olfactory evidence	ctory material enco e of contamination	ountered	a in material recovered	trom g	round level 1	to 4.52m bgl. N	0
STAN							ica with ansings u	1001 CO					
Ë					I								
Repo	Notes: For exp	lanation of sy	mbols and abbrevia	ions, see Key Sheet.		Scale: 1:30		Logge	d By: JP		Checked	By: JW	

	ΛΞ			AECOM				Trial Pit No.	F-T	P113		
1	A=		JN	5th Floor 2 City Walk Leeds		Tel: 0113 391 6800 Fax: 0113 391 6899 www.aecom.com	AGS	Sheet: 1 of 1				
	Equipment & N	/lethods: Tra	icked 22T 360	Project Name: N	et Zero Teess	ide Onshore Ground Inv	estigation - Front E	I nd Engineering Design	(FEED)		Job No:	
	Excavator			Project Location:	Redcar, Nort	h Yorkshire	·		. ,		60678042	
				Client: BP								
				Co-ordinates:		Grour	nd Level (m):		Date	Started: 2	3/09/2022	
				E: 456931.524 N: 525332.271			7.2	82 AOD	Date	Completed	d: 23/09/2022	
	Samp	oles and In s	itu Testing	Field Beeerde		I				Reduced		Depth (Thick)
	Depth (m)	Sample Ref & Type	Test Type and Result	Field Recolds			DESCRIPTION			(m)	Legend	(m)
F					MADE GF	ROUND: Dark grey r	nottled black AS	SPHALT	ſ	7.23		- (<u>0:05</u>)
-	0.20 0.30- 0.70	D ES B	PID = 0.2ppm		MADE G	ROUND) ROUND: Greenish g ar fine to coarse GR	rey mottled grey	y sandy angular to		6.98		_ (0.25) _ 0.30
Ē	- 0.50	D	PID = 0.4ppm		(MADE G	ROUND)		one, blick and slag				-
+		ES			MADE GF	ROUND: Grey mottle	ed dark grey slig	htly sandy angular	to			-
Ľ	0.70- 1.20	В			content. C	Cobbles are angular	of slag. Sand is	coarse				-
-					(MADE G	ROUND)						-
F	- 1.00	D	PID = 1.6ppm									\vdash
Ē												
F												(2 10)
E	- 150 200											- (2.10)
F	1.50	D	PID – 0.0ppm									F
ŀ												-
Ē												
H	- 2.00	D	PID = 0.6ppm									-
F												-
F												
+								to subangular fina f	to	4.88		_ 2.40
Ľ	- 2.50- 3.00 2.50	B	PID = 0.7ppm		coarse GF	RAVEL of slag, brick	, metal and clin	ker with low cobble				
F		ES			Content. C	Cobbles are angular	of slag and bric	k				-
F						(COND)						-
Ē	- 300		PID = 1 2ppm									- (1.00)
2022	0.00											-
her	2 20	ES										-
oven	5.50									3.88		3.40
29 N	- 3.50- 4.00	B	PID = 0.8ppm		Gravel is a	n mottled brown slig	ghtly gravelly fin ed of slag and f	ie to medium SANL Ilint).			-
Date:	5.50	ES										-
					cross-con	tamination is from po	ssibly reworked	grouna or				- (0.80)
3.GL	- 400		PID = 1 1ppm		(TIDAL F	LAT DEPOSITS						-
5	- 4.00	ES	FID = 1. Ippin									-
RAR	4.20- 4.50	В			Light brow	In fine to medium S				3.08		_ 4.20
					(TIDAL F	LAT DEPOSITS)						(0.35)
S 4_C	- 4.50	D	PID = 1.5ppm							2.73	· · · · · · · · ·	4.55
T AG		ES								-		
LZN :												
orary						End	of Trial Pit 4.5	55 m				
						(i nic	not proven)	ayei				
GPJ												
T GI												
.0 N.												
· 111												
oject												
II Pr												
ÖL	Groundwate	er Observati	ons	Pla	n View		Remarks					
LPIT	Strike Depth	Post Mins	Post Depth	Flow -1.	1m-+	1. Trial Pit located in the PR1B.	ne Main Site area o	f Teesworks, Redcar. Lo	cated in	the south	of Remediation	Zone
TRIA					<u>₃</u> ♦	2. Trial Pit advanced to 3. Topography: Level 0	o 4.55m bgl. Ground.					
'RD'						4. Groundwater not en 5. Slag and refractory	countered during ex material encountered	xcavation. ed in material recovered	from gro	ound level t	o 4.20m bgl. No	
AND/				A	C 4m	6. Trial Pit backfilled w	vith arisings upon co	ompletion.				
): ST/												
ort IC					, +							
Rep	Notes: For expla	anation of sy	mbols and abbreviat	ions, see Key Sheet.		Scale: 1:30	Logg	ed By: RM		Checked E	By: JW	

		~		AECOM					Trial Pit No.	F-	TP114		
	A		JIVI	5th Floor 2 City Walk Leeds		Tel: 0113 391 6800 Fax: 0113 391 6899 www.aecom.com	AGS	S	Sheet 1 of 1				
	Equipment & Me	ethods: Tra	acked 22T 360	LS11 9AR Project Name: N	et Zero Teess	ide Onshore Ground Ir	REGISTERED USER	ront End	Engineering Design	(FEED))	Job No:	
	Excavator			Project Location:	Redcar, Nort	h Yorkshire	Ū				,	606780	42
				Client: BP						-			
				Co-ordinates: E: 456958.658		Gro	und Level (m):	7.668	AOD	Dat	e Started: 2	2/09/2022	
	Sample	es and In s	itu Testina	N: 525296.290						Dau	Reduced	u. 22/09/2022	Depth
	Depth (m)	Sample Ref & Type	Test Type and Result	Field Records			DESCRIPTIC	NC			Level (m)	Legend	(Thick) (m)
	- 0.10- 0.40	В			MADE GF	ROUND: Dark brov h medium cobble o	n mottled re	eddish b	prown gravelly co e angular to	arse			X-
	- - 0.30	D	PID = 0.2ppm		subangula coarse of	ar of slag and brick slag. Sand is coars	. Gravel is a se. Assessed	ngular t d as der	o subangular fin	e to	7.07		× - (0.40)
	-	ES				ROUND)	are and ar	ov oond	v opgulor to		/ . <i>21</i>		0.40 (0.25)
	- 0.60	D	PID = 0.5ppm		subangula	ar fine to coarse Gl	RAVEL of sla	ey sand ag, bricl	k and clinker		7.02		0.65
	- 0.70- 1.00	В			(MADE G	ROUND: Grev mot	iled dark are	v sliahtl	v sandv angular	to			X
	- - 1.00- 1.50	в			subangula	ar fine to coarse G	RAVEL of sla	ag with	medium cobble	10			
	_ 1.00	ËS			(MADE G	ROUND)	o siay. Sa	ina is co	alse				X
	- - 1.30	D	PID = 0.1ppm										\$
	-												ŠL
	-												(1.85)
	- - 1.80	D	PID = 0.3ppm										\$
	- 200	ES											SL
	-												\$
	- - 2.30	D	PID = 0.4ppm										
	- 250 200										5.17		2.50
	- 2.30- 3.00				MADE GF	ROUND: Brown ve	ry sandy ang	gular to d clinke	subangular fine	to			
	- - 2.80	D	PID = 0.6ppm		content. C	Cobbles are angula	r of slag and	d brick		•			X I
	-					ROUND)							Št
2022	- 3.00- 3.50 - 3.00	ES											XF
nber 2	- 3.30		PID = 0.5ppm										
Novei	-	ËS											\$-```'
te: 29	-												XF
II Da	- 3.80	D	PID = 1.9ppm										X I
3.GLB	-												\$f
Y V1.	— 4.00 - 4.10- 4.50	B			l inte trans				Ones cel in an escal	4	3.57		4.10
BRAR	- 430		PID = 1.3ppm		subrounde	n very gravelly find	sandstone	and mu	dstone	ar to			
	-	ËS	пр поррш		(TIDAL F	LAT DEPOSITS)							(0.43)
AGS 4	_										3.14	<u> </u>	 4.53
NZT /													
brary:						En (Th	d of Trial P i ickness of b	it 4.53 i basal lay	m rer				
J II Li						Υ.	not prove	en)					
GI.GF													
NZT													
V11.0													
oject:													
3 Pr													
IT LOC	Groundwater	Observati	ions Post	Pla	n View	1. Trial Pit located in	Rer the Main Site	marks area of Te	esworks Redcar Lo	ocated	in the south	of Remediatio	n Zone
IAL P.	Depth	Mins	Depth		1m 	PR1A. 2. Trial Pit advanced	to 4.53m bgl.		, 1.000011 EC		00001		
RD TF					T I	3. Topography: Leve 4. Groundwater not e 5. Slag and refractor	encountered du v material enco	uring exca	vation. n material recovered	from a	round level 1	to 4.10m bal I	No
NDAF				А	c _{4m}	olfactory evidence of 6. Trial Pit backfilled	contamination with arisings u	ipon comp	pletion.	y			
⊃: ST/													
port IL					, , ,								
Re	Notes: For explan	nation of sy	mbols and abbreviati	ons, see Key Sheet.		Scale: 1:30		Logged I	By: RM		Checked	By: JW	

AE	C	`O N		AECO 5th Floor 2 City Wal	М к	T F	Fel: 0113 391 Fax: 0113 391	6800 I 6899	AGS	Bore	hole	No. F-E	3H12	8
		<u> </u>		Leeds LS11 9AR		v	ww.aecom.c	om	REGISTERED USER 202	2 Sheet: 1	of 6	()		
Equipment & I 0.00 - 0.25 Insi 0.15 - 15.00 Sor	Vethods ulated Han nic Drilling	s: d Tools (Hammer ID: GS08)		Projec Projec	t Name: Net 2 t Location: Re	Zero Teessio edcar, North	de Onshore Yorkshire	Ground In	vestigation	- Front End Engi	ineering [Design (FEED)	Job No: 6067	78042
15.00 - 30.00 Rot	ary Coring	(Hammer ID: GS08)		Client:	BP			Creation of				Data Startadu (22/02/202	0
				E: 456	963.129			Ground	Level (III).	7.523 AOD		Date Complete	d. 02/08/	20022
ln S	itu Toet	ina	Coring	N: 525	288.281						Reduced	Date Complete	Denth	Backfill/
Depth (m)	Sample Ref & Type	Test Type and Result	TCR SCR ROD	FI Core Run		DE	SCRIPTION	I			Level (m)	Legend	(Thick) (m)	Instrumer
-	Турс				MADE GR fine to coa and metal slag, chert (MADE GF	OUND: Bi irse SAND . Gravel is t, sandstor ROUND)	rown mott) with occa angular t ne, brick a	led light l asional fr o rounde and aspha	brown ver agments d fine to c alt	ry gravelly of pottery coarse of	6.06		- _ (0.56) -	
- - -					MADE GR fine to coa is fine to c (MADE GF	ROUND: Bl Irse GRAV oarse ROUND)	lack very /EL of sla	sandy an g, sandst	gular to s one and o	ubrounded chert. Sand	0.90		- - - - -(0.94)	
- - -					MADE GR	OUND: BI	lack slight	ly sandy	angular to	o subangular	6.02		- - - 1.50	
- - - -					fine to coa fragments (MADE GF From 1.50	rse GRAV . Sand is f ROUND) Om to 3.00	EL of slag ine to coa m bgl: Sli	g with oc irse ght sulph	casional r urous od	netal our.			- - -	
- - - - - -													- - (1.93) - - -	
- - - - -					MADE GR SAND. Gr	COUND: Ye avel is and	ellowish b gular to su mudston	rown gra ibrounde	velly fine d fine to c	to coarse coarse of	4.09		- - - 3.43 _ (0.33)	I
3.76- 4.01	D				(MADE GF	ROUND)	maaoton	•		ſ	3.76		3.76	
- 3.90	ES					oposed re	mediation	n level 3 8	3m AOD				_ (0.25)	
4.00 4.01- 4.50	в	PID = 1.4ppm SPT(C) N=21 3,3/ 5,5,6,5			MADE GR fine to coa (MADE GR	ROUND: BI Irse GRAV ROUND)	lack slight /EL of slag	ly sandy g. Sand i	angular to c	o subangular coarse	3.51		4.01 - -	
	D SS B	SPT(S) N=29 3,7/ 6,6,8,9			Medium de coarse SA coarse of s (TIDAL FL	ense yello ND. Grave sandstone AT DEPOS	wish brow el is angu and mud SITS)	/n slightly lar to sub stone	gravelly rounded	silty fine to fine to			- 	
- - 4.90 5.00 -	ES	PID = 1.0ppm											- - - - (2 35)	
- 5.20- 5.30 - 5.30- 6.00 -	D B				From 5.24 carbonace	4m bgl: Be eous mater	comes m rial and o	ottled gre	ey with fre shell fraç	quent gments.			- - -	
					From 5.30)m bgl: Be	comes ve	ery gravel	ly.				- - -	
Water Strike Flow I Depth	Strikes Remark	S	Ho Hole (mm)	le Diamete Dia Depth Hole (Pit 0.25	er of Date (m) 27-07-20 27-07-20	Progr Time 22 09:40 22 12:00	ess Hole Depth (m) 0.25 1.50	Casing) Depth (m) 1.50	Water) Depth (m)	Sonic/Rotary Core (Redcar. Located in the Suried Service Inspe granted to progress bo So//RC borehole ad Coring to 30.00m bgl. 4. Topography: Level 6. Slen and refractory.	Remai SO/RC) bore e south of Rer action Pit term rehole via So vanced via So Bround. not observed material enco	ks hole located in the Main 3 mediation Zone PR1A. ninated at 0.25m bgl on h ninc drilling. onic drilling. onic drilling to 15.00m bg during drilling due to adu	Site area of Te hard stratum. F I, and complet dition of flush v	versworks, Permission ed via Rotary vater.
Notes: 5		n of our shares	d obt	ioticas		S	cale: 1:30			4.01m bgl. Slight sulph 7. Borehole installed w completion, to allow Ve	urous odour i ith an 80mm ertical Seismi	internal diameter standpi c Profiling.	Dim bgl. pe to 30.00m l	bgl upon

	Mathad		_	Lee LS	eds 11 9AR	Name: Nat Za	W	ww.aecom.c	om	REGISTERED USER 20	2 Sheet:	2 of 6		lah Na	
Equipment & 1 0.00 - 0.25 Ins 0.15 - 15.00 So	Method: ulated Har nic Drilling	S: nd Tools (Hammer ID: GS08)		1	Project I Project I	Name: Net Ze Location: Red	ro Teessid car, North	le Onshore Yorkshire	Ground Ir	ivestigation	- Front End Ei	ngineering L	Jesign (FEED)	Job No: 6067	8042
15.00 - 30.00 Ro	tary Coring	(Hammer ID: GS08)			Client: E	BP			Groupe	l evel (m):			Date Started	27/07/2022)
				Ē	E: 4569	63.129			Cround	Eever (m).	7.523 AOE)	Date Complete	ed: 02/08/2	2022
In S	Situ Tes	ting	Coring	lnfor	mation	00.201						Reduced		Depth (Thick)	Backfill
Depth (m)	Sample Ref & Type	Test Type and Result	TCR SCR ROD	FI	Core Run		DES	SCRIPTION				(m)	Legend	(m)	linsuume
6.00- 6.36	B	PID = 10.4ppm SPT(S) N=13 3,6/											× · · · × · · · · · · · · · · · · · · ·	-	
6.36- 7.27	В	5,6,2,0			-	Soft brown	nottlod a	rov clight	ly condy	cilty CLA	Vwith	1.16	· . · .× . · . · .× .	6.36	
6.50- 6.60	D					occasional (arbonac	eous mai	erial. Sa	nd is fine	to coarse			-	
								, , ,					- <u> </u>		
6.90	ES													- (0.91)	
7.00		PID = 1.6ppm											 		
7.27- 7.50	в				-	N 4 - 12						0.25		7.27	
7 50 0 00	_					Medium der clayey fine t	ise browi o coarse	n mottled SAND w	grey and ith abund	d black sli dant carbo	ghtly gravell	У	- · · · · · · · · · · · · · · · · · · ·	-	
7.50- 8.20 7.50	SS	4,5/				material and subrounded	fine to c	onal shell oarse of	fragmen sandstor	ts. Gravel	is angular to Idstone			-	
		0,1,1,0				(TIDAL FLA	T DEPOS	SITS)							
8 00		PID = 1.5ppm													
8 20 8 20	р													-	
8.30- 9.00	В													-	
·8.50	ES														
9.00- 9.70	B	PID = 1.3ppm												┣ │	
5.00	00	4,6/													
													[- (4.14)	
						From 9.41n	n to 9.57ı	m bgl: Be	comes g	ravelly.					
9.70- 9.80	D												······································	-	
9.80- 10.40	Б					From 9.81n	n hal: No	longer cl	avev and	1 hecome	s gravelly			-	
·10.00		PID = 1.0ppm				11011 0.011	n bgi. No	longer of	ayey and	Decome	s graveny.				
													······································		
10.40- 10.50	D														
10.50	SS	2,3/				From 10.50	m bal: B	ecomes l	ocally de	nse and v	/ery			╞	
10.70- 10.80	D					gravelly.	0		,		,				
·11.00	ES	PID = 1.1ppm													
													· · . · · . . · . · · . · 		
	_											3 90	· · · · · · · · · · · · · · · · · · ·		
11.41- 12.00 ·	В					Soft locally	firm brow	n mottled	l grey an	d black sl	ightly	-3.09	<u></u>	- 11.41	
						Gravel is an	gular to	subround	ed fine to	o coarse o	of mudstone				
						(TIDAL FLA	T DEPOS	SITS)	Coarse						
Water	Strikes		<u> </u> н	lole D	iameter		Progre	ess				Rema	rks		
Strike Flow Depth	Remark	(S	Hole (mn	e Dia n)	Depth o Hole (n	of Date n)	Time	Hole Depth (m	Casing Depth (m	Water) Depth (m)	1. Sonic/Rotary Co Redcar. Located in 2. Buried Service Ir	re (SO/RC) bore the south of Rei ispection Pit terr	hole located in the Main mediation Zone PR1A. ninated at 0.25m bgl on h	Site area of Tee nard stratum. Pe	esworks, ermission
											granted to progress 3. SO/RC borehole Coring to 30.00m b	borehole via So advanced via S gl.	onic drilling.	I, and complete	ed via Rotary
											 Topograpny: Lev Groundwater stri Slag and refractor Unm bol. Slight strict 	er Ground. kes not observer ory material enco	d during drilling due to ad ountered in material recov	dition of flush w vered from grou Om bol	vater. Ind level to
											7. Borehole installe completion, to allow	d with an 80mm / Vertical Seismi	internal diameter standpi c Profiling.	ipe to 30.00m b	ogl upon
1								1							

ΛΞ			4	Α	ECO	М	_				B	orehole	No. F-	BH12	8
A =				5th 2 C Lee LS	i Floor City Walk eds 11 9AR	X	F V	Tel: 0113 391 Fax: 0113 391 www.aecom.c	6800 6899 om	AGS REGISTERED USER 20	z She	et: 3 of 6			
Equipment & 0.00 - 0.25 In	Method sulated Har	S: nd Tools			Project Project	Name: Net Ze	ro Teessio	de Onshore	Ground Ir	ivestigation	- Front End	l Engineering	Design (FEED)	Job No	28042
0.15 - 15.00 S 15.00 - 30.00 R	onic Drilling otary Coring	(Hammer ID: GS08) g (Hammer ID: GS08)			Client:	BP	sai, norui	TURSINE						0007	0042
					Co-ordi E: 4569	inates:)63.129			Ground	Level (m):	7.523 A	OD	Date Started:	27/07/202	2
In	Situ Tes	ting	Corin	g Infoi	N: 5252 mation	288.281						Reduced		ed: 02/08/2	Backfill/
Depth (m)	Sample Ref & Type	Test Type and Result	TCR SCR ROD	FI	Core Run		DES	SCRIPTION	l			Level (m)	Legend	(Thick) (m)	Instrumen
12.00- 12.70 - 12.00- 12.50	UT100	PID = 0.8ppm 100 % recovery	/											-	
E															
-														-	
- 12.70- 12.80	D														
- 12.80- 13.40 -	В														
		PID = 0.8ppm												(3.33)	
-															
- 13.40- 13.50	D B														
_ 13.50 _ 13.50- 14.00	ES UT100	100 % recovery	/												
-														$\frac{1}{2}$	
-14.00		PID = 0.6ppm												$\frac{1}{1}$	
- 14.20- 14.30	D					From 1/1 2	m hal· B	ecomes s	tiff local	v firm and	t elightly			-	
- 14.30- 14.90 -	В					sandy.	in byi. D	ecomes a		y initi and	a singinary				
-															
-						Stiff locally v	ery stiff	reddish b	rown mo	ttled grey	slightly	-7.22		14.74	
- 14.90- 15.00	D	PID = 0.8ppm				gravelly slig carbonaceo	ntlý sano us matei	dy silty CL rial. Grave	AY with el is angu	occasiona Ilar to sub	al prounded	fine			
					15.00- 16.50	to coarse of (TILL: DEVE	mudstor NSIAN)	ne. Sand i	is fine to	coarse					
														<u>-</u>	
			100 0											£	
			0												
² 16.03- 16.39	С														
														(3.55)	
604 - I				CLAY	16.50- 18.00										
월 16.84- 17.15	С														
														$\begin{bmatrix} - \\ - \end{bmatrix}$	
			94 0												
			Ō]	
						From 17.60	m to 17.	83m bgl:	Become	s sandy.			<u> </u>		
=_ 														-	
U Wate Strike Flow	r Strikes Remark	s (S	Ho	Hole E le Dia m∖	Depth	of Date	Progr Time	Hole	Casing	Water	1. Sonic/Rotar Redcar. Locate	Core (SO/RC) bor d in the south of Re	arks ehole located in the Mair emediation Zone PR1A.	Site area of Te	eesworks,
			(mr 194	1) 1	15.00	28-07-2022	15:00	18.00	18.00	J Deptri (m)	2. Buried Servi granted to prog 3. SO/RC bore Coring to 30.00	ce Inspection Pit ter ress borehole via S hole advanced via S Im bol	minated at 0.25m bgl on onic drilling. Sonic drilling to 15.00m b	hard stratum. F	Permission ed via Rotary
											4. Topography 5. Groundwate 6. Slag and ref	Level Ground. r strikes not observe ractory material end	ed during drilling due to a countered in material reco	ddition of flush v	water. und level to
											4.01m bgl. Slig 7. Borehole ins completion, to	ht sulphurous odou talled with an 80mr allow Vertical Seisn	noted from 1.50m to 3.0 n internal diameter stand nic Profiling.	00m bgl. pipe to 30.00m	bgl upon
										<u> </u>		NC		D. // 114/	
Notes: For e	xplanatic	on of symbols an	d abbi	reviati	ons, se	e Key Sheet.	S	cale: 1:30		1	logged By:	NS	Checked	ву: JW	

A	EC	O		5th 2 C Lee	ECO Floor City Walk	Tel: 0113 391 6800 Fax: 0113 391 6899 www.aecom.com	Bore	hole	No. F-E	3H128	3				
Equipment 0.00 - 0.25 0.15 - 15.00 15.00 - 30.00	t & Methods Insulated Han Sonic Drilling Rotary Coring	d Tools (Hammer ID: GS08) (Hammer ID: GS08)			<u>11 9AR</u> Project Project Client:	Reserve user xez Name: Net Zero Teesside Onshore Ground Investigation - F Location: Redcar, North Yorkshire BP	Front End Engi	ineering D	Design (FEED)	Job No: 60678	3042				
	y - 0	(,			Co-ordi E: 4569	nates: Ground Level (m): 63.129 7.	523 AOD		Date Started:	27/07/2022					
	In Situ Test	ina	Corin	a Infor	N: 5252 mation	88.281		Reduced	Date Complete	ed: 02/08/20	022 Backfill/				
Depth (m)	Sample Ref & Type	Test Type and Result	TCR SCR RQD	FI	Core Run	DESCRIPTION		Level (m)	Legend	(Thick) (m)	Instrument				
- - -					18.00- 19.50	Very weak locally weak fractured thinly laminated of MUDSTONE. Fracture set 1: Very closely to mediu	dark grey ım	-10.77		- _ 18.29 -					
- - - -			100 75 75	3		spaced, sub horizontal to 10°, planar rough, closed open, infilled with dark grey silt. Fracture set 2: Me closely spaced, sub vertical, closed to tight, infilled grey silt and clay (REDCAR MUDSTONE FORMATION)	- - - -								
				NI											
- - - - - -	С			CLAY	19.50- 21.00	From 19.47m to 19.50m bgl: Horizon of soft grey s gravelly slightly sandy CLAY. Gravel is angular to subrounded fine to medium of mudstone. Sand is f coarse.	slightly fine to			- - - -					
- - -			100 97 89	3						- - - -					
- -						From 20.57m bgl: Occasional shell fragments pres	sent.			-					
21.13	С			. NI	21.00- 22.50					-					
										-					
			100 91 79	6						-					
					22.50					-					
				13 CLAY 7	24.00	From 22.61m to 22.66m bgl: Horizon of soft grey s gravelly slightly sandy CLAY. Gravel is angular to subrounded fine to medium of mudstone. Sand is f	slightly fine to			-					
			98 90 85	CLAY		coarse. From 23.19m to 23.23m bgl: Horizon of soft grey s	slightly			-					
				0 CLAY		graveily slightly sandy CLAY. Gravel is angular to subrounded fine to medium of mudstone. Sand is f coarse.	fine to			- -					
<u>-</u>				1		gravelly slightly sandy CLAY. Gravel is angular to	siignuy								
Strike Fi	ater Strikes low Remark	S	Hol (mr	iole D le Dia n)	Depth Hole (r Progress of Date Time Hole Depth (m) Depth (m) Depth (m) 29-07-2022 12:10 24.00 24.00 3.5 Cor 29-07-2022 12:10 24.00 24.00 24.00 3.5 Cor 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sonic/Rotary Core (; dcar. Located in the Juried Service Inspe- nited to progress bo SO/RC borehole ad Trig to 30.00m bgl. Topography: Level C aroundwater strikes Slag and refractory and refractory Im bgl. Stight suph Borehole installed w mpletion, to allow Ve	Remar SO/RC) borel south of Ren action Pit term rehole via So vanced via So Ground. not observed material enco urous odour r th an 80mm i ertical Seismic	KS hole located in the Main. evolution Zone PR1A. inicated at 0.25m big on h inic drilling, nic drilling to 15.00m bg i during drilling due to ad untered in material reco- toted from 1.50m to 3.00 internal diameter standpi p Profiling.	Site area of Tee nard stratum. Pe II, and completed dition of flush we vered from grour m bgl. pe to 30.00m bg	sworks, rmission d via Rotary ater, nd level to gl upon				
Notes: For	r explanatio	n of symbols ar	nd abbr	reviati	ons, se	e Key Sheet. Scale: 1:30 Logo	gea By: NS		Checked E	sy: JW					
ΛΞ		5	A	A 5th	ECO	М	Tel [.] 0113 391	6800			Bore	ehole	No. F-	BH12	8
------------------------------------	---------------------------------	-----------------------------	------------	--------------	------------------	--	------------------------------	---------------------------	---------------------------	----------------------	---------------------------------------	---	--	-------------------------------	----------------------------
				2 C Lee	City Wall eds	< c	Fax: 0113 39 www.aecom.c	1 6899 om	AGS REGISTERED USER 20	022	Sheet: 5	5 of 6			
Equipment &	Methods	:			Project	Name: Net Zero Tee	sside Onshore	Ground Inv	vestigation	n - Fron	it End Eng	ineering D	esign (FEED)	Job No:	
0.00 - 0.25 In: 0.15 - 15.00 So	sulated Hand onic Drilling (d Tools Hammer ID: GS08)			Project	Location: Redcar, No	orth Yorkshire							6067	8042
15.00 - 30.00 Ro	otary Coring	(Hammer ID: GS08)			Client:	BP		Ground	l evel (m):				Date Started	27/07/2022)
					E: 4569	963.129		Ground	Lever (m).	7.523	AOD		Date Comple	ted: 02/08/2	.022
In	Situ Testi	ing	Corin	g Infor	mation	200.201						Reduced		Depth	Backfill/
Depth (m)	Sample Ref &	Test Type	TCR SCR	FI	Core Run	ן 	DESCRIPTION	1				(m)	Legend	(Thick) (m)	Instrument
24.00-24.21	Type C	and Result	RQD		24.00-	subrounded fine t	o medium o	f mudstor	ie. Sand	is fine	e to				
-				CLAY	25.50	coarse.									
						From 24.13m to 2	24.22m bgl:	Firm grey	slightly	grave	lly L fine to			1	
				4		medium of mudste	one. Sand is	s fine to co	barse.	undee					
F			100 86	CLAY	-									F	
			75		1	From 24.71m to 2	24.77m bgl:	Firm grey	slightly	grave	lly			1	
				4		medium of mudst	one. Sand is	s angular s fine to co	to subroi parse.	unded	fine to				
-														-	
				CLAY										1	
25.57	с				25.50-	From 25.32m to 2 slightly sandy CLA	25.38m bgl: AY. Gravel is	Firm grey angular	slightly to subro	grave unded	lly I fine to			}- ∣	
-					27.00	medium of mudste	one. Sand is	s fine to co	oarse.					I	
				2										1	
-														┣	
F			100											-	
			92	CLAY										1	
-						From 26.34m to 2	26.37m bgl:	Firm grey	slightly	grave	lly L fine to			┣	
F				5		medium of mudste	one. Sand is	s fine to co	barse.	unueu					
					27.00-									-	
					28.50										
														1	
														-	
27.66- 27.82	С		100	3										₹	
			95											1	
														}- ∣	
														F	
28.50					28.50-									┣	
20.39 1					30.00									F	
<u> </u>														-	
<u>-</u>			98	2										f	
			61												
-														}- ∣	
]	
2 - - - - -														1	
Wate	r Strikes			NI Iole D) Jamete	r Pr	ogress					-22.48 Remark	<s< td=""><td>30.00</td><td></td></s<>	30.00	
Strike Flow	Remark	6	Hol	le Dia n)	Depth	of Date Time	Hole Depth (m)	Casing	Water Depth (m)	1. Sonic Redcar.	Rotary Core (Located in the	SO/RC) boreh	iole located in the Mai rediation Zone PR1A.	n Site area of Te	esworks,
			146	, S	30.00	01-08-2022 14:30	30.00	30.00		granted 3. SO/R	to progress bo	prehole via Sor vanced via Sor	nated at 0.25m bgl of nic drilling. nic drilling to 15.00m l	bgl, and complete	ermission ed via Rotary
										4. Topo 5. Ground	graphy: Level (ndwater strikes	Ground. not observed	during drilling due to a	addition of flush w	vater.
										4.01m b 7. Borel	ogl. Slight sulph nole installed w	iurous odour n iurous odour n ith an 80mm ir ertical Seismic	oted from 1.50m to 3. nternal diameter stand	00m bgl. dpipe to 30.00m b	igl upon
										Complet	ion, to allow V	o ucar ceismic	, oning.		
Notes: For ex	planation	n of symbols a	nd abbi	reviati	ı ons, se	e Key Sheet.	Scale: 1:30	ļ	L I	Logged	By: NS		Checked	By: JW	

	A	EC	O		5th 2 C Lee	Floor Floor	VI	Te Fi W	el: 0113 391 ax: 0113 391 ww.aecom.c	6800 6899 om		E st	Bore	ehole	No. F-	BH12	8
0.0 0.1 15	Equipmen 00 - 0.25 15 - 15.00 5.00 - 30.00	t & Methods Insulated Har Sonic Drilling Rotary Coring	S: nd Tools (Hammer ID: GS08) (Hammer ID: GS08)			Project Project Client:	Name: Net Ze Location: Rec BP	ero Teessid dcar, North	le Onshore Yorkshire	Ground In	vestigation	1 - Front E	nd Eng	ineering D	esign (FEED)	Job No: 6067	8042
						Co-ordii E: 4569 N: 5252	nates: 63.129 88.281			Ground	Level (m):	7.523	AOD		Date Started	: 27/07/2022 eted: 02/08/2	2 2022
	Depth (m)	In Situ Tes Sample Ref &	ting Test Type	Corino TCR SCR	g Infor FI	mation Core Run		DES	SCRIPTION					Reduced Level (m)	Legend	Depth (Thick) (m)	Backfill/ Instrument
Project: V11.1 NZT GI.GPJ Library: NZT AGS 4_0 LIBRARY V1.3.GLB Date: 29 November 2022								End (Thio	of Boreh ckness of not pro	ole 30.00 basal la oven)	9 m yer						
ELOG	W	ater Strikes			lole D	iamete	r	Progre	ess					Remar	(S	i- 04- 15	
ום: STANDARD COREHOL	trike FI	ow Remark		Hol (mr	e Dia n)	Depth Hole (r	of Date n)	Time	Hole Depth (m)	Casing Depth (m	Water) Depth (m)	1. Sonic/Rot Redcar. Loc 2. Buried Se granted to p 3. SO/RC bc Coring to 30 4. Topograp 5. Groundwe 6. Slag and 4.01m bgl. S 7. Borehole completion,	tary Core (cated in the proce Insport orehole ad 0.00m bgl. hy: Level 0 ater strikes refractory Slight sulph installed w to allow V	(SURC) boref e south of Rem orchole via Sor Ivanced via So Ground. s not observed material encou unrous odour n vith an 80mm in ertical Seismic	ore located in the Ne ediation Zone PR1A nated at 0.25m bgl c ic drilling. nic drilling to 15.00m during drilling due to intered in material re oted from 1.50m to 3 thernal diameter star Profiling.	In Site area of Te n hard stratum. P bgl, and complete addition of flush v covered from grou .00m bgl. dpipe to 30.00m b	esworks, ermission ad via Rotary vater. und level to ogl upon
Repor	Notes: For	r explanatio	n of symbols ar	l nd abbr	eviati	ons, se	e Key Sheet.	Sc	l ale: 1:30		L	Logged By:	: NS		Checke	d By: JW	

ΛΞ		101	A	A		/	т	ol: 0113 301	6800		Bor	ehole	No. F-E	3H12	4
				2 C Lee LS1	ity Walk ds 119AR	James Net Ze	F W	ax: 0113 391	6899 om	AGS REGISTERED USER 2	Sheet:	1 of 7		lah Na	
Equipment & 0.00 - 0.19 In 0.19 - 15.00 S 15.00 - 34.00 R	Method nsulated Har onic Drilling otary Coring	S: nd Tools (Hammer ID: GS002) g (Hammer ID: GS002)		F	Project N Project L Client: E	Name: Net Zei Location: Redo 3P	ro Teessid car, North	le Onshore Yorkshire	Ground In	vestigatior	n - Front End En	gineering	Design (FEED)	Job No: 6067	8042
				E	Co-ordin E: 45685	ates: 58.122			Ground	Level (m):	7.457 AOD		Date Started:	28/07/2022	2
In	Situ Tes	ting	Coring	Infor	N: 52531 mation	16.104						Reduced	Dute complete	Depth	Backfill/
Depth (m)	Sample Ref &	Test Type and Result	TCR SCR ROD	FI	Core Run		DES	SCRIPTION				(m)	Legend	(m)	Instrume
-					t t (MADE GRO to coarse GF N.B. Sulphu (MADE GRO	UND: BI RAVEL o rous odo UND)	ack and g of slag and our preser	grey angu d chert nt	lar to su	brounded fine	•		- - (0.63)	
		PID = 3.4ppm			ľ	MADE GRO fine to coars	UND: Da e SAND	ark brown . Gravel i	mottled s angular	black gra	avelly silty ounded fine to	6.83		- 0.63 - (0.35)	
- 1.00 -		PID = 2.6ppm			((MADE GRO MADE GRO sandy angula	UND: Date of the providence of	ark reddis Inded fine	h brown to coars	mottled I e GRAV	black very EL of slag,	6.48		0.98	
- - 		PID = 2.8ppm				(MADE GRO						5.96		(0.52)	
- - - - 2.00 - -		PID = 1.7ppm			t (MADE GRO to coarse GF (MADE GRO From 1.50m	UND: BI RAVEL c P UND) n to 3.00	ack and <u>c</u> of slag m bgl: Su	jrey angu Iphurous	iar to su odour pi	brounded fine	3			
- 2.50 - - - - 		PID = 1.1ppm PID = 1.6ppm												- (2.29) 	
- 3.50 - 3.60- 3.79	D	PID = 0.7ppm													
- 3.79- 3.90 3.80 - 3:90- 4.50 4.00 - 4.10- 4.20	D ES B D	SPT(C) N=49 12,12/ 15,12,10,12 PID = 1.1ppm			2 1 2 2 2	At 3.60m bg commence b MADE GRO SAND. Grav slag, chert, s (MADE GRO	I: Reme beneath UND: Bl el is ang andston UND)	diation to this depth ack mottle gular to su ne, mudste	p depth. n. ed grey g ibrounde one, coal	Sampling ravelly fi d fine to and igne	g to ne to coarse coarse of eous rock	3.67		3.79	
- - 4.50 - 4.96 -	В	PID = 1.8ppm SPT(C) N=40				From 4.09m	n to 4.84	m bgl: Be	comes ve	ery grave	elly.			(1.17)	
-	В	8,14/ 13,12,9,6				From 4.50m	1 to 4.96	m bgl: Fre	equent or	ganic ma	ateriai.	2.50		4.96	
Strike Flow	er Strikes	; (S	Holo		iameter	of Date	Progre	ess Hole	Casing	Water	1. Sonic/Rotary Con	/I Rema	It v v v v v v v v v v v v v v v v v v v	Site area of Te	esworks,
Depth			(mm	סום - ס. Pit	0.19	28-07-2022 29-07-2022	15:30 12:00	0.19 4.35	3.00	2.70	Redcar. Located in 1 2. Buried Service Ins granted to progress 3. SO/RC borehole - Coring to 34.00m bg 4. Topography: Leve 5. Groundwater strik 6. Slag encountered odour noted within N 7. Borehole backfille	he south west spection Pit ten borehole via S advanced via S l. el Ground. es not observe in material rec lade Ground to d with bentonit	of Remediation Zone PR minated at 0.19m bgl on I onic drilling. Sonic drilling to 15.00m bg ad during drilling due to ac povered from ground level 3.3.00m bgl. Ie pellets and arisings upc	IB. hard stratum. P gl, and progress Idition of flush w to 4.96m bgl. \$	ermission ed via Rotary vater. Sulphurous
Notes: For o	vnlanatio	on of symbols on	dabbr	aviatio		Key Sheet	Sc	ale: 1:25		 	Logged By: NS		Checked I	By: JW	
NOIGO, FUI E	npianal(C	n or symbols all		- viau		noy oneer.									

			A	A 5th	ECO	M	6800	Bore	hole	No. F-E	3H12	4
				2 C Lee	City Wall eds	k Fax: 0113 391 www.aecom.co	6899 om AGS	Sheet 2	of 7			
Equipment &	Method	s:		LS	11 9AR Project	t Name: Net Zero Teesside Onshore	REGISTERED USER 2022 Ground Investigation - From	nt End Engir	neering D	Design (FEED)	Job No:	
0.00 - 0.19 In 0.19 - 15.00 S	sulated Har	nd Tools (Hammer ID: GS002)			Project	t Location: Redcar, North Yorkshire					6067	8042
15.00 - 34.00 R	otary Coring	g (Hammer ID: GS002)			Client:	BP						
					Co-ord E: 4568	linates: 858.122	Ground Level (m): 7.45	7 AOD		Date Started:	28/07/2022	2
In	Situ Tes	tina	Coring	Info	N: 525 mation	316.104			Reduced		Depth	Backfill/
Depth	Sample	Test Type	TCR	FI	Core	DESCRIPTION			Level (m)	Legend	(Thick) (m)	Instrument
(m) 5.00	Туре	and Result PID = 1.2ppm	RQD		Run	Vallowich brown mottled grou	alighthy group ally aits fin	a ta		× · · · × · · ·		
- 5.10	ES					coarse SAND with occasional	organic material. Grav	vel is		· . · .× . · . · .× .	-	
Ľ						mudstone and coal	coarse of sandstone,					
- 5.40- 5.50	D					(TIDAL FLAT DEPOSITS)				× × 		
5.50 - 6.00	В	PID = 1.0ppm				From 4.96m to 5.21m bgl: Mo	ttled black with occasi	onal		× · · · × · · · · · ·	(1.04)	
-						relict rootlets.				×	-	
- 5.80	ES									· · · · · · · · · · · · · · · · · · ·		
-										· . · .× . · . · .× . ·× · . · .× · . ·	-	
6.00 - 6.10	D	PID = 1.1ppm SPT(S) N=0				Soft locally very soft brown mo	ottled grey slightly grav	elly	1.46	· <u> </u>	6.00	
6.10-6.70	В	Ò,Ó/ 0.0.0.0				sandy CLÁY		-				
-		-,-,-,-								<u></u>		
-												
-6.50		PID = 0.8ppm										
- 6.70- 6.80	D										(1.29)	
- 6.80- 7.29	В											
6.80	ES										-	
-7.00		PID = 0.5ppm										
_						From 7 10m bal: Becomes fire	n			·		
- 7.29- 7.50	D					Medium dense locally dense v	ellowish brown mottled	d arev	0.17	<u> </u>	7.29	
-						slightly gravelly silty fine to coa	arse SAND with occasi	ional		· . · .× . · . · .× . · . · . × . · . · .	-	
7.50	SS	SPT(S) N=23				subrounded fine to coarse of s	andstone and mudsto	ne		· . · .× . · . · .× .	F	
- 7.00- 8.10		4,5,6,8				(IIDAL FLAT DEPOSITS)					-	
- 7.80	ES									× · · × · · · · · · · · · · · · · · · ·	-	
8 00		PID = 0.4 nnm								× · . · . × · . · . · · · × · · ×		
- 8.10- 8.20	D	1 ID - 0.4ppm								×	-	
- 8.20- 9.00	В									· · · · · · · · · · · · · · · · · · ·	-	
-										· . · .× . · . · .× . ·× · . · .× · . · .	-	
L										`.`.×.`.`.×.		
F										· · · × · · · · × .	-	
-						From 8.57m bgl: Occasional p	oockets of firm brown r	mottled		× · · × · · · ·	F	
[<u> </u>				× · · · · · · · · · · · · · · · · · · ·	(3.21)	
9.00 - 9.10	D	PID = 0.2ppm								× ×	┝│	
9.00 9.10- 9.80	SS B	SPT(S) N>50 2,4 / 5,8,16,21								×	╞──│	
Ľ		tor 70mm								· · · × · · · · × ·	t I	
Ļ										`.`.×`.× `×`.`.		
-										· · · × · · · · × .	┝│	
F										× · · × · · ·	╞	
9.80- 9.90	D									× · · · × · · · · · ·	[
9.80	ES B									× · · · × · · · ·	╞	
Wate	r Strikes	<u> </u>	<u> </u>	ole D	l Diamete	er Progress			Remar	ks_	I	
Strike Flow Depth	Remark	<s< td=""><td>Hole (mm</td><td>e Dia 1)</td><td>Depth Hole (</td><td>n of Date Time Hole (m) Depth (m)</td><td>Casing Water 1. Soni Depth (m) Depth (m)</td><td>ic/Rotary Core (S r. Located in the ed Service Insport</td><td>O/RC) bore south west o</td><td>hole located in the Main f Remediation Zone PR hinated at 0.19m bol on 1</td><td>Site area of Te 1B. hard stratum P.</td><td>esworks, ermission</td></s<>	Hole (mm	e Dia 1)	Depth Hole (n of Date Time Hole (m) Depth (m)	Casing Water 1. Soni Depth (m) Depth (m)	ic/Rotary Core (S r. Located in the ed Service Insport	O/RC) bore south west o	hole located in the Main f Remediation Zone PR hinated at 0.19m bol on 1	Site area of Te 1B. hard stratum P.	esworks, ermission
				-			granted 3. SO/I	d to progress bore RC borehole adva to 34.00m bol	ehole via So anced via So	nic drilling. onic drilling to 15.00m bg	I, and progress	ed via Rotary
							4. Topo 5. Grou	ography: Level G undwater strikes r	round. not observed	during drilling due to ac	dition of flush w	vater.
							o. Slag odour r 7. Bore	noted within Made within Made	e Ground to rith bentonite	3.00m bgl. pellets and arisings upo	n completion.	Jaipinalous
Notes: For e	xplanatic	on of symbols an	d abbre	eviati	l ons, se	ee Key Sheet.		d By: NS		Checked I	By: JW	

AE	C	ON	1	A 5th 2 C	ECOI Floor ity Walk	M	T	⁻ el: 0113 391 ⁻ ax: 0113 391	6800 I 6899	AGS	Bor	ehole	No. F-E	3H124	4
Equipment &	Method	e'		Lee LS'	eds 11 9AR Project	Name [,] Net Ze	W	ww.aecom.c	om Ground Ir		Sheet:	3 of 7	Design (FEED)	loh No:	
0.00 - 0.19 In 0.19 - 15.00 S 15.00 - 34.00 R	sulated Har onic Drilling otary Coring	nd Tools (Hammer ID: GS002) g (Hammer ID: GS002)			Project Client:	Location: Red	car, North	Yorkshire	Ground II	Ivesugation		igineening i		60678	8042
					Co-ordi E: 4568	nates: 58.122			Ground	l Level (m):	7.457 AOE)	Date Started:	28/07/2022	022
In	Situ Tes	ting	Coring	l Infor	N: 5253 mation	316.104						Reduced	Date Complete	Depth	Backfill/
Depth (m)	Sample Ref & Type	Test Type and Result	TCR SCR RQD	FI	Core Run		DES	SCRIPTION	1			(m)	Legend	(Thick) (m)	Instrumen
	D B ES D B UT100 B	And Result PID = 0.5ppm SPT(S) N=12 2,4/ 6,3,1,2 PID = 0.5ppm PID = 0.5ppm PID = 1.4ppm 90 % recovery	RQD			Firm locally sandy silty C subangular sandstone. S (TIDAL FLA	soft brow CLAY with o subrou Sand is f T DEPOS	vn mottled h abunda unded find fine to coa SITS)	d black s nt organ e to coar arse	lightly gra ic materia se of muc	avelly slightly Il. Gravel is dstone and	3.04		- - - - - - - - - - - - - - - - - - -	
28 - 28 - 28 - 29 - 13.00 29 - 13.00 29 - 29 - 13.00 20 - 20	D	PID = 1.2ppm												- - - - -	
13.50 13.83- 14.20 4.20 13.83- 14.20 4.20 14.00 5.20 14.20- 14.30 14.30- 14.90 15.20 14.30- 14.90 15.20 14.30- 14.90 15.20 14.30- 14.90 15.20 14.20- 14.30 15.20	B B B	PID = 0.6ppm				Stiff locally v gravelly sligl subrounded and chalk. S (TILL: DEVE	very stiff htly sand fine to c cand is fir NSIAN)	reddish b ly silty CL coarse of i ne to coa	rown mc AY. Grav mudston rse	ttled grey vel is suba e, sandsto	y slightly angular to one, chert	6.37		- - - 13.83 - - - - - -	
2 - 14.50 	ES D														
J Wate	r Strikes	; (s	- F	lole D e Dia	iamete Denth	r of Date	Progre	ess Hole	Casing	Water	1. Sonic/Rotary Co	Remains re (SO/RC) bore	▪ rks ehole located in the Main	• Site area of Tee	esworks,
			(mn	n)	Hole (r	n) 01-08-2022	17:00	Depth (m) 13.50	Depth (m 13.50) Depth (m) 1.10	Redcar. Located in 2. Buried Service II granted to progress 3. SO/RC borehole Coring to 34.00m b 4. Topography: Lev 5. Groundwater stri 6. Slag encountere odour noted within 7. Borehole backfill	the south west of spection Pit terr borehole via Sc advanced via S gl. el Ground. Kes not observed i in material rec Vlade Ground to ed with bentonite	of Remediation Zone PR initiated at 0.19m bgl on 1 onic drilling, onic drilling to 15.00m bg d during drilling due to ad overed from ground level 3.00m bgl. a pellets and arisings upc	1B. nard stratum. Pe II, and progresse dition of flush w to 4.96m bgl. S n completion.	ermission ed via Rotary ater. ulphurous
Notes: For e	xplanatio	on of symbols an	d abbr	eviati	ons, se	e Key Sheet.	Sc	cale: 1:25		l	Logged By: NS		Checked E	sy: JVV	

	AE	C	O N		5th 2 C Lee	ECON Floor tity Walk	Л	Te Fa W	el: 0113 391 ax: 0113 391 ww.aecom.co	6800 6899 om	AGS		Bore		No. F-	BH12	4
ŀ	Equipment &	Method	5:		LS'	11 9AR Project	Name: Net Ze	ro Teessid	e Onshore	Ground In	registered user 20	n - Fron	t End Eng	jineering D	Design (FEED)	Job No:	
	0.00 - 0.19 In:	ulated Har	id Tools		1	Project	Location: Rede	car, North `	Yorkshire							6067	8042
	15.00 - 34.00 Ro	nic Drilling tary Coring	(Hammer ID: GS002) (Hammer ID: GS002)		(Client: I	BP										
					(Co-ordir E·4568	nates: 58 122			Ground	Level (m):	7 457			Date Started	28/07/2022	2
				1	1	N: 5253	16.104					7.407	AOD		Date Comple	ted: 04/08/2	2022
-	In : Depth	Situ Tes Sample	ting	Corino TCR	g Infor	mation Core		DES	CRIPTION	l				Reduced Level (m)	Legend	Depth (Thick)	Backfill/ Instrument
	(m)	Ref & Type	and Result	SCR RQD	FI	Run								(,		(11)	
	- 15.00		PID = 1.0ppm			15.00- 16.50										-	
	-																
ł	-																
ł	-															-	
Ī	_																
	_			100												-	
-	-			0 0													
ł	-																
ł	-															<u>+</u>	
Ī	-																
	_															(4.97)	
	-																
ł	_					16.50-	From 16 15	m to 16 ()7m hali	Pagama	otiff loop	ally fire	m			<u>-</u>	
Ī	_					18.00	F10111 10.45	111 10 10.8	arin byi.	Decome	sun ioca	any mi				-	
	-															-	
	-				CLAY											-	
ł	_															<u>-</u>	
ł	-			400												-	
Į	-			100													
	-			0													
	17.47- 17.77	С														<u>-</u>	
2022	-																
mber	-															-	
Nove	_																
e: 29	-					40.00										1-	
Date	-					18.00- 19.50											
E E	-																
V1.3.	-																
ARY	_																
LBR	-															-	
4 0	-			100 41										_11 24		- 19 90	
L AGS	- 18.80- 19.00 -	ES		41	10		Very weak lo	cally we	ak fractu	red thinly	to thickly	y lami	nated	-11.34			
Z		с			NI		dark bluish (fragments. F	rey MUE racture s	st 0NE set 1: Wid	with occ de to clos	asional sl sely space	nell ed, su	ıb] _ ∣	
.ibrar	-						horizontal to	20°, und	lulating to	planar i	ough, pa	artly of	pen to			} │	
	-						subrounded	fine to m	edium of	mudsto	ne ne	angul	guiai lu				
5	-						(REDCAR M	UDSTON	IE FORM	ation)						1	
Z	_				_	\square										1	
11.1	-				2	19.50- 21.00										} │	
ect: <	-						From 19 63	m bal [.] Fr	acture se	et 2 prese	ent: Medi	um sr	aced			} │	
Pro	-						sub vertical	to 65°, pl	anar smo	both to ro	ugh, tigh	t to cl	osed,			₹	
000							miniea with (Jiey Slit.								E I	
IOLE	Strike Flow	r Strikes Remark	(S	Hol	iole D e Dia	Depth	of Date	Progre Time	Hole	Casing	Water	1. Sonic	c/Rotary Core	Remar (SO/RC) bore	KS hole located in the Ma f Remediation Zone F	in Site area of Te R1B.	esworks,
CKET	Depth			(mr 178	n) 3	Hole (n 16.50	n)		Depth (m)	Depth (m	Depth (m)	2. Burie granted	d Service Insp to progress be	ection Pit term orehole via So	ninated at 0.19m bgl o nic drilling.	n hard stratum. P	ermission
5 2												3. SO/R Coring t 4. Topo	to 34.00m bgl. graphy: Level	avanced via So Ground.	and anning to 15.00m	uyi, and progress	eu via Rotary
NUA												5. Grou 6. Slag odour n	ndwater strike encountered in oted within Ma	s not observed n material reco ade Ground to	during drilling due to overed from ground le 3.00m bal.	addition of flush w vel to 4.96m bgl. \$	vater. Sulphurous
SIS:												7. Borel	hole backfilled	with bentonite	pellets and arisings u	pon completion.	
DOLT IL								 	ale: 1:25		ļ.,		By: NO		Checks		
Re Re	Notes: For ex	planatic	n of symbols an	d abbr	eviatio	ons, see	e Key Sheet.	50	uic. 1.20			Lugged	אט. ואס		Спеске	y. JVV	

A		C	O A		5th 2 C Lee	ECO Floor City Walk	M	T F W	el: 0113 391 ax: 0113 391 ww.aecom.c	6800 6899 om	AGS		Bore		No. F-E	3H12	4
Equipn	nent &	Methods	8:			Project	Name: Net Ze	ero Teessid	le Onshore	Ground Ir	nvestigation	n - Front E	End Eng	ineering D	esign (FEED)	Job No:	
0.00 - 0. 0.19 - 1	19 Ins 5.00 So	ulated Han nic Drilling	d Tools (Hammer ID: GS002)			Project	Location: Red	lcar, North	Yorkshire							6067	8042
15.00 - 34	4.00 Ro	tary Coring	(Hammer ID: GS002)		Client:	BP			Ground					Data Startad:	28/07/2022)
					Ì	E: 4568	358.122			Ground	i Levei (iii).	7.457	AOD		Date Staned.	ed: 04/08/2	1022
	In S	Situ Test	ing	Corin	g Infor	n: 525. mation	316.104							Reduced		Depth	Backfill/
Dept (m)	h	Sample Ref & Type	Test Type and Result	TCR SCR RQD	FI	Core Run		DES	SCRIPTION					(m)	Legend	(Thick) (m)	Instrument
- - - 20.54		С		100 84 84	CLAY 3		From 20.10 CLAY. Sand	0m to 20.3 d is fine to	25m bgl: o coarse.	Stiff grey	/ slightly s	sandy				-	
- - - - - 21.22		С			CLAY 6	21.00- 22.50	From 20.91 CLAY. Sand	m to 21. d is fine to	00m bgl: o coarse.	Stiff grey	/ slightly s	sandy					
				99 95 84	<u>CLAY</u> 3		From 21.33 CLAY. Sand	8m to 21.3	39m bgl: o coarse.	Stiff grey	/ slightly s	sandy					
				100	<u>NR</u>	22.50- 24.00	From 22.71	m to 22.	78m bgl:	Abundar	nt shell fra	agments	5.				
				89	0 CLAY 0 CLAY 4 CLAY	24.00-	From 23.25 CLAY. Sand From 23.33 From 23.43 CLAY. Sand From 23.63	om to 23. d is fine to d is fine to d is fine to d is fine to d is fine to	29m bgl: o coarse. 43m bgl: 45m bgl: o coarse. 73m bgl:	Firm gre Abundar Firm gre Stiff grey	y slightly s ht shell fra y slightly s	sandy agments sandy sandy	5.				
				100 87 75	8 CLAY 7 NI	25.50	From 24.43 From 24.43 Sandy CLA	Om to 24. 7. Sand is 3m to 24. 7. Sand is	05m bgl: s fine to c 45m bgl: s fine to c	Horizon oarse. Horizon oarse.	of stiff gre	ey slight ey slight	tly				
	Wate	Strikes		ŀ	l Iole D	l Jiamete	r	Progre	ess					Remar	ks	Ⅰ	
Strike Depth	Flow	Remark	S	Ho (mi	le Dia n)	Depth Hole (of Date m) 02-08-2022	Time 2 17:20	Hole Depth (m) 24.00	Casing Depth (m 24.00	Water) Depth (m) 2.10	1. Sonic/Re Redcar. Lo 2. Buried S granted to 3. SO/RC I Coring to 3 4. Topogra 5. Groundy 6. Slag end odour note 7. Borehole	otary Core (boated in the ervice Inspo- progress bo borehole ad 44.00m bgl. uphy: Level 0 vater strikes sountered in d within Ma e backfilled	SO/RC) borel s south west o ection Pit term rerehole via So vanced via So Ground. s not observed material reco de Ground to with bentonite	hole located in the Main I Remediation Zone PR initiated at 0.19m bgl on 1 nic drilling. I during drilling to 15.00m bg I during drilling due to ac vered from ground level 3.00m bgl.	Site area of Ter 18. hard stratum. Pr JI, and progress Idition of flush w to 4.96m bgl. S on completion.	esworks, ermission ed via Rotary rater. Sulphurous
Notes:	For ex	planatio	n of symbols ar	nd abb	reviati	ons, se	e Key Sheet.	50	Jaie. 1.20			годдеа В	y. IND		Checked	y. Jvv	

		C	ON		5th 2 C Lee	Floor Floor ity Walk eds 11 9AR	Tel: 0113 391 Fax: 0113 39? www.aecom.c	6800 6899 om Restretutes war	Bore	hole	No. F-E	3H124	4
	Equipment & 0.00 - 0.19 Ins 0.19 - 15.00 So	vlethods ulated Han nic Drilling	5: d Tools (Hammer ID: GS002)			Project Project	Name: Net Zero Teesside Onshore Location: Redcar, North Yorkshire	Ground Investigation - F	ront End Engl	neering De	esign (FEED)	JOD NO: 6067	8042
	15.00 - 34.00 Ro	tary Coring	(Hammer ID: GS002)		-	Client: I	BP				Data Startadu (0007/0000	
						20-ordir E: 4568	58.122	Ground Level (m):	457 AOD		Date Started: A	d: 04/08/2	2022
	In S	Situ Test	ing	Corin	g Infor	N: 5253 mation	16.104			Reduced		Depth	Backfill/
	Depth (m)	Sample Ref & Type	Test Type and Result	TCR SCR ROD	FI	Core Run	DESCRIPTION	I		(m)	Legend	(Thick) (m)	Instrument
-	- - - 25.42 -	с			5 NI	25.50- 27.00						-	
	- - - - - - - - - - - - - - - - - - -	ES C		100 93 88	3 CLAY 6		From 26.29m to 26.40m bgl: present. From 26.64m to 26.68m bgl: sandy CLAY. Sand is fine to c	Abundant shell fragn Horizon of stiff grey s oarse.	nents slightly			- - - - - -(15.20) - - - - - - - - - - - - -	
Y V1.3.GLB Date: 29 November 2022	- - - - - - - -			100 93 87	6 CLAY 6 CLAY 3	27.00-28.50	From 27.67m to 27.70m bgl: sandy CLAY. Sand is fine to c From 28.05m to 28.13m bgl: sandy CLAY. Sand is fine to c	Horizon of firm grey s oarse. Horizon of firm grey s oarse.	slightly slightly			- - - - - - - - - - - - -	
0: STANDARD COREHOLE LOG Project: V11.1 NZT GI.GPJ LIbrary: NZT AGS 4_0 LIBKARY V	- - 28.59 - - - - - - - - - - - - - - - - - - -	C Strikes Remark	s	100 84 63	CLAY 7 CLAY 0 CLAY 11 CLAY 11 CLAY 11 CLAY 0 Hole D E Dia n)	28.50- 30.00 iameter Deptho Hole (n	From 28.50m to 28.55m bgl: sandy CLAY. Sand is fine to c From 28.70m to 28.75m bgl: sandy CLAY. Sand is fine to c From 28.84m to 28.88m bgl: sandy CLAY. Sand is fine to c From 29.02m to 29.04m bgl: sandy CLAY. Sand is fine to c From 29.32m to 29.36m bgl: sandy CLAY. Sand is fine to c From 29.73m to 29.77m bgl: sandy CLAY. Sand is fine to c From 29.73m to 29.77m bgl: sandy CLAY. Sand is fine to c	Horizon of soft grey s oarse. Horizon of firm grey s oarse. Horizon of firm grey s oarse. Horizon of soft grey s oarse. Horizon of soft grey s oarse. Horizon of firm grey s oarse.	slightly slightly slightly slightly slightly slightly slightly slightly slightly slightly slightly	Remark SO/RC) borene south west of citon Pit termin rehole via Son avanced via Son Sorund. not observed i material recos Sorund to 3 with bentonite p	S S S S S Constant of the Main 3 Remediation Zone PR Inc drilling. ic drilling to 15.00m bg during drilling to 15.00m bg during due to add ered from ground level .00m bgl00m bgl. aelets and arisings upoor	- - - - - - - - - - - - - - - - - - -	esworks, ermission ed via Rotary vater. Sulphurous
Seport IL	Notes: For ex	planatio	n of symbols and	abbi	reviatio	ons. see	e Key Sheet. Scale: 1:25		ged By: NS		Checked E	By: JW	

Equipmen	EC t & Methods		1	5th 2 C Lee	Floor Floor City Walk eds 11 9AR Project N	// Name: Net Zer	T F w	Fel: 0113 391 Fax: 0113 39 ww.aecom.o	6800 1 6899 com	AGS REGISTERED USER 202 Vestigation	Bore Sheet: - Front End Eng	ehole	No. F-I	3H124	4
0.00 - 0.19 0.19 - 15.00 15.00 - 34.00	Insulated Han Sonic Drilling Rotary Coring	d Tools (Hammer ID: GS002) (Hammer ID: GS002)	1		Project I Client: E	_ocation: Redo 3P	car, North	Yorkshire						6067	8042
			_		Co-ordin E: 4568 N: 5253	nates: 58.122 16.104			Ground	Level (m):	7.457 AOD		Date Started: Date Complete	28/07/2022 ed: 04/08/2	022
Depth (m)	In Situ Test Sample Ref & Type	ing Test Type and Result	Corine TCR SCR ROD	g Infor FI	mation Core Run		DES	SCRIPTION	N			Reduced Level (m)	Legend	Depth (Thick) (m)	Backfill/ Instrument
G Project. V11.1 NZT GI.GPJ Library: NZT AGS 4_0 LIBRARY V1.3.CLB Date. 29 November 2022	C		1000 91 91 91	0 CLAY NI 0 CLAY 0 CLAY 0 NI CLAY 0 NI CLAY 0 NI CLAY 0 NI 7 0 NI 5 NI 0 CLAY 11	30.00- 31.50 31.50 33.00 33.00- 34.00	From 30.18 sandy CLAY From 30.41 sandy CLAY From 31.63 sandy CLAY From 31.71 sandy CLAY From 32.09 sandy CLAY From 32.39 sandy CLAY From 32.52 sandy CLAY	m to 30. Sand is m to 30. Sand is m to 31. Sand is m to 31. Sand is m to 32. Sand is m to 32. Sand is m to 32. Sand is m to 32. Sand is m to 33. Sand is End (This	24m bgl: s fine to o 43m bgl: s fine to o 65m bgl: s fine to o 75m bgl: s fine to o 46m bgl: s fine to o 57m bgl: s fine to o	Horizon coarse. Horizon coarse. Horizon coarse. Horizon coarse. Horizon coarse. Horizon coarse. Horizon coarse. Horizon coarse.	of soft gre of soft gre of soft gre of firm gre of firm gre of firm gre of soft gre of soft gre	ey slightly ey slightly ey slightly ey slightly ey slightly ey slightly ey slightly ey slightly	26.54		34.00	
Ŭ u W j Strike FI	ater Strikes ow Remark	s	Hol	lole D e Dia	iameter Depth o	of Date	Progre	ess Hole	Casing	Water	1. Sonic/Rotary Core Redcar Located in th	Remar (SO/RC) bore	KS hole located in the Main f Remediation Zone PR	Site area of Tee	esworks,
Debth ID: STANDARD CORE			(mr 146	n);	Hole (m 34.00	1) 03-08-2022	17:00	Depth (m 34.00	<u>)) Depth (m</u> 34.00) Depth (m) 1.20	2. Buried Service Insy granted to progress b 3. SO/RC borehole a Coring to 34.00m bg 4. Topography. Level 5. Groundwater strike 6. Slag encountered i odour noted within Mr 7. Borehole backfillec	ection Pit term orehole via So dvanced via So Ground. s: not observer n material recc ade Ground to with bentonite	d during drilling to 15.00m by nic drilling to 15.00m by d during drilling due to a wered from ground leve 3.00m bgl. pellets and arisings up	dition of flush w I to 4.96m bgl. S on completion.	ermission ed via Rotary ater. Sulphurous

ΔΞ	7	MO	A	AECC 5th Floor	M	Te	el: 0113 391	6800		Bore	ehole	No. F-E	3H12	5
				2 City Wa Leeds LS11 9AF	lk R	Fa	ax: 0113 391 ww.aecom.c	6899 om	AGS REGISTERED USER 2022	Sheet:	1 of 6			
Equipment &	Method	s:		Projec	t Name: Net Z	ero Teessid	le Onshore	Ground In	vestigation	- Front End Eng	ineering [Design (FEED)	Job No:	
0.00 - 0.05 In 0.05 - 15.00 S	sulated Har	nd Tools (Hammer ID: GS002)		Projec	t Location: Re	dcar, North	Yorkshire						6067	8042
15.00 - 29.20 R	otary Coring	g (Hammer ID: GS002)		Client	: BP			Cround				Data Startadi	04/08/2022)
				E: 456	6936.515			Ground	Lever (III).	7.311 AOD		Date Started.	ed: 10/08/2	-
In	Situ Tes	ting	Coring I	N: 525	5314.209 n						Reduced		Depth	Backfill/
Depth (m)	Sample Ref & Type	Test Type and Result	TCR SCR I RQD	-I Core Run	•	DES	CRIPTION				Level (m)	Legend	(Thick) (m)	Instrumer
					MADE GRO silty angula slag, brick are angula coarse	OUND: Da ar to subar and concr r to subrou	ark grey n ngular me rete with a unded of	nottled bi dium to a high co brick and	rown sligh coarse GF bble conte d slag. Sar	tly sandy RAVEL of ent. Cobbles nd is fine to			- - (0.46)	
-0.50		PID = 1.2ppm			(MADE GR	OUND: Bla	ack and c	lark grey	sandy an	gular to	6.85		0.46	
					subrounde concrete au Cobbles ar	d fine to c nd limesto e angular	oarse GF one with n to suban	AVEL of nedium c qular of l	f slag, bric obble con brick and s	k, mortar, itent. slag. Sand is			(0.37)	
					fine to coar (MADE GR	rse OUND)		<u> </u>			6.48		- 0.83	
-1.00		PID = 3.2ppm			MADE GRO Gravel is a conrete and (MADE GR	OUND: Bla ngular to s d limeston OUND)	ack grave subround ie.	elly silty fi ed fine to	ine to coar o coarse o	rse SAND. f slag, brick,				
-1.50		PID = 3.0ppm											(1.47)	
-2.00		PID = 2.9ppm												
-2.50		PID = 4.0ppm			MADE GRO gravelly fin subrounde (MADE GR	OUND: Ye e to coars d medium OUND)	ellowish b e SAND. to coarse	rown and Gravel is e of slag	d dark brov s angular t	wn mottled to	. 5.01		(0.70)	
-3.00		PID = 5.1ppm			MADE GRO		ark grey a	ngular to	o subround	ded medium	4.31		3.00	
3.20					are subang	jular of sla OUND)	ag	in nigh oc		ent. Cobbles	3.97		3 34	
-					MADE GRO gravelly fin subrounder (MADE GR	OUND: Ye e to coars d medium OUND)	ellowish b e SAND. to coarse	rown and Gravel is e of slag	d dark brov s angular t	wn mottled to				
3.80- 4.00 3.80 3.90 - 4.00- 4.50	D ES B	PID = 8.4ppm SPT(C) N>50 8116/24,26 for 50mm			NOTE: Pro	oposed rei	mediatior	n level 3.8	8m AOD.					
													(1.86)	
-4.50- 4.80	D	SPT(C) N>50 4,11/28,22 for 65mm												
4.80- 5.00 4.80	B ES	PID = 15.8ppm												
Wate Strike Flow	r Strikes Remark	s <s< td=""><td>Hol Hole I</td><td>e Diamet Dia Dept</td><td>er h of Date</td><td>Progre Time</td><td>ess Hole</td><td>Casing</td><td>Water</td><td>1. Sonic/Rotary Core</td><td>Rema (SO/RC) bore</td><td>rks ehole located in the Main</td><td>Site area of Te</td><td>esworks,</td></s<>	Hol Hole I	e Diamet Dia Dept	er h of Date	Progre Time	ess Hole	Casing	Water	1. Sonic/Rotary Core	Rema (SO/RC) bore	rks ehole located in the Main	Site area of Te	esworks,
Image: Depth (mm) Hole (m) Depth (m) <thdepth (m)<="" th=""> <thdepth (m)<="" th=""></thdepth></thdepth>											1B. hard stratum. P gl, and complete Idition of flush w to 5.02m bgl. f on completion.	ermission ed via Rotary vater. No olfactory		
Notoo: Ecr. c	valenetia	n of ourse old on		iotiono -		Sc	ale: 1:25			ogged By: NS		Checked I	By: JW	

ΔΞ		5	A	A 5th	ECO	М	Te	el: 0113 391	6800			Bore	hole	No.	F-E	3H12	5
				2 C Lee	ity Wall eds	ĸ	Fa	ax: 0113 391 ww.aecom.c	6899 om		922	Sheet: 2	2 of 6				
Equipment &	Method	s:			Project	Name: Net Zei	ro Teessid	e Onshore	Ground In	vestigatior	n - Fron	t End Eng	ineering [Design (FEE	ED)	Job No	
0.00 - 0.05 In 0.05 - 15.00 S	sulated Har	(Hammer ID: GS002)			Project	Location: Red	car, North	Yorkshire								6067	78042
15.00 - 29.20 R	otary Coring	(Hammer ID: GS002)			Co-ord	inates:			Ground	Level (m):				Date Sta	arted: (04/08/202	2
					E: 4569 N: 525	936.515 314.209					7.311	AOD		Date Co	mplete	d: 10/08/2	2022
In Donth	Situ Tes ISample	ting	Coring TCR1	Infor	mation		DES	CRIPTION					Reduced Level	Lege	end	Depth (Thick)	Backfill/ Instrument
(m)	Ref & Type	Test Type and Result	SCR RQD	FI	Run								(11)		~~~	(m)	
- 5.10- 5.30	D												0.44		\bigotimes	-	
- 5 30	FS	PID = 6.9ppm				Dense yellov	wish brow	wn mottle	d dark gr	ey fine to	o medi	ium	2.11	<u>, , , , , , , , , , , , , , , , , , , </u>	· · · · ·	_ 5.20	
-	20					(TIDAL FLA	T DEPOS	ai snell fr SITS)	agments						· · · ·	-	
-5.50- 6.00	В														· · · ·	_ (0.80)	
-															· · · ·	-	
-															· · · ·	-	
-6.00	SS	SPT(S) N=3) /							1.31	· · · · · · · ·	· · · · ·	6.00	
-		1,1/ 1,0,1,1				with some p	ockets of	f carbona	ceous m	aterial	organic	CLAY		× × ×	· ×:	-	
- 6.30- 6.50	D	PID = 3.8ppm				(IIDAL FLA	I DEPOS	5115)						× · × · ·	×. . – ×.	-	
6.30	ES													<u> </u>	<u> </u>	- (0.94)	
-6.50- 6.90 -	В													<u>x ^ x</u> ^	<u>-,x</u> . `	-	
-														× · · · × ·	· × · · · ×	-	
													0.07	× <u>×</u> ××	<u> </u>	-	
-7.00- 7.10	D					Dense yellov	wish brow	wn slightl	y gravelly	fine to c	oarse	silty	0.37		• <u>*</u> • =	- -	
- 7.10- 7.50 7.10	B ES	PID = 5.1ppm				to subrounde	ed fine to	o coarse o	agments. of chert, r	nudstone	s suba e and	angular			· · · · ·	-	
F						sandstone	T DEPOS	SITS)						· · · · · ·	ο ·	-	
														· · · · ·	 o	-	
-7.50-7.60 -7.50 -7.60-8.10	D SS B	SPI(S) N=46 2,3/ 8 11 12 15													· · · · ·	-	
		0,11,12,10													ο	-	
														· · · · ·	 0 [.]	-	
														· · · · · · · ·	. α .	(2.06)	
S⊢ = - 8.20- 8.40	D	PID = 4.1ppm													o'.'. 	-	
8.20	ES														· · ~ ·	-	
8.40- 9.00	В													· · · · · · ·	. α .	-	
															o [*] . [*] . • • • •	-	
														· · · · · ·	· α · · ·	-	
														· · · · · ·	· · ·	-	
9.00 - 9.10	D SS	PID = 2.6ppm SPT(S) N=17				Firm brown s	slightly s	andy clay	ey SILT.	Sand is f	fine to	coarse	-1.69	· · · · · × <u>· · · × · ·</u>	<u>~```</u> —X``X`	_ 9.00	
9.10-9.70	В	`1,1/ 2,5,5,5				(TIDAL FLAT	T DEPOS	SITS)						× × ××	×. × _	-	
														× × ×		-	
														* ^ * * · * · · *	· <u>x</u> - × · <u>v</u>	(0.89)	
															· × · - × · - × ×	-	
9.70- 9.80 9.80- 10 50	D B													× <u>×</u> × ×	_×_`*	-	
						Dense vellov	wish brow	wn sliahtl	v gravelly	fine to o	oarse	siltv	-2.58		×	9.89	
Wate	r Strikes	l		ole D	i amete	er	Progre	ess	, <u>a.a.</u>		1.00	/Poten: C (Rema	rks		ite area of T	aswork:
Depth	Remark	S	Hole (mm) Dia	Depth Hole (of Date m)	Ime	Depth (m)	Casing Depth (m)	vvater Depth (m) Redcar. 2. Buried	Located in the	south east of ection Pit terr	note located in 1 of Remediation 2 minated at 0.05n	zie ivialn S Zone PR1I n bgl on h	B. ard stratum. F	Permission
											3. SO/R Coring to 4. Topor	C borehole ad c 29.20m bgl. graphy: I evel (vanced via S Ground	onic drilling to 1	5.00m bgl	, and complet	ed via Rotary
											5. Groun 6. Slag e	ndwater strikes encountered in e of contamina	not observe material reco	d during drilling o overed from gro	due to add ound level t	lition of flush to 5.02m bgl.	water. No olfactory
											7. Boreh	ole backfilled	with bentonite	e pellets and aris	sings upor	n completion.	
				-			9	ale: 1.25			Lonned	BV: NS		Ch	ecked R	w: .IW	
Notes: For e	kplanatic	on of symbols an	d abbre	eviati	ons, se	e Key Sheet.	30				-ogyeu	-y. 140					

ΛΞ		'n	A	AEC	OM		т	ol: 0112 201	6900		Во	rehole	No. F-B	3H12	5
Equipment &	Method			2 City V Leeds LS11 9/	" /alk \R act N	ame [,] Net Zer	Fi W	ax: 0113 391 ww.aecom.c	0800 I 6899 om		Sheet	: 3 of 6	Design (FEFD)	loh No:	
0.00 - 0.05 In 0.05 - 15.00 Se 15.00 - 29.20 Re	sulated Har onic Drilling otary Coring	s. nd Tools (Hammer ID: GS002) j (Hammer ID: GS002)		Proj	ect Lo nt: Bl	ocation: Redo P	car, North	Yorkshire	Ground in	vesugation		ingineering i		60678	8042
				Co-c E: 4 N: 5	ordina 5693 2531	ates: 6.515 4.209			Ground	Level (m):	7.311 AO	D	Date Started: Date Complete	04/08/2022 ed: 10/08/2	022
In Depth (m)	Situ Tes Sample Ref &	ting Test Type and Result	Coring TCR SCR	FI Co	ion re in		DES	SCRIPTION	I			Reduced Level (m)	Legend	Depth (Thick) (m)	Backfill/ Instrumen
(m) 10.00 - - - - - - - - - - - - -	D SS B ES D UT100 B	and Result PID = 2.1ppm SPT(S) N=16 1,2/ 3,4,4,5 PID = 2.5ppm PID = 1.2ppm 100 % recovery PID = 1.6ppm	ROD		In Solution	From 11.21	m to 11.4 rery soft is fine-c	al shell fr ded fine-o SITS) 46m bgl: brown mo coarse SITS)	agments coarse of	Gravel i chert, m	is udstone and	-4.15		- - - - - - - - - - - - - - - - - - -	
- 13.40- 13.50 - 13.50- 13.60 - 13.50- 13.95 - 13.60- 14.11 - 13.60- 14.11 - 14.00	D UT100 B	90 % recovery PID = 1.1ppm			F	From 13.50	m bgl: Be	ecomes f	irm locall	y stiff.					
20 14.11- 14.90	ES D				S s a (Stiff locally v andy slightl ubrounded nd limestor TILL: DEVE	ery stiff ı y gravell fine to c ie. Sand NSIAN)	reddish b ly CLAY. oarse of i is fine to	rown mo Gravel is mudstone coarse	ttled grey subangu ə, sandst	/ slightly ular to one, chert	6.80		+ 14.11	
Wate	r Strikes Remark	(S	Hole	ole Diam	eter	f Date	Progre	ess Hole	Casing	Water	1. Sonic/Rotary C	Rema	rks ehole located in the Main	Site area of Tee	esworks,
			178	15.	<u>e (m)</u> 00	04-08-2022	17:00 12:30	Depth (m) 13.50 15.00) Depth (m 13.00 15.00	2.90 2.70	Redcar. Located i 2. Buried Service granted to progree 3. SO/RC borehol Coring to 29.20m 4. Topography: Le 5. Groundwater st 6. Slag encounter evidence of conta 7. Borehole backf	n the south east of Inspection Pit tern s borehole via S bgl. vel Ground. rikes not observe d in material rec mination. Iled with bentonit	of Remediation Zone PR minated at 0.05m bgl on noic drilling, sonic drilling to 15.00m bg d during drilling due to ac overed from ground leve e pellets and arisings upo	IB. hard stratum. Pe JI, and complete Idition of flush w to 5.02m bgl. N n completion.	ermission d via Rotary ater. lo olfactory
Notes: For ex	planatic	on of symbols an	d abbre	viations,	see	Key Sheet.	Sc	ale: 1:25			Logged By: N	S	Checked	∃y: JW	

	Δ		1	N	A	A 5th	ECO Floor	М	т	Fel: 0113 391	6800			Bore	ehole	No. F	-BH12	25
						2 C Lee	ity Walk ds 11 94R	ζ.	F	ax: 0113 39 ww.aecom.c	1 6899 om	AGS	2012	Sheet:	4 of 6			
	Equipm	ent & I	Methods	:			Project	Name: Net Ze	ro Teessid	de Onshore	Ground In	vestigatio	n - Front	End Eng	jineering D	Design (FEED)) Job No	D:
).00 - 0.0).05 - 15.	5 Ins 00 So	ulated Han nic Drilling	d Tools (Hammer ID: GS002)		F	Project	Location: Red	car, North	Yorkshire							606	78042
	15.00 - 29.	20 Ro	tary Coring	(Hammer ID: GS002)			Client:	BP			Ground	Level (m)				Date Starte	d: 04/08/202	22
						Ì	E: 4569	936.515			Cround	Lover (iii)	7.311	AOD		Date Comp	leted: 10/08	/2022
┢		In S	Situ Test	ing	Corin	g Infor	n: 5253 mation	314.209							Reduced		Depth	Backfill/
	Depth	ı	Sample Ref &	Test Type	TCR SCR	FI	Core		DES	SCRIPTION	1				(m)	Legend	(Thick) (m)	Instrument
+	15.00		Туре	and Result PID = 0.8ppm	RQD		Run									<u></u>		
LG I Grou'l Library: NZTASS 4.0 LIBRARY V1:3/GLB Date: 29 November 2022	- - - - - - - - - - - - - - - - - - -	16.64	C ES		100 89 89	NI 0 CLAY 0	18.00- 19.50	Pressureme pocket drille Very weak lo dark bluish o closely spac open to clos subangular (REDCAR M From 18.34 slightly grav subrounded coarse. Fracture se vertical to 7(infilled with o From 19.33	ocally we bocally we grey MUI sed, infille to subrou luDSTOM in to 18.4 elly sligh fine to n t 2 prese 0°, plana grey silt.	(HPD) co T2-101 co T2-101 co DSTONE horizonta ed with gr unded fin NE FORM 41m bgl: nedium of nedium of ent: Medium or ent: Medium rough to 40m bgl:	red thinly Fracture I to 20°, p ey grave e to med ATION) Horizon o o smooth Horizon o	at 16.300 to thickl e set 1: V olanar ro ly silt. G um of m of stiff da ravel is s ravel is ravel is s rav	w bgl. 1 ly lamin Vide to ugh, pa ravel is udstone ark grey subang l is fine ed, sub closed,	Test ated artly e , ular to to	-10.63			
	19.55		с				19.50-	slightly sand	ly CLAY.	Sand is	fine to co	arse.	0,1					
5							21.00	From 19.40	m bgl: O	Occasiona	l shells a	nd shell	fragme	nts			₽	
								present.									₽	
2																		
	Strike	Water	Strikes Remark	s	Hol	lole D e Dia	iamete Depth	of Date	Progre	ess	Casing	Water	1. Sonic/F	Rotary Core	Remar (SO/RC) bore	ks hole located in the f	Main Site area of T	eesworks,
	Depth			n of ourse -1-	(mr	n)	Hole (I	08-08-2022	2 16:30	Depth (m 19.50	Depth (m 15.00	3.18	Redcar. L 2. Buried granted to 3. SO/RC Coring to 4. Topogr 5. Ground 6. Slag er evidence 7. Boreho	ocated in th Service Insp o progress b borehole ad 29.20m bgl. aphy: Level hocountered in of contamin- ale backfilled	e south east of rection Pit term orrehole via So dvanced via So Ground. s not observec n material reco ation. with bentonite	f Remediation Zone inated at 0.05m bg inated at 0.05m bg onic drilling to 15.00 d during drilling due overed from ground e pellets and arising Check	PR1B. I on hard stratum. m bgl, and complet to addition of flush level to 5.02m bgl s upon completion.	Permission eted via Rotary I water. . No olfactory

	AE	C	ON	1	A 5th 2 C	ECO Floor City Walk	VI Tel: 0113 391 6800 Fax: 0113 391 689		Bore	hole	No. F-E	3H125	5
				-	Lee LS ⁻	eds 11 9AR	www.aecom.com	REGISTERED USER 2022	Sheet: 5	of 6			
	Equipment &	Method:	S:			Project	Name: Net Zero Teesside Onshore Gro	ound Investigation - From	nt End Engi	neering D	esign (FEED)	Job No:	
	0.05 - 15.00 S	onic Drilling	(Hammer ID: GS002)			Project	Location: Redcar, North Yorkshire					60678	042
	15.00 - 29.20 R	otary Coring	(Hammer ID: GS002)			Client:	BP				Data Otarta da (4/00/0000	
						Co-ordi E: 4569	36.515	Fround Level (m): 7.31	1 AOD		Date Started: ()4/08/2022	222
		O:+ T	t			N: 5253	14.209			Deduced)ZZ
	III Denth	Silu Tes ISample	ung	TCR	g inior	malion	DESCRIPTION			Level	Legend	(Thick)	Instrument
	(m)	Ref &	Test Type and Result	SCR	FI	Run				(11)	5	(m)	
Ì		Туре		RQD									
ĺ	_			83	5								
	_			83 58									
	_			50								_	
	_						Processivementer text (HPD) compl	lated at 20 40m bal	Teet			_	
	-						pocket drilled using T2-101 core l	barrel.	1651			-	
	-						· -					-	
	-											-	
	-				NR							-	
ł	_				NI	21.00-						-	
	_				11 CL AV	22.50							
İ	-				11	1	From 21.16m to 21.20m bal: Hor	izon of firm dark are	ev				
ļ	-						slightly gravelly slightly sandy CL	AY. Gravel is suban	igular to			_	
	_						subrounded fine to medium of mu coarse.	udstone. Sand is fin	e to			L	
	-											-	
	-			95								-	
	21.84	с		82	4							-	
	-											-	
ł	_											-	
Ì	-											-	
	-												
	_											_	
	-22.50	с			NR							_	
022	_				CLAY	22.50- 24.00						-	
ber 2	-						From 22.56m to 22.63m bgl: Hor	izon of firm dark gre	ey			-	
Nem	-				9		subrounded fine to medium of mu	udstone. Sand is fin	e to			-	
2 S Z	-						coarse.					-	
ate:					NI		From 22.75m to 22.83m bgl: Abu	undant shells and sh	nell			-	
	-			100			fragments.					-	
U.E	_			55	8								
V1.3	_			30	CLAY 0			lated at 00 00m had	Test			_	
ARY	-				CLAY		pocket drilled using T2-101 core l	barrel.	Test				
LIBR.	-				0		Erom 02 20m to 02 05m ball 11m	izon of ooft dank and				(11.26)	
4 0	-				CLAY		slightly gravelly slightly sandy CL	AY. Gravel is suban	∍y igular to ∣			-	
AGS	-						subrounded fine to medium of mu	udstone. Sand is fin	e to			-	
Z	-				0		00a13C.					-	
rary:	-					24.00-	From 23.39m to 23.48m bgl: Hor	izon of soft dark gre	ey Jacular to				
ē	_					20.00	subrounded fine to medium of mu	udstone. Sand is fin	e to				
L d E	-						coarse.					-	
5	-						From 23.62m to 23.87m bgl: Hor	izon of stiff dark gre	ey			-	
ž	_						slightly gravelly slightly sandy CL	AY. Gravel is suban	igular to			-	
11.1	-				~		coarse.	austone. Sand is fin	e 10			-	
SCI:	-			97 97	8		From 04 00m to 04 40m h at 11	indent challe and d				-	
Б	-			77			fragments.	andant shells and sh	iell			-	
g	-						v					-	
Ľ Į	Wate	r Strikes			lole D	iamete	r Progress		ic/Potony C //	Remar	KS	Site area of T-	rworks
ĔHC	Strike Flow Depth	Remark	.s	Hol (mr	e Dia n)	Depth Hole (i	n) Date I ime Hole Cas Depth (m) De	sing vvater 1. Soni Redcar pth (m) Depth (m) 2. Burie	r. Located in the ed Service Inspe	south east of ction Pit term	Remediation Zone PR1 inated at 0.05m bgl on h	B. B. ard stratum. Pe	mission
Y CC							09-08-2022 17:00 24.00 22.	50 2.90 granted 3. SO/F	d to progress bor RC borehole adv	rehole via Sor vanced via So	nic drilling. nic drilling to 15.00m bgl	, and completed	via Rotary
Å D								Coring 4. Topo 5. Grov	ເບ 29.20m bgl. ography: Level G undwater strikes	Fround. not observed	during drilling due to adv	dition of flush we	ter.
								6. Slag	encountered in ce of contaminat	material reco	vered from ground level	to 5.02m bgl. No	olfactory
ST S								7. Bore	ehole backfilled v	vith bentonite	pellets and arisings upor	n completion.	
2 e b c	Notes: For e	kplanatio	n of symbols and	d abbr	eviati	ons, se	e Key Sheet. Scale: 1:25	Logged	By: NS		Checked E	sy: JW	

	A	EC	ON		A 5th 2 C Lee	Floor Floor City Walk	VI	T F V	Fel: 0113 391 Fax: 0113 391 ww.aecom.co	6800 6899 om	AGS		Bore		No. F	BH12	5
	Equipment 0.00 - 0.05 0.05 - 15.00 15.00 - 29.20	t & Method Insulated Har Sonic Drilling Rotary Coring	S: nd Tools (Hammer ID: GS002) g (Hammer ID: GS002)			Project Project Project Client:	Name: Net Ze Location: Rec BP	ero Teessio Icar, North	de Onshore Yorkshire	Ground Inv	registered user and	n - Fron	t End Eng	jineering D	Design (FEED)	Job No: 6067	/8042
						Co-ordi E: 4569	nates: 36.515			Ground	Level (m):	7.311	AOD		Date Started Date Comple	: 04/08/2022 eted: 10/08/2	2 2022
	Depth (m)	In Situ Tes Sample Ref &	ting Test Type	Coring TCR SCR	g Infor FI	mation Core Run	14.209	DES	SCRIPTION					Reduced Level (m)	Legend	Depth (Thick) (m)	Backfill/ Instrument
	-	<u> </u>		RQD												-	
•	-				NR												
	-				0	25.50- 27.00											
	-																
	- 																
	-			97 97 75	7												
	-															-	
	-																
	-				NR	27.00-										-	
	- - 27.27	с		100	2	27.60											
	-			100	5												
nber 2022	-				0 CLAY 5	27.60- 29.20	From 27.63	3m to 27.	66m bal: l	-lorizon a	f firm da	ırk are	v				
29 Nover	- -				CLAY 8		slightly sand	dy CLAY.	. Sand is f 91m bgl: l	ine to coa	arse. If firm da	irk gre	v				
LB Date:	-				CLAY		slightly sand From 28.04	dy CLAY. Im to 28.	. Sand is f 09m bgl: l	ine to coa Horizon o	arse. If firm da	irk gre	y				
KY V1.3.G	-			100 83 16	7		slightly sand	dy CLAY.	. Sand is f	ine to coa	arse.	-	-				
0 LIBRAF					CLAY 6		From 28.50)m to 28. dv CI AY	56m bgl: l Sand is f	Horizon o	of firm da	ırk gre	У				
ZT AGS 4	-				CLAY		From 28.74	Im to 28.	82m bgl: l Sand is f	Horizon o	of firm da	ırk gre	у				
Library: N	-				8		Pressurem pocket drille	eter test	(HPD) coi T2-101 co	npleted a re barrel.	at 28.80m	n bgl.	Test	-21 89		29.20	
GI.GPJ	-							5									
Project: V11.1 NZ1								End (Thi	of Boreh ckness of not pro	ole 29.20 basal lay ven)	m ver						
LE LOG	Wa Striko	ater Strikes				liamete	r of Data	Progr	ess	Casing	Mator	1. Sonici	Rotary Core	Remar	KS	in Site area of Ta	esworks
U: SI ANDARD COREHO	Depth	ow remark		146 131	ם טומ n)	27.60 29.20	10-08-202	2 17:00	29.20	27.60	2.70	2. Buried granted 3. SO/Re Coring to 4. Topog 5. Groun 6. Slag e evidence 7. Boreh	Located in th d Service Insp to progress b C borehole a o 29.20m bgl graphy: Level adwater strike encountered i e of contamin iole backfilled	e south east of bection Pit term orehole via So dvanced via So Ground. s not observed n material reco ation. with bentonite	Remediation Zone F initated at 0.05m bgl i nic drilling. nic drilling to 15.00m I during drilling due to wered from ground le pellets and arisings i	addition of flush v vel to 5.02m bgl. I pon completion.	remission ed via Rotary vater. No olfactory
Report I.	Notes: For	r explanatio	on of symbols an	d abbr	eviati	ons, se	e Key Sheet.	So	cale: 1:25		L	Logged	By: NS		Checke	d By: JW	

Δ	-	` A		Al 5th	ECOI Floor	М	т	el: 0113 391	6800		Во	rehole	No. F-I	BH11	9
				2 C Lee LS	ity Walk ds 11 9AR		F W	ax: 0113 39 ww.aecom.c	1 6899 om	AGS REGISTERED USER 202	2 Shee	t: 1 of 6			
Equipment 6 0.00 - 0.20 0.25 - 13.50 13.50 - 28.50	& Method: Insulated Har Sonic Drilling Rotary Coring	S: nd Tools (Hammer ID: GS10) g (Hammer ID: GS10)		i i	Project Project Client:	Name: Net Zer Location: Redo BP	o Teessid ar, North	le Onshore Yorkshire	Ground I	nvestigation	- Front End I	Engineering I	Design (FEED)	Job No: 6067	8042
				(E	Co-ordi E: 4567	nates: /54.822			Ground	d Level (m):	7.378 AC	D	Date Started: Date Complete	09/08/2022 ed: 12/08/2	<u>2</u> 2022
lr Depth	Situ Tes Sample	ting	Coring TCR	Infor	N: 5253 mation Core	399.922	DES	SCRIPTION	1			Reduced Level (m)	Legend	Depth (Thick)	Backfill Instrume
(m) - - -	Type	and Result	RQD		Run	MADE GRO silty angular chert and sa are subangu (MADE GRO	UND: BI to subro ndstone lar of sla UND)	ack mottl ounded fir with med ag. Sand	ed dark ne to coa lium cob is fine to	reddish br arse GRA\ bble conter coarse	rown sandy /EL of slag nt. Cobbles	,		(0.91)	
-0.50 - - - -		PID = 5.7ppm				MADE GRO	JND: Br	rown moti	iled blac	k very gra	velly fine to	6.47		0.91	××××
- 1.00 - - - -1.50		PID = 9.4ppm				coarse SANI angular to su sandstone (MADE GRO From 0.91m and textile ei	D with or brounde UND) to 1.08 ncounter	ccasional ed fine to m bgl: Fro red. Orga	organic coarse equent fi	material. of slag, ch ragments ur noted.	Gravel is liert, coal ar of wood	nd			
- - - - 2.00		PID = 3.0ppm						0-						(1.72)	
- - - - 2.50		PID = 2.9ppm													
- - 2.70- 3.00 - - 2.90 3.00 - 3.10 - 3.10- 3.93 -	D ES D B	PID = 3.4ppm SPT(C) N=29 4,10/ 6,9,7,7				NOTE: Prop MADE GROI sandy angula slag, coal, ct Cobbles are (MADE GRO From 3.00m	Dosed re UND: Data ar to sub nert and subange UND to 3.93	mediatior ark grey r prounded mudston ular of sla m bgl: Be	n level 4. nottled b fine to c e with lo ag. Sand	8m AOD. prown and coarse GR w cobble o l is fine to sandy.	black sligh AVEL of content. coarse	4.75		2.63	
- - 3.50 - -		PID = 0.9ppm												> > > > > > > > > > >	
- 3.93- 4.40 4.00 - - - 4.30	B	PID = 2.1ppm				Medium den gravelly fine shell fragme clay. Gravel sandstone, c	se yellov to coars nts and is angula hert, lim	wish brow se slightly rare pock ar to subr nestone a	vn mottle organic tets of so rounded nd muds	ed black sl SAND wit oft brown a fine to coa stone	ightly th occasion and grey arse of	3.45 al		3.93 	
- 4.40- 4.50 -4.50- 4.60 4.50 4.60- 5.10 -	D D SS B	PID = 1.3ppm SPT(S) N=23 1,1/ 3,5,6,9				From 4.60m	bgl: Gra	avel becc	omes abs	sent.					
Wat	er Strikes	; ;		ole D	iamete	r of Date	Progre	ess	Casing	Water	1. Sonic/Rotary (Rema	rks	Site area of Te	esworks.
Jepth	w kemark		Ins	שם טום : 1) p. Pit	0.20	09-08-2022	10:00	0.20	Casing Depth (n	n) Depth (m)	Redcar. Located 2. Buried Service granted to progre 3. SO/RC boreho Coring to 28.50m 4. Topography: L 5. Groundwater 6. Slag encounter noted from 0.91m 7. Borehole back	in the south of Re Inspection Pit ten ss borehole via S bgl. evel Ground. trikes not observe red in material rec to 1.08m bgl. filled with bentonit	a source version of the Mall mediation 20ne PR2B. minated at 0.20m bgl on onic drilling. onic drilling to 13.50m b d during drilling due to an overed from ground leve e pellets and arisings up	hard stratum. P gl, and complete ddition of flush v I to 3.93m bgl. (on completion.	ermission ed via Rotary vater. Organic odour
Notes: For e	explanatio	on of symbols an	d abbr	eviatio	ons, se	e Kev Sheet.	Sc	 cale: 1:25		L	Logged By: N	S	Checked	By: JW	

	A	EC	NO	1	5th	ECON Floor Sity Walk	И	Tel: 0113 3 Fax: 0113 3	91 6800 891 6899	AGS	Bor	ehole	No. F-E	3H11	9
	Equipment	t & Method				eas 11 9AR Project	Name: Net Zero]		re Ground I	REGISTERED USER 202	2 Sheet:	2 of 6		loh No:	
0	.00 - 0.20	Insulated Har	s. nd Tools			Project	Location: Redcar	North Yorkshir		Investigation	- FIONE ENd EN	gineening L		6067	8042
0	.25 - 13.50 3.50 - 28.50	Sonic Drilling Rotary Coring	(Hammer ID: GS10) (Hammer ID: GS10)			Client: I	BP		-						0042
						Co-ordir	nates:		Ground	d Level (m):			Date Started:	09/08/2022	2
						E: 4567 N: 5253	99.922				7.378 AOD		Date Complete	ed: 12/08/2	2022
		In Situ Tes	ting	Corin	g Infor	mation			ואר			Reduced Level	Legend	Depth (Thick)	Backfill/ Instrument
	Depth (m)	Ref &	Test Type and Result	SCR	FI	Core Run		DEGORITIN				(m)	Legend	`(m) ´	
Ľ	5.00 5.10-5.20		PID = 0.4ppm	RQD											
Ļ	5.20- 6.00) В											a a .	-	
F													00	-	
F													· · · · · · · · ·	-	
F	•													F	
F													· · · · · · · · · · · · · · · · · · ·	-	
F													a a .	-	
L	-6.00		PID = 0.5ppm											L I	
Ļ	6.10- 6.20	D	SPT(S) N=27											-	
F	6.20- 6.80	в	4,7,7,9										0	-	
F														-	
F	-6.50	ES					From 6.36m b	gl: Becomes	brownish g	grey mottle	ed black.			É l	
+													· · · · · · · · · · · · · · · · · · ·	-	
F														-	
Ľ	6.80- 6.90 6 90- 7 50												· o · · · · · o · · · ·		
	-7.00		PID = 1.0ppm										a a .	- I	
F														-	
t													· · · · · · · · · · ·	(6.70)	
Ę														[
	7.50- 7.60	D D	SPT(S) N=39										· · · · · · · · · · ·	- I	
2022	7.50 7.60- 8.10) B	9,10,10,10				From 7.50m b	gl: Becomes	dense.					-	
amper													· o' . · . · o' . · .		
Nove														-	
ite: 29	-8.00		PID = 1.8ppm											-	
	8.10-8.20														
3.GL	0.20- 0.00												 	-	
-4													· · · · · · · · · · ·	-	
BRAR	•														
GS 4														-	
NZT A														-	
rary: 1	-9.00- 9.10 9 10 - 9 70		PID = 0.5ppm SPT(S) N>50												
	5.10- 5.70		10,15 for 55mm/23,17,10				From 9.00m b	gl: Becomes	very dense	е.			 	-	
-GP			for 40mm										o'o'	-	
ZTG														-	
														F	
sc: <	9.70- 9.80	D													
Proje	9.80- 10.5	50 B											· · · · · · · · · · · ·		
8													· · · · · · · · · · · · · · · · · · ·	[
	Wa Strike Fl	ater Strikes ow Remark	(S	Hol	lole D e Dia	iameter Depth	r of Date Ti	Progress me Hole	Casing	Water	1. Sonic/Rotary Core	Remai	rks hole located in the Main	Site area of Te	esworks,
티	Depth			(mr	n)	Hole (n	n)	Depth (m) Depth (m	n) Depth (m)	2. Buried Service Ins granted to progress	pection Pit term porehole via Sc	niculation Zone PR2B. ninated at 0.20m bgl on l nic drilling.	hard stratum. P	ermission
RDC											SOURC borehole a Coring to 28.50m bg 4. Topography: Leve	iuvanced via S I. I Ground.	unic aniiing to 13.50m bg	yı, and complete	su via rkotary
NDA											 Groundwater strik Slag encountered noted from 0.91m to 	es not observed in material reco 1.08m bgl.	a during drilling due to ad overed from ground level	ation of flush v I to 3.93m bgl. (vater. Drganic odour
ST/											7. Borehole backfille	d with bentonite	e pellets and arisings upo	on completion.	
port IC								Scale: 1:25			orged By: NO		Charlest	B _M : IM/	
Re	Notes: For	r explanatio	on of symbols an	d abbr	eviati	ons, see	e Key Sheet.	June. 1.20		"	-одуса ру. 185			y. Jvv	

	-	'n l		A	ECO	М	т	al 0113 301	6800			Bore	ehole	No. F-E	3H119	9
				2 C Lee	ity Walk ds 11 9AR		Fa	ax: 0113 391 ww.aecom.c	6899 om		2012	Sheet: 3	3 of 6			
Equipment &	Method	s:			Project	Name: Net Zer	o Teessid	le Onshore	Ground Ir	nvestigatio	n - Fro	ont End Eng	ineering D	Design (FEED)	Job No:	
0.00 - 0.20 In 0.25 - 13.50 S	sulated Har onic Drilling	id Tools (Hammer ID: GS10)		F	Project	Location: Redo	ar, North	Yorkshire							60678	8042
13.50 - 28.50 R	otary Coring	(Hammer ID: GS10)			Client: Co-ordi	BP nates:			Ground	d Level (m)	:			Date Started:	09/08/2022	
				1 1	E: 4567 N: 5253	'54.822 999.922				. ,	7.37	78 AOD		Date Complete	d: 12/08/2	022
ln	Situ Tes ISample	ting		lnfor	mation		DES	CRIPTION					Reduced Level	Legend	Depth (Thick)	Backfill/ Instrument
(m)	Ref &	Test Type and Result	SCR	FI	Core Run		DEC						(m)	Legend	(m)	
-		- 0.0ppm													- -	
		SPT(S) N=13												· · · · · · · · · · · · · · · · · · ·		
10.63- 11.10	В	4,6/ 4,4,3,2									-		-3.25	· · · · · · · · · · · · · · · · · · ·	- 10.63	
- 10.80	ES					Soft locally v sandy silty of	ery soft rganic C	brown mo LAY. Gra	ottled bla vel is su	ack slight bangular	ly gra [.] to	velly		- <u>°. </u>		
- 10.80	E3					subrounded mudstone. S	fine to c and is fi	oarse of : ne to coa	sandstor rse	ne, limest	ione a	and				
-11.00	_	PID = 6.1ppm				(TIDAL FLAT	DEPOS	SITS)						 	-	
- 11.10- 11.20	D B															
-														° ° 	-	
															-	
-														· <u> </u>	-	
F															- (2.16)	
														- <u>°. </u>		
-12.00-12.10		PID = 6.3ppm													-	
12.10- 12.45	B	100 % lecovery				From 12.00	m bgl: Be	ecomes \	very sand	dy.						
-															-	
-															-	
													5 / 1		-	
₁₀ - 12.79-13.40 2 - 12.90	ES ES					Stiff locally v	ery stiff i	reddish b	rown mo	ottled gre	y sligi	htly	-0.41		_ 12.75	
13.00		PID = 10.5ppm				subrounded	fine to c	oarse of	mudston	e, sands	tone	and			-	
						(TILL: DEVE	and is fir NSIAN)	ne to coa	rse						-	
- 13.40- 13.50	D														-	
					13.50- 15.00											
															-	
														<u> </u>	_	
			100													
			0													
5																
0 14.82- 15.00	с														-	
<u> </u>							_									
Strike Flow	r Strikes Remark	(S	Hole	iole D e Dia	Depth	r of Date	Progre Time	Hole	Casing	Water	1. Sor	nic/Rotary Core (ar. Located in the	Remar SO/RC) bore south of Rem	KS hole located in the Main S nediation Zone PR2B	Site area of Tee	esworks,
Depth			(mn 194	n)	Hole (r 13.50	n) 09-08-2022	17:00	Depth (m)	Depth (m 12.00	1.60	2. Bur grante 3. SO	ied Service Insp d to progress bo /RC borehole ad	ection Pit term prehole via So vanced via So	ninated at 0.20m bgl on h nic drilling.	ard stratum. Pe	ermission d via Rotarv
											Coring 4. Top 5. Gro	to 28.50m bgl. ography: Level (oundwater strikes	Ground.	during drilling due to ad	dition of flush w	ater.
											6. Slag noted 7. Bor	g encountered in from 0.91m to 1 ehole backfilled	.08m bgl. with bentonite	pellets and arisings upo	to 3.93m bgl. C	rganic odour
														<u>.</u>		
Notes: For ex	planatic	on of symbols an	d abbr	eviatio	ons, se	e Key Sheet.	Sc	 ale: 1:25		<u> </u>	 Logge	d By: NS		Checked E	By: JW	

AE	C	O N		5th 2 C Lee LS	ECOI Floor tity Walk eds 11 9AR	M	-	Tel: 0113 391 Fax: 0113 39 www.aecom.c	6800 I 6899 om	AGS REGISTERED USER 20	022	Bore Sheet:	ehole	No. F-I	3H11	9
Equipment & 0.00 - 0.20 In 0.25 - 13.50 Se 13.50 - 28.50 Re	Method: sulated Har onic Drilling otary Coring	S: d Tools (Hammer ID: GS10) (Hammer ID: GS10)			Project Project Client:	Name: Net 2 Location: Re BP	Zero Teessi edcar, North	de Onshore 1 Yorkshire	Ground In	vestigation	ı - Fron	t End Eng	gineering [Design (FEED)	Job No 606	78042
					Co-ordi E: 4567	nates: /54.822			Ground	Level (m):	7.378	AOD		Date Started:	09/08/202	2
In	Situ Tes	ling	Coring	g Infor	N: 5253 mation	399.922							Reduced	Date Complete	Depth	Backfill/
Depth (m)	Sample Ref & Type	Test Type and Result	TCR SCR RQD	FI	Core Run		DE	SCRIPTION	l				(m)	Legend	(Thick) (m)	Instrumen
E.LOGII Project: V111 NZT GG2.4_0 LIBRARY V13.GLB II Date: 29 November 2022	C			CLAY 0	15.00- 16.50 18.00- 18.00 19.50 19.50 21.00	Extremely laminated Wide to cle partly oper subangula (REDCAR r	weak loca dark bluis osely space to closed muDSTO	ally very w th grey MU ced, subt h unded fin NE FORM ress	eak fract JDSTON JOSTON JOSTON JOSTON JOSTON JOSTON JOSTON	ured thinl E. Fractu to 20°, p gravelly s ium of mu	ly to the set lanar silt. Guidstor	nickly 1: rough, ravel is ie	12.14 Remar		- (6.73)	
ਹ Wate ਹ Strike Flow	r Strikes Remark	S	Hol	lole D e Dia	iamete Depth	r of Date	Progi Time	ress Hole	Casing	Water	1. Sonic	Rotary Core	Remar (SO/RC) bore	ks hole located in the Main	Site area of Te	esworks,
Depth Depth COREL			(mr	<u>n)</u>	Hole (r	m)		Depth (m	Depth (m) Depth (m)	Redcar. 2. Buriec granted 3. SO/R Coring to 4. Topog 5. Grour 6. Slag e noted fro 7. Boreh	Located in th d Service Insy to progress b C borehole a b 28.50m bgl graphy: Level idwater strike ancountered i om 0.91m to iole backfilled	e south of Rer pection Pit tem porchole via So dvanced via So Ground. ss not observer in material recc 1.08m bgl. d with bentonite	neciation Zone PR2B. initated at 0.20m bgl on nic drilling. onic drilling to 13.50m bg d during drilling due to ac vered from ground leve pellets and arisings upo	hard stratum. F gl, and complet Idition of flush to 3.93m bgl. on completion.	² ermission ed via Rotary water. Organic odour
Notes: For ex	planatio	n of symbols an	nd abbr	eviati	ons, se	e Key Sheet.	S	cale: 1:25		L	Logged	By: NS		Checked	By: JW	

		EC	O		5th 2 C Lee	ECO Floor City Walk eds	M Tel: 0113 391 k Fax: 0113 391 www.aecom.co	6800 6899 om REGISTERED USER 2022	Bore Sheet: 5	hole	No. F-E	3H119	9
Equ 0.00 - 0.25 - 13.50 -	ipment 0.20 13.50 - 28.50	& Methods Insulated Har Sonic Drilling Rotary Coring	S: Id Tools (Hammer ID: GS10) (Hammer ID: GS10)			Project Project Client:	Name: Net Zero Teesside Onshore Location: Redcar, North Yorkshire BP	Ground Investigation - Fro	ont End Engir	neering De	esign (FEED)	Job No: 60678	3042
						Co-ordi E: 4567 N: 5253	inates: 754.822 399.922	Ground Level (m): 7.3	78 AOD		Date Started: (Date Complete	09/08/2022 d: 12/08/20	022
De (epth m)	n Situ Tes Sample Ref & Type	ting Test Type and Result	Coring TCR SCR RQD	g Infoi FI	rmation Core Run	DESCRIPTION			Reduced Level (m)	Legend	Depth (Thick) (m)	Backfill/ Instrument
-				100 95 91	CLAY		From 19.97m to 20.03m bgl: slightly gravelly slightly sandy subrounded fine to medium of coarse.	Horizon of firm dark g CLAY. Gravel is suba mudstone. Sand is fi	rey ingular to ne to			- - - - - -	
				100 93 49	8 CLAY	21.00-22.50	From 21.31m bgl: Fracture se closely spaced, sub vertical to tight to closed, infilled with gre	et 2 present: Medium t 70°, planar rough to s y silt. Horizon of stiff dark g	to smooth,				
ary: NZT AGS 4_0 LIBRARY V1.3.GLB Date: 29 November 2022	77	C		100 97 82	11 8 <u>NI</u> 3	22.50- 24.00	slightly sandy CLAY. Sand is f	ine to coarse.				- - - - - - - - - - - - - - - - - - -	
REHOLE LOG Project: V11.1 NZT GI. GPJ Libra D S tag is in the second	Wa e Flo	ter Strikes w Remark	S	100 82 73 Hol (mr	NI 4 NI Hole D e Dia n)	25.50 Diamete	er Progress of Date Time Hole m) Depth (m)	Casing Water 1. So Depth (m) Depth (m) 2. Bu	nic/Rotary Core (S ar: Located in the se	Remark SO/RC) boreh South of Rem cidon Pit termi	S ole located in the Main sediation Zone PR2B. nated at 0.20m bgl on h		sworks,
oort ID: STANDARD COR								grant 3. SC Corin 4. To 5. Gr 6. Si notec 7. Bo	ted to progress borr J/RC borehole adv pography: Level Gi oundwater strikes r g encountered in n d from 0.91m to 1.0 rrehole backfilled w	ehole via Son anced via Sor round. not observed material recov J8m bgl. /ith bentonite p	ic drilling. nic drilling to 13.50m bg during drilling due to ad rered from ground level pellets and arisings upo	l, and completed dition of flush wa to 3.93m bgl. O n completion.	d via Rotary ater. rganic odour
Not	es: For	explanatio	n of symbols an	nd abbr	eviati	ons, se	ee Key Sheet. Scale: 1:25	Logge	eu ву: NS		Checked E	by: JVV	

A	EC	O		5th 2 C Lee	Floor Floor tity Walk	M	T F V	Tel: 0113 391 Fax: 0113 391 www.aecom.c	6800 I 6899 om	AGS	Bor	ehole	No. F-E	3H11	9
Equipment 8 0.00 - 0.20 li 0.25 - 13.50 S 13.50 - 28.50 F	Methods nsulated Har conic Drilling totary Coring	S: Id Tools (Hammer ID: GS10) I (Hammer ID: GS10)		LS	11 9AR Project Project Client:	Name: Net Ze Location: Redo BP	ro Teessio car, North	de Onshore 1 Yorkshire	Ground In	REGISTERED USER 202 Vestigation	- Front End En	gineering D	Design (FEED)	Job No: 6067	8042
					Co-ordi E: 4567 N: 5253	nates: /54.822 /99.922			Ground	Level (m):	7.378 AOD		Date Started: Date Complete	09/08/2022 d: 12/08/2	2 2022
In Depth (m)	Situ Tesi Sample Ref &	ting Test Type and Result	Coring TCR SCR	Infor FI	mation Core Run		DE	SCRIPTION	l			Reduced Level (m)	Legend	Depth (Thick) (m)	Backfill/ Instrumen
6 Project: V11.1 NZT GI.GPU Library: NZT AGS 4_0 LIBRARY V1.3.GLB Date: 29 November 2022	C		96 94 77	4 3 NI 0 NI 17 CLAY 4 2 2 NI 7 CLAY	25.50- 27.00 27.00- 28.50	From 26.65 slightly sand From 27.00 slightly sand	m to 26. y CLAY m to 27. y CLAY y CLAY <u>End</u> (Thi	.72m bgl: . Sand is 1 . Sand is 1 . Sand is 1 . Sand is 1 i of Boreh ickness of not pro	Horizon of fine to co Horizon of fine to co ole 28.50 basal la oven)	of stiff dar arse. of stiff dar arse. of stiff dar arse.	'k grey 'k grey 'k grey	-21.12			
Ю Wate	er Strikes		<u> </u> н	lole D	iamete	r	Progr	ress			4. Carria/Datasa Carr	Remar	rks	04	
Postrike Flov	v remark		146	e Dia n)	28.50	10-08-2022 11-08-2022	09:45	25.50 28.50	Casing) Depth (m) 25.50 28.50	ovater Depth (m) 3.00	Redcar. Located in t 2. Buried Service Ins granted to progress 3. SO/RC borehole a Coring to 28.50m bg 4. Topography: Leve 5. Groundwater strik 6. Slag encountered noted from 0.91m to 7. Borehole backfille	he south of Rer spection Pit term borehole via So I. I Ground. es not observec in material recc 1.08m bgl. d with bentonite	mentation 2 not the Maillin mediation 2 one PR2B, ninited at 0.20m bgl on t onic drilling, to 13.50m bg d during drilling to 13.50m bg d during drilling due to ad svered from ground level a pellets and arisings upo	l, and complete dition of flush w to 3.93m bgl. (n completion.	ermission ed via Rotary vater. Organic odour
⊮ Notes: For e	xplanatio	n of symbols an	nd abbr	eviati	ons, se	e Key Sheet.		5310. 1.20		L				-,. 011	

Λ	-	5	A	AE 5th	ECON Floor	М	т	el: 0113 391	6800		Во	rehole	No. F-	3H11	6
Equipment	Method			2 C Lee LS1	ity Walk ds 1 9AR Project	Nama: Nat Za	F W	ax: 0113 391 ww.aecom.co	6899 om		2 Sheet	: 1 of 7			
0.00 - 0.21) 0.21 - 0.60 I 0.60 - 16.50	Calibre Nep nsulated Har Sonic Drilling	tune Coring Rig nd Tools (Hammer ID: GS08)		F	Project Client: I	Location: Redo	ar, North	Yorkshire	Ground II	vesugation		ingineering i		6067	78042
16.50 - 31.00 F	Rotary Coring	g (Hammer ID: GS08)		E	Co-ordir E: 4569	nates: 947.093			Ground	Level (m):	7.466 AO	D	Date Started:	16/08/202:	2
In	Situ Tes	ting	Coring	Infor	N: 5254 mation	18.285	DES	SCRIPTION				Reduced Level	Legend	Depth (Thick)	Backfill/ Instrumer
(m)	Ref & Type	Test Type and Result	SCR RQD	FI	Run			ork grov o		aubraun	dad fina ta			(m)	
- - - -						coarse GRA content. Cob (MADE GRO	VEL of s bles are UND)	and grey a slag and c angular	oncrete	with low c	obble			- - - - - - - - - - - - - - - - - - -	
- 0.60 - - - - 1.00 -		PID = 0.0ppm PID = 0.1ppm			-	MADE GRO fine to coars coarse	UND: Da e GRAV	ark brown ΈL of slag	sandy a g and bri	ngular to ck. Sand	subrounder	6.51 d		- - - - - - - -	
- - 		PID = 0.9ppm				(MADE GRO	UND)							× - - - - - - - - - - - - -	
- 2.00 		PID = 1.7ppm				At 1.94m bg	l: Occas	sional scra	ap metal	present.					
- -2.50 - -		PID = 26.6ppm			-	MADE GRO with low cob of brick. Gra of slag and b (MADE GRO	UND: Da ble conte vel is su prick UND)	ark brown ent. Cobb bangular	gravelly les are a to subro	fine to co ngular to unded fine	oarse SANE subangula e to coarse	4.96		2.51 (0.49)	
3.00 		PID = 4.2ppm			-	MADE GRO fine to coars (MADE GRO	UND: Da e GRAV UND)	ark brown ΈL of slag	sandy a g. Sand i	ngular to s fine to c	subrounde coarse	4.47		3.00	
	В	SPT(C) N>50 16,9 for 15mm/37,13 for 5mm				From 3.52m NOTE: Prop	bgl bec	comes ver	y sandy. n level 3.	8m AOD.				(1.93)	
- - 4.45- 4.50 - 4.90- 4.93 - -	D B	SPT(C) N=19 10,11/ 7,5,3,4				At 4.45m bg present.	l: Pale fi	ine graine	ed sands	tone fragr	nents				
- 4.90 4.93- 5.10	ES D											2.54		4.93	
Strike Flov Depth	er Strikes v Remark	s (S	Hole (mm 300 Ins	ole D e Dia 1) c. Pit	Depth Hole (n 0.21 0.60	r of Date n) 16-08-2022 01-09-2022 01-09-2022	Progre Time 14:15 16:15 17:30	ess Hole Depth (m) 0.21 0.60 1.50	Casing Depth (m 1.50	Water) Depth (m)	1. Sonic/Rotary C Redcar. Located i 2. Concrete core e 0.60m bgl on harc S. SO/RC borehol Coring to 31.00m 4. Topography: Le 5. Groundwater st 6. Slag and refrac 4.93m bgl. No off 7. Borehole board	Kema ore (SO/RC) bore n the north of Rei stratum. Permiss e advanced via S bgl. vel Ground. rikes not observe tory material ence ictory evidence o ictory evidence o	TKS ehole located in the Main mediation Zone PR1B. Im bgl. Buried Service In sion granted to progress ionic drilling to 16.50m bg d during drilling due to ac ountered in material reco f contamination.	Site area of Te spection Pit ter borehole via So gl, and complet ddition of flush v vered from gro	eesworks, minated at onic drilling. ed via Rotary water. und level to
Notes: For 6	explanatio	on of symbols an	d abbre	eviatio	ons, see	e Key Sheet.	Sc	cale: 1:25		 	ogged By: R	B	Checked I	By: JW	

A	C	CON	1	5th	ECON Floor City Walk	Tel: 0113 39 Fax: 0113 30	1 6800 91 6899 AGS	Bore	ehole	No. F-E	3H11	6
Equipment 8 0.00 - 0.21 X 0.21 - 0.60 Ir	Calibre Nep	S: otune Coring Rig nd Tools		Lee	Project I Project I	www.aecom Name: Net Zero Teesside Onshor Location: Redcar, North Yorkshire	e Ground Investigation - Fr	Sheet: ont End Eng	2 of 7 gineering D	esign (FEED)	Job No: 6067	8042
0.60 - 16.50 S 16.50 - 31.00 F	onic Drilling otary Coring	ı (Hammer ID: GS08) g (Hammer ID: GS08)			Client: E Co-ordir E: 45694	BP nates: 47.093	Ground Level (m): 7.4	66 AOD		Date Started:	16/08/2022	2
In Depth	Situ Tes Sample	ting	Coring	Infor	N: 5254 mation Core	18.285 DESCRIPTIO	N		Reduced Level (m)	Legend	Depth (Thick)	Backfill/ Instrumen
(m) 5.00 - 5.10- 6.00	Ref & Type B	and Result PID = 1.9ppm	RQD		Run	Medium dense light brown fir	ne to coarse silty SANI	D with		· · · · · · · · · · · ·	_	
-						(TIDAL FLAT DEPOSITS)	and is mottled black wi	ith		· · · · · · · · · · · ·	-	
-					1	frequent rootlets.		iu i			-	
- - - 5.90	ES									· · · · · · · · · · · · · · · · · · ·	-	
6.00- 6.70 -	В	PID = 1.3ppm SPT(S) N=12 3,2/				From 6.00m to 6.62m bgl: B	ecomes dark brown me	ottled			-	
-		3,3,3,3				DIACK.				· · · · · · · · · · · · · · · · · · ·	-	
-											-	
6.75 - 6.80- 7.50 -	B	DID = 1 1 000									-	
-										· · · · · · · · · · · ·	-	
- - 7.50- 8.20	В	SPT(S) N=25									-	
ember 2022		3,4/ 5,5,6,9									-	
ate: 59 Nov 		PID = 0.7ppm								· · · · · · · · · · · · · · · · · · ·	- (5.99) —	
යි – mg – ප – 8.25 ද: – 8.30- 9.00	D B										-	
										· · · · · · · · · · · · · · · · · · ·	- 	
T AGS 4 01											-	
DI - 19.00- 9.70	В	PID = 0.7ppm SPT(S) N=23 2,4/ 3 5 7 8									-	
1 01.GPJ		0,0,7,0				From 9.09m to 10.03m bgl: I	-requent sand sized co	oal.			-	
										· · · · · · · · · · · · · · · · · · ·		
9.75 2 9.80- 10.50	B									· · · · · · · · · · · · · · · · · · ·	-	
Wate OStrike Flow	er Strikes / Remark	S KS	Hol (mr	lole D e Dia n)	iameter Depth o Hole (m	r Progress of Date Time Hole n) Depth (n	Casing Water 1. Sc n) Depth (m) Depth (m) 2. Cc 0.60	onic/Rotary Core car. Located in th oncrete core com m bgl on hard str	Remarl (SO/RC) boreh e north of Rem pleted to 0.21n atum. Permissi	ks nole located in the Main ediation Zone PR1B. n bgl. Buried Service Ins on granted to progress I	Site area of Tee spection Pit tern porehole via So	esworks, ninated at nic drilling.
: STANDARD CC							3. S(Corir 4. Tc 5. G(6. SI 4.93 7. Bc	D/RC borehole a ng to 31.00m bgl popgraphy: Level roundwater strike ag and refractory m bgl. No olfacto prehole backfilled	dvanced via So Ground. s not observed material encou ry evidence of with bentonite	nic drilling to 16.50m bg during drilling due to ad untered in material recov contamination. pellets and arisings upo	I, and complete dition of flush w vered from grou n completion.	d via Rotary ater. Ind level to
= ਹਰੀ ਅ Notes: For e	xplanatio	on of symbols an	d abbr	eviati	ons, see	e Key Sheet. Scale: 1:25	Loggi	ed By: RB		Checked E	By: JW	

	Λ:		1		A	A	ECO	м	т	al: 0112 201	6900			Bore	ehole	No. F-E	3H11	6
						2 C Lee LS	i Floor City Walk eds 11 9AR	ζ.	F W	ax: 0113 391 ww.aecom.co	6899 om		2022	Sheet: 3	3 of 7			
Eq	uipmen	t & Me	ethods	3:			Project	Name: Net Zer	o Teessid	le Onshore	Ground In	vestigatio	n - Fror	nt End Eng	ineering D	esign (FEED)	Job No:	
0.00	- 0.21 - 0.60	XCalib Insula	ore Nept ted Han	une Coring Rig d Tools			Project	Location: Redu	ar, North	Yorkshire							6067	8042
0.60 ·	- 16.50	Sonic	Drilling	(Hammer ID: GS08)			Client:	BP										
16.50	0 - 31.00	Rotary	y Coring	(Hammer ID: GS08)			Co-ord	inates:			Ground	Level (m)):			Date Started:	16/08/2022	2
							E. 4508 N: 5254	47.095 418.285					7.466	S AOD		Date Complete	ed: 07/09/2	2022
		In Situ	u Test	ing	Corin	g Infoi	rmation								Reduced		Depth	Backfill/
	Depth	Sa	ample	Test Type	TCR	FI	Core		DES	SCRIPTION					(m)	Legend	(Thick) (m)	Instrument
10	(m)	Ť	уре	and Result	RQD		Run											
- 10	.00			1 ID = 0.5ppiii												· · · · · · · ·	-	
-																	-	
-																	-	
-																	-	
-10	.50- 10	.92	в	SPT(S) N=14												· · · · · · · · ·	-	
-				3,3/ 4,5,3,2													-	
-																	-	
-																	-	
- 10	.92- 11	.02	D					Soft locally fi	rm arevi	ish hrown	sandy si		V San	d is fine	-3.45	· <u> </u>	- 10.92	
-11	:02-11	.83	в	PID = 0.0ppm				to coarse	ini grey		Sundy S		r. oun					
Γ								N.B. Matoria	lic grad	od cliabt	veandv	at top to	condu	, at		<u> </u>		
Ε								base	r is grau	eu, siigitu	y sanuy a	at top to	sanuy	al				
E								(TIDAL FLAT	DEPOS	SITS)							(0.91)	
L_11	.50		ES													 		
L																	-	
F																	-	
+ 11	83-12	00	П												-4.36		- 11.83	
+ ''	.00- 12.	.00						Medium den	se dark	brown mo	ttled ligh	t brown	locally	/ clayey		- · · · · · · · · · · · · ·	-	
-12	. 00- 12	.53	В	PID = 0.2ppm				(TIDAL FLA)	B SAND	with occa	isional si	ieli tragi	ments			·	┝ │	
12	.00		SS	SPT(S) N=18 2,3/				(· . · · · · · · · · · · · · ·	(0,70)	
F				4,4,5,5												<u> </u>	- (0.70)	
F								From 12.17	n to 12.	53m bgl: '	Very clay	ey.				· · . · ·	-	
F																. .	-	
12	.53- 12	.88	D					Dark brown	nottled I	light brow	n fine to	coarse s	silty SA		-5.06		-12.53	
2								with occasio	nal shell	fragment	s		Sincy Of			· · · · · · · ·	[
								(TIDAL FLAT	DEPOS	SITS)								
Ž 12	.88- 13	.50	в														-	
[₽] , −13	.00		ES					From 12 89	n bal [.] B	ecomes r	nottled bl	ack					L	
Late								11011112.000	n ogi. D			aon.					-	
<u>-</u> -																	(1 47)	
פֿ יי																• • • • • • • • • • •	- (1.47)	
5- 5																· · · · · · · · ·	-	
¥—13	.50- 14	.00 U	T100	100 % recovery												• • • • • • • • • •	-	
																· · · · · · · · · ·	-	
4																		
Per [• • • • • • • • • • • • • • • •	[
	.00- 14	45	в	PID = 0.1nnm											-6.53		_14.00	
	.00		ËS	0. ippili				Soft locally fi	rm greyi	ish brown	mottled	black Cl	LAY w	ith				
Ĭ								(TIDAL FLA	DEPOS	SITS)						<u>+</u>		
										,						 \/	╞	
<u>-</u>																<u> </u>	╞──│	
2-14	.50		D														╞──│	
= 14 =	.55- 15.	.00	в													<u></u> <u></u>	-	
																	(1.50)	
ē-																	F	
	W	ater S	trikes		ŀ	lole D	Diamete	r .	Progre	ess	o :	141 -	1.0	Poterio	Remar	ks	Site error (T	anwatka
5 Stril H Der	ke Fi oth	ow Re	emark	S	Hol (mr	e Dia n)	Depth Hole (of Date m)	Time	Hole Depth (m)	Casing Depth (m)	Water Depth (m	1. Sonic Redcar	CROTARY Core (Located in the	SU/RC) bore north of Ren	noie located in the Main nediation Zone PR1B.	Site area of Te	esworks,
						,		02-09-2022	12:00	10.50	10.50	4.80	0.60m b 3. SO/F	ogl on hard stra C borehole ad	tum. Permiss vanced via So	ion granted to progress lonic drilling to 16.50m bo	porehole via So l, and complete	nic drilling. ed via Rotary
													Coring t 4. Topo	o 31.00m bgl. graphy: Level (Ground.			
NUA													5. Grou 6. Slag	ndwater strikes and refractory	not observed	during drilling due to ad untered in material recover contamination	dition of flush w vered from grou	vater. Ind level to
SIA													7. Borel	hole backfilled	with bentonite	pellets and arisings upo	n completion.	
Ë																		
	Ites: Fo	r evol-	anatio	n of symbole on	d abbr	eviati		e Key Sheet	Sc	l ale: 1:25		L	Logged	By: RB		Checked E	By: JW	
		- cyhia	anau0	n or symbols an	u anni	Judi	5113, 56	o noy oneet.										

	A		CON		A 5th 2 C	ECON Floor ity Walk	N	Te Fa	el: 0113 391 ax: 0113 391	6800 6899		Bore	ehole	No. F	-BH11	6
					Lee LS	eds 11 9AR		w	ww.aecom.c	om	REGISTERED USER 202	2 Sheet:	4 of 7			
	Equipment &	Method	s:		F	Project	Name: Net Zer	o Teessid	e Onshore	Ground In	vestigation	- Front End Eng	jineering D	Design (FEED)	Job No:	
	0.00 - 0.21	Calibre Nep	otune Coring Rig		1	Project	Location: Redo	ar, North	Yorkshire						6067	8042
	0.21 - 0.60 I	nsulated Har	nd Tools			Cliont		,								00.2
	0.60 - 16.50 S	onic Drilling	(Hammer ID: GS08)							0	1			Data Otarta	1. 40/00/000	
	10.00 - 01.00 1	totary coning	g (naminer 15: 0000)			Co-ordii E: 4569	nates: 47.093			Ground	Level (m):			Date Starte	d: 16/08/202	2
						N: 5254	18.285					7.400 AOD		Date Comp	eted: 07/09/2	2022
	In	Situ Tes	ting	Coring	g Infor	mation							Reduced		Depth	Backfill/
	Depth	Sample	T	TCR	-	Core		DES	CRIPTION	I			Level (m)	Legend	(Thick)	Instrument
	(m)	Ref &	and Result	SCR	FI	Run							(,		(11)	
	15.00- 15.50	u U Ť Ť ŎĊ	PID = 0.0ppm	RQD											_	
	-		100 % recovery	/			At 14.95m b	gl: Black	very org	anic laye	r present	t.			_ +	
ł	-							-		-					子	
ł	-													/7	╶┟ │	
	-													[<u>-</u> +	
	-15.50- 15.9	БВ				-							-8.03		15.50	
	-						Firm locally s	stiff reddi	ISh browr	n mottled	grey sligi	htly gravelly			-	
	-						subangular f	ine to co	arse of s	andstone	e chert an	id mudstone.			<u></u>	
	-	1					Sand is fine	to coarse	Э					<u> </u>	-].	
	_						(TILL: DEVE	NSIAN)							<u>-</u>	
[-16.00													[<u>-L</u>	
	16.05- 16.50	ES													<u></u>	
Ì		В													~ <u>_</u>	
	-	1													-1	
	-	1													<u> </u>	
	-	1													<u> </u>	
	_	1		$\left \right $		16.50-									<u>, </u>	
	-	1				17.50								<u> </u>	-1	
	-	1					From 16.57	n bgl: Be	ecomes f	irm to stil	f.				<u>-</u>	
	-														<u>-</u>	
	-			100										<u> </u>	-1-	
ł	_			0											<u>-</u>	
	- 17.10- 17.40	c c		0												
	-															
	_													- <u> </u>		
	_														-1	
	_														₅	
2	_					17.50-										
- 202	-					19.00									, [
nber	-														-1	
Sver	-														-1,	
Ž 6	-														5 (4.81)	
te: 2	-														_†_	
Dai	-														<u>-</u>]	
9	-			100										<u> </u>	╶┟ │	
Э.С	-			0												
2.	-	1			CLAY									<u> </u>	<u>-</u>]	
ARY	-														-]-	
IBR,	-	1													<u>-</u>	
0	-													<u> </u>	<u> </u>	
S 4	_	1												<u> </u>	<u> </u>	
ΡΑG	_	1													-1	
Z	_	1												<u> </u>	<u>-</u> L	
ary:		1				19.00-									<u> </u>	
Libr	-	1				20.50								- <u> </u>	_1	
2	-	1													5]	
Ъ.	-													<u> </u>	-1	
б Н	-	1													_+	
Z	-													└─ <u>°</u>	≟† │	
11.1	-	1													-1	
- S	-	1		30											<u>∽</u> ⊦ ∣	
roje	-	1		0											<u>-</u> +	
E E	-														<u> </u>	
ő													L	<u> </u>	-1	
ų.	Strike Flow	er Strikes	\$ (\$		tole D	Iametei	r of Date	Progre	ess Hole	Casing	Water	1. Sonic/Rotarv Core	Remar (SO/RC) bore	rKS shole located in the N	lain Site area of Te	esworks,
믭	Depth			(mn	n)	Hole (r	n)		Depth (m)	Depth (m	Depth (m)	Redcar. Located in th 2. Concrete core com	e north of Ren pleted to 0.21	nediation Zone PR1 m bgl. Buried Service	3. e Inspection Pit ter	ninated at
ÖR				194	-	16.50	05-09-2022	14:45	16.50	16.50		0.60m bgl on hard stra 3. SO/RC borehole ad	atum. Permiss	sion granted to progr onic drilling to 16.50	ess borehole via So n bgl, and complet	onic drilling. ed via Rotary
D D C												Coring to 31.00m bgl. 4. Topography: Level	Ground.	3 10.001	5	,
DAR												5. Groundwater strike 6. Slag and refractory	s not observed	d during drilling due t ountered in material r	o addition of flush v ecovered from are	vater. und level to
ANL												4.93m bgl. No olfacto 7. Borehole backfilled	ry evidence of with bentonite	contamination.	upon completion	
S												Subtrained		anon igo		
Ξ																
Sepo	Notes: For e	xplanatio	on of symbols an	d abbr	eviatio	ons. se	e Key Sheet.	Sc	ale: 1:25		L	ogged By: RB		Check	ed By: JW	
ιζį		r	j					I						I		

	ΛΞ		5	A	A		М	т	-ol: 0113 301	6800			Bore	ehole	No. F-	BH116	5
			UN		2 C Le	City Walk eds 11 9AR		F. W	ax: 0113 391 ww.aecom.c	1 6899 om	AGS	22	Sheet:	5 of 7			
0.0 0.2 0.6	Equipment & 00 - 0.21 X0 21 - 0.60 In: 50 - 16.50 So	Methods calibre Nept sulated Han nic Drilling	: une Coring Rig d Tools (Hammer ID: GS08)			Project Project Client:	Name: Net Ze Location: Rede BP	ro Teessid car, North	le Onshore Yorkshire	Ground In	vestigation	- Fron	it End Eng	gineering [Design (FEED)	Job No: 60678	3042
16.	.50 - 31.00 Ro	tary Coring	(Hammer ID: GS08)			Co-ordi E: 4569	nates: 47.093			Ground	Level (m):	7.466	6 AOD		Date Started: Date Comple	16/08/2022 ted: 07/09/2	022
	In S Depth	Situ Test	ing Test Type	Corine TCR	g Info	rmation Core	10.205	DES	SCRIPTION	1				Reduced Level (m)	Legend	Depth (Thick) (m)	Backfill/ Instrument
	(m)	Type	and Result	RQD		Run									<u> </u>		
	20.12-20.00	Ũ									<u></u>			-12.84		20.31	
Ļ	0.55	FO				20.50	Weak locally MUDSTONE gravelly CLA	y very we E. Locally \Y. Grave	eak thinly y recover el is angu	laminate ed as sof Ilar to sub	d dark blu t to firm fr pangular (uish g riable of mu	rey very idstone			-	
-	20.55	ES				22.00	(REDCAR M	UDSTON	NE FORM	ATION)							
-					NI												
E				100													
				0	0	-											
-					NI												
-																	
-2	22.00	с			0	22.00-											
						23.50	From 22.00	m to 23.	71m bgl:	Recovere	ed as firm	ı grey	r clay.				
-																	
nber 2022 I I				100 0													
29 Nover				0	CLAY												
-B Date:																	
Y V1.3.GI																	
						23.50- 25.00											
AGS 4 (0												
rary: NZI					CLAY 0	-	From 23.91	m to 23.9	99m bgl:	Recovere	ed as firm	ı grey	clay.				
GPJ Lit				100 26 23	CLAY 0	-	From 24.14	m to 24.2	23m bgl:	Recovere	ed as stiff	grey	clay.				
1 NZT GI							From 24.27	m to 25.0	00m bgl:	Recovere	ed as stiff	grey	clay.				
ject: V11.					CLAY												
												1					
ZEHOLE L	Wate trike Flow epth	r Strikes Remark	S	Hol (mr	Hole E le Dia m)	Diamete Depth Hole (r	r of Date n)	Progre Time	ess Hole Depth (m)	Casing) Depth (m)	Water Depth (m)	1. Sonic Redcar. 2. Conc	c/Rotary Core Located in the rete core com	Reman (SO/RC) bore in a north of Ren inpleted to 0.21	rks hole located in the Mai nediation Zone PR1B. m bgl. Buried Service	n Site area of Tee	sworks, inated at
DARD COF							06-09-2022	12:45	25.00	25.00		3. SO/R Coring t 4. Topo 5. Groun	co 31.00m bgl graphy: Level ndwater strike	dvanced via So dvanced via So Ground. is not observed	d during drilling due to a	addition of flush wa	ater.
D: STANE												4.93m b 7. Borel	and retractory ogl. No olfacto hole backfilled	with bentonite	i contamination. contamination. pellets and arisings up	overed from grou	
Report I	Notes: For e	planatio	n of symbols ar	nd abbi	reviati	ons, se	e Key Sheet.	Sc	 cale: 1:25		L	logged	By: RB		Checked	By: JW	

A	EC	O		5th 2 C Lee	ECO Floor City Walk eds	M Tel: 0113 391 k Fax: 0113 39 www.aecom.c	6800 1 6899 som	Sheet: 6 of 7	e No. F-E	3H116	
Equipment 0.00 - 0.21 0.21 - 0.60 0.60 - 16.50 16.50 - 31.00	t & Methods XCalibre Nep Insulated Har Sonic Drilling Rotary Coring	S: tune Coring Rig Id Tools (Hammer ID: GS08)			Project Project Client:	Name: Net Zero Teesside Onshore Location: Redcar, North Yorkshire BP	Ground Investigation - F	Front End Engineering	Design (FEED)	Job No: 60678042	
					E: 4569	947.093 118.285	7.	466 AOD	Date Started: Date Complete	ed: 07/09/2022	
Depth (m)	In Situ Tesi Sample Ref & Type	ting Test Type and Result	Corine TCR SCR RQD	g Infoi FI	mation Core Run	DESCRIPTION	1	Reduced Level (m)	Legend	Depth Bac (Thick) Instru (m)	:kfill/ Imer
- - -				0 CLAY	25.00- 26.50	From 25.00m bgl: Becomes v fossils.	very weak with freque	ent shell		-	
-				3		From 25.28m to 25.30m bgl: From 25.30m bgl: Fracture s	Recovered as stiff gr et 1 present: Closelv	rey clay. spaced.		-	
- - -			100 95 95	NI		horizontal, undulating rough, infilled with soft grey clay.	partly open to open, o	clean or		- - -	
- - 26.20 -	с			1						-	
- - - -					26.50- 28.00					- - - -	
-				CLAY	-					-	
-			100 51 45	0	-	From 27.06m to 27.11m bgl: From 27.23m to 27.84m bgl:	Recovered as stiff gr	rey clay. rev clav		-	
				CLAY		- 10 m 21.20 m to 21.0 m bg.		cy olay.		- 	
				0 NI	-					-	
				0	28.00- 29.50	-					
				CLAY	-	From 28.20m to 28.42m bgl:	Recovered as stiff gr	ey clay.		-	
			100 61 58	2							
	С			NI 5						-	
				NI	29.50- 31.00					-	
										-	
	ater Strikes		 -	lole D	iamete	Progress	Casing Water 11	Rema	arks	Site area of Teesworks	
Depth			(mr	פ טומ n)	Hole (m) Date Time Hole Depth (m	Desting water Ref) Depth (m) Depth (m) 20 0.6 3.5 Construction 0.6 3.5 Constretin </td <td>dcar. Located in the north of Rk Concrete core completed to 0.2 Om bgl on hard stratum. Permi SO/RC borehole advanced via- ring to 31.00m bgl. Topography: Level Ground. Sroundwater strikes not observ Slag and refractory material en 9m bgl. No offactory evidence Borehole backfilled with benton</td> <td>Interdiation Zone PR1B. I'm bgl. Buried Service Ins ssion granted to progress I Sonic drilling to 16.50m bg ed during drilling due to ad countered in material recov of contamination. te pellets and arisings upo</td> <td>spection Pit terminated at operahole via Sonic drilling, II, and completed via Rotar dition of flush water. vered from ground level to n completion.</td> <td>ry</td>	dcar. Located in the north of Rk Concrete core completed to 0.2 Om bgl on hard stratum. Permi SO/RC borehole advanced via- ring to 31.00m bgl. Topography: Level Ground. Sroundwater strikes not observ Slag and refractory material en 9m bgl. No offactory evidence Borehole backfilled with benton	Interdiation Zone PR1B. I'm bgl. Buried Service Ins ssion granted to progress I Sonic drilling to 16.50m bg ed during drilling due to ad countered in material recov of contamination. te pellets and arisings upo	spection Pit terminated at operahole via Sonic drilling, II, and completed via Rotar dition of flush water. vered from ground level to n completion.	ry
Notes: For	r explanatio	n of symbols ar	nd abbr	eviati	 ons, se	e Key Sheet. Scale: 1:25	Log	ged By: RB	Checked E	By: JW	

	Δ	=/	M	A	A 5th	ECO Floor	М	т	el: 0113 391	6800			Bore	ehole	No. F-	BH11	6
4					2 C	City Walk eds 11 948	ζ.	F	ax: 0113 391 ww.aecom.c	6899 om		2022	Sheet: 7	7 of 7			
	Equipmen	it & Methods	8:			Project	Name: Net Zero	Teessid	le Onshore	Ground Inv	estigation	n - Fron	t End Eng	ineering D	esign (FEED)	Job No:	
0	.00 - 0.21 .21 - 0.60	XCalibre Nept Insulated Han	une Coring Rig d Tools			Project	Location: Redca	ar, North	Yorkshire							6067	8042
0	.60 - 16.50 6.50 - 31.00	Sonic Drilling Rotary Coring	(Hammer ID: GS08) (Hammer ID: GS08)			Client:	BP			Ground					Data Started	16/08/202)
						E: 4569	947.093			Ground	Lever(III)	7.466	AOD		Date Comple	ted: 07/09/2	2022
\vdash		In Situ Test	ing	Corin	g Info	mation	18.285							Reduced		Depth	Backfill/
	Depth (m)	Sample Ref &	Test Type	TCR SCR	FI	Core Run		DES	SCRIPTION					(m)	Legend	(Thick) (m)	Instrument
	()	Туре	and Result	RQD												=	
Ę				100													
-				95 89												-	
-					3												
_																-	
-							From 30.54m closely space	n bgl: Fi d, horiz	racture se zontal, ste	et 2 prese pped rou	nt: Medi gh, parti	ium to ly opei	n, clean				
Ľ							or infilled with	soft gr	ey clay.								
-														-23.53		31.00	
								End	of Borob	010 31 00	m						
								(Thi	ckness of	basal lay	rer						
									not pro	oven)							
er 202																	
/embe																	
29 No																	
Date: 2																	
8																	
/1.3.G																	
ARY																	
S 4 C																	
2T AG																	
IN: N																	
LIDI																	
GPJ																	
ZLG																	
1.1 N																	
sct: V																	
Proje																	
				<u> </u>	<u> </u>												
u l u	W Strike F	ater Strikes low Remark	s	Hol	⊣ole ⊑ le Dia	Depth	of Date	Progre Fime	Hole	Casing	Water	1. Sonic	Rotary Core	Remar (SO/RC) boref e north of Rem	KS nole located in the Ma ediation Zone PR1R	in Site area of Te	esworks,
	vepth			(mr 146	m) 3	Hole (31.00	m) 07-09-2022 1	14:30	Depth (m) 31.00	Depth (m) 31.00	Depth (m	1) 2. Conc 0.60m b 3. SO/P	gl on hard stra	pleted to 0.21r atum. Permissi	n bgl. Buried Service on granted to progres	Inspection Pit ten s borehole via So bgl. and complete	minated at onic drilling. ed via Rotary
KD C												Coring t 4. Topo	o 31.00m bgl. graphy: Level	Ground.	during drilling due to	addition of fluck	vater
ANDA												6. Slag : 4.93m b	and refractory gl. No olfactor	material encourry evidence of	untered in material rec contamination.	covered from gro	und level to
D: ST.												r. Borel	ພະ backtilled	with pentonite	pellets and ansings u	poin completion.	
aport	N-4 -							Sr) cale: 1:25		I	Loaaed	By: RB		Checker	By: JW	
ž 🗌	Notes: Fo	r explanatio	n ot symbols an	nd abbr	reviati	ons, se	e Key Sheet.					9900	., .		0.1001.00	-,: 0.1	

Λ		M			М	Tel: (0113 391 6	800		Bore	ehole	No. F-E	3H11	5
			2 L	City Walk eeds S11 9AR	< c	Fax:	0113 391 (.aecom.com	6899 n	AGS REGISTERED USER 2022	Sheet:	1 of 7			
Equipment	t & Method XCalibre Nep	S: tune Coring Rig		Project	Name: Net Ze	ero Teesside C	Onshore (Ground Inve	estigation -	Front End Eng	ineering D	Design (FEED)	Job No:	0040
0.18 - 0.30	Insulated Har Sonic Drilling	nd Tools (Hammer ID: GS08)		Project Client:	BP	icar, North Yoi	rkshire						60678	8042
15.00 - 31.50	Rotary Coring	(Hammer ID: GS08)	-	Co-ord	inates:			Ground L	evel (m):			Date Started:	16/08/2022	!
	-			N: 5254	451.755					7.530 AOD		Date Complete	d: 01/09/2	022
Depth (m)	In Situ Tes Sample Ref &	ting Test Type	Coring Info TCR SCR FI	Core Run		DESCF	RIPTION				Reduced Level (m)	Legend	Depth (Thick) (m)	Backfill/ Instrument
-	<u>Type</u>	and Result	RQD		MADE GRC	UND: Grey	CONC	RETE			7.05		(0.18)	
- - - - - - - -		PID = 0.6ppm			MADE GRC subrounded medium cob of slag. San (MADE GRC	DUND: Brow I fine to coa bble content d is fine to o DUND)	vnish gre rse GR/ t. Cobbl coarse	ey sandy AVEL of s es are an	angular to lag with lo gular to s	o ow to subangular	. 7.35		_ 0.18 - - - - - -	
- - - - - - - - - - - - - - -		PID = 0.3ppm			From 1.03n	n to 1.50m l	bgl: Bec	omes SA	ND and C	GRAVEL.			- - - - - - (2.82) -	
- 2.00 - - - - 		PID = 0.6ppm PID = 0.7ppm											- - - - -	
BII Date: 29 November 2022 	BES	PID = 1.0ppm SPT(C) N>50 25 for 45mm/50 for 20mm			From 2.51n NOTE: Prop MADE GRC subrounded high cobble	n bgl: Becon posed reme DUND: Black I fine to coa content. Co	mes bla ediation k mottle rse GRA	ck mottle level 4.8r d grey an AVEL of b re angula	d grey. n AOD. d yellow a prick and s ar to subro	angular to slag with ounded of	4.53		- - - - 3.00 -	
3.50 3.75	D	PID = 0.0ppm			släg (MADE GRC	DUND)		Ū					- - - (1.26) -	
97 12 12 12 12 12 12 12 12 12 12 12 12 12	В	PID = 0.0ppm									3.27		- - - - 4.26	
9:9:- 4.30 - 4.50- 5.20 - 4.50- 5.20	B D B	PID = 0.6ppm SPT(C) N=50 7,8/ 10,13,12,15			MADE GRC Gravel is an brick (MADE GRC Dense local with occasic (TIDAL FLA	DUND: Dark Igular to sub DUND) Iy very dens Daal black o T DEPOSIT	brounde se light l rganic s	gravelly fi d fine to o prown fino pecs and	ne to coa coarse of e to coars shell fraç	arse SAND. slag and se SAND gments	3.03		_ (0.24) 4.50 	
0 												· · · · · · · ·	-	
With ID: Strike File Depth Dep	I ater Strikes ow Remark	l IS	Hole Di. (mm) 300 Insp. p	Diamete a Depth Hole (i 0.18 it 0.30	I of Date m) 16-08-2022 25-08-2022	Progress Time Hi 2 14:00 0. 2 10:30 0.	ole (epth (m) I 18 30	Casing V Depth (m) [Vater 1. Depth (m) 2 3 C 4 5 6 0 7.	Sonic/Rotary Core I tedcar. Located in th Concrete core com .30m bgl on hard str .50/RC borehole ac oring to 31.50m bgl. . Groundwater strike . Slag material encou Ifactory evidence of 6 . Borehole backfilled	(SO/RC) borel (SO/RC) borel e east of Rem pleted to 0.18 atum. Permiss Vanced via Sc Ground. a not observed initered in mation. with bentonite	ks hole located in the Main ediation Zone PR2B. In byl. Buried Service Ins ion granted to progress t pric drilling to 15.00m bg I during drilling due to ad erial recovered from grou pellets and arisings upo	Site area of Tee pection Pit term oorehole via Sor , and complete dition of flush w and level to 4.50 n completion.	asworks, ninated at ici drilling. d via Rotary ater. Im bgl. No
Notes: For	explanatio	on of symbols an	d abbrevia	itions, se	e Key Sheet.	Scale	: 1:25		Lo	gged By: RB		Checked E	By: JW	

Δ		NO	1	A 5th	ECO Floor	DM Tel: 0113 391 68		Bore	hole	No. F-E	3H11	5
				Lee LS	aty waik eds 11 9AR	www.aecom.con	n REGISTERED USER 2022	Sheet: 2	of 7			
Equipment 8		S: tune Coring Rig			Project	ct Name: Net Zero Teesside Onshore G	Fround Investigation - Fro	nt End Engi	neering D	esign (FEED)	Job No:	
0.18 - 0.30 lr	nsulated Har	Id Tools			Project Client [.]	ct Location: Redcar, North Yorkshire					6067	8042
15.00 - 31.50 F	Rotary Coring	(Hammer ID: GS08)			Co-ord	dinates:	Ground Level (m):			Date Started:	16/08/2022	1
					E: 4568 N: 5254	6870.692 5451.755	7.53	0 AOD		Date Complete	d: 01/09/2	022
In	Situ Tes	ting	Corin	g Infor	mation				Reduced Level	Logond	Depth (Thick)	Backfill/ Instrument
Depth (m)	Ref &	Test Type and Result	SCR	FI	Core Run				(m)	Legenu	`(m) ´	
5.00	ËS	PID = 0.2ppm								· · · · · · · · ·	-	
5 25										· · · · · · · ·	-	
5.30- 6.00	B									· · · · · · · ·		
-5.50		PID = 0.2ppm								· · · · · · · ·	_	
-										· · · · · · · ·	-	
										· · · · · · · ·		
-										· · · · · · · · ·	-	
6.00- 6.75 6.00	B SS	PID = 0.2ppm SPT(S) N=24								· · · · · · · · ·	-	
		3,3/ 4,5,7,8				From 6.00m bgl: Becomes mot	tled grey.			· · · · · · · ·		
-										· · · · · · · ·	-	
_										· · · · · · · · ·	-	
-										· · · · · · · · ·	-	
6.75- 7.50	в									· · · · · · · · ·	-	
										· · · · · · · · ·		
-7.00		PID = 0.2ppm								· · · · · · · ·	-	
7.15	D									· · · · · · · ·	-	
-						From 7.10m to 7.21m bgl: Graves subangular to subrounded fine	velly band. Gravel is to coarse of quartzite	and		· · · · · · · ·	-	
-						mudstone.				· · · · · · · ·	-	
7.50- 8.20	B SS	SPT(S) N=43 1,3/										
1 1		5,9,13,10								· · · · · · · · ·	-	
										· · · · · · · · ·		
00.8 - is		PID = 0.0ppm								· · · · · · · · · ·	_	
										· · · · · · · · · ·	-	
8.25 0 8.30-9.00	DB									· · · · · · · ·	(7.56)	
×-										· · · · · · · ·	-	
BRAR										· · · · · · · · ·	_	
40 										· · · · · · · ·	-	
AGS (· · · · · · · · ·	-	
⊢ – Z. – 9.00 - 9.70	В	PID = 0.0ppm								· · · · · · · · ·		
ibrary		SPT(S) N>50 4,6/14,16,20 for								· · · · · · · · · · ·	-	
		70mm								· · · · · · · ·		
0.10										· · · · · · · ·	-	
										· · · · · · · ·	-	
<u>월</u> 9.75 일 9.80- 10.50	D B									· · · · · · · ·		
										· · · · · · · · · · · ·	-	
Wate Strike Flow	er Strikes v Remark	(S	Hol	lole D e Dia	iamete Depth	ter Progress th of Date Time Hole C	Casing Water ^{1. Soni}	c/Rotary Core (Remar SO/RC) bore	ks nole located in the Main	Site area of Tee	esworks,
Depth			(mr	n)	Hole (e (m) Depth (m) D	Depth (m) Depth (m) Redcar 2. Cond 0.30m	r. Located in the crete core comp bgl on hard strat	east of Reme leted to 0.18r tum. Permissi	ediation Zone PR2B. n bgl. Buried Service Ins on granted to progress I	pection Pit tern	ninated at nic drilling.
							3. SON Coring 4. Topo	to 31.50m bgl. ography: Level C	Ground.	during drilling due to ==	dition of fluch	a via i vulali y
AND							5. Grou 6. Slag olfactor 7. Borr	material encour	ntered in mate ontamination.	erial recovered from gro	und level to 4.50)m bgl. No
							/. bore			Pointe and anoings upo		
Notes: For e	xplanatic	n of symbols an	d abbr	eviati	 ons, se	see Key Sheet. Scale: 1:25		By: RB		Checked E	By: JW	

AE	C	ON		5th 2 C Lee LS1	Floor ity Walk ds	Λ	Te Fa W	el: 0113 391 ax: 0113 391 ww.aecom.c	6800 I 6899 om		Bore Sheet:	ehole	No. F-E	3H11	5
Equipment & N 0.00 - 0.18 XCa 0.18 - 0.30 Insu 0.30 - 15.00 Son	Aethods Ilibre Nept Ilated Han ic Drilling	S: tune Coring Rig nd Tools (Hammer ID: GS08)		F F	Project N Project L Client: E	Name: Net Zer Location: Redo 3P	o Teessid car, North	e Onshore Yorkshire	Ground In	vestigation	- Front End Eng	gineering D	Design (FEED)	Job No: 6067	8042
15.00 - 31.50 Rola	ary Coring	(Hammer ID: GS08)		E	Co-ordin E: 45687	ates: 70.692			Ground	Level (m):	7.530 AOD		Date Started: Date Complete	16/08/2022 ed: 01/09/2	2
In S	itu Test	ting Test Type	Coring	l Infor	N: 52545 mation Core	51.755	DES	CRIPTION	1			Reduced Level (m)	Legend	Depth (Thick) (m)	Backfill/ Instrument
Depth (m) 10.00 10.00 10.50 10.50 10.50 10.50 10.50 10.50 10.50 11.00 11.00 11.00 11.00 11.00 11.00 11.00 12	B B SS D D B B B UTT100 B B B D B B B B B B B B B B B B B B B	Test Type and Result PID = 0.0ppm SPT(S) N>50 5,5/9,14,27 for 60mm PID = 0.0ppm SPT(S) N=0 0,0/ 0,0/ 0,0/ 0,0/ 0,0/ PID = 0.0ppm PID = 0.0ppm		FI	Core Run f	From 10.500 Very soft gre fine to coars (TIDAL FLA) From 13.300 From 14.370 From 14.530	The providence of the second s	OOm bgl: . DOm bgl: . wn mottle siTS) 50m bgl: ecomes f	30% reco 30% reco ed black s sent. Band of v	overy. sandy CL	AY. Sand is	Level (m)		(Thick) (m) 	Backlin/ Instrument
												_7 /7		15.00	
Water Water Water UPUDED Depth UDepth UDepth UDepth UDepth UDepth UDepth UDepth UDepth UDepth UDEPT UD	Strikes Remark	is S	⊢ – – – – Hole (mn 194	lole D e Dia n)	iameter Depth o Hole (m 15.00	of Date) 25-08-2022 26-08-2022	Progree Time 17:15 09:30	Hole Depth (m) 12.00 15.00	Casing) Depth (m) 12.00 15.00	Water) Depth (m) 2.60 5.90	Sonic/Rotary Core Redcar. Located in th 2. Concrete core com 0.30m bgl on hard str. 3. SO/RC borehole ar Coring to 31.50m bgl. 4. Topography: Level 5. Groundwater strike 6. Slag material encou offactory evidence of 7. Borehole backfilled	(SO/RC) bore e east of Rem pleted to 0.18 atum. Permiss dvanced via So Ground. s not observec untered in mat contamination. with bentonite	ks hole located in the Main ediation Zone PR28. In byl. Buried Service In ion granted to progress onic drilling to 15.00m bg I during drilling due to ac erial recovered from gro pellets and arisings upc	15.00 Site area of Tee spection Pit term borehole via So I, and complete Idition of flush w und level to 4.50 on completion.	asworks, ninated at nic drilling, wd via Rotary vater. 0m bgl. No
Notes: For exp	olanatio	on of symbols and	d abbr	eviatio	ons, see	Key Sheet.	Sc	 ale: 1:25		L	ogged By: RB		Checked I	By: JW	

AE	C	O		5th 2 C	Floor Floor ty Walk	M	T F	ēl: 0113 391 āx: 0113 391 ww.aecom.c	6800 6899 om	AGS	Bo	prehole	No. F-I	3H11	5
Equipment & 0.00 - 0.18 XC 0.18 - 0.30 Ins 0.30 - 15.00 So 15.00 - 34.50 Bo	Vethod: alibre Nep ulated Har nic Drilling	S: tune Coring Rig nd Tools (Hammer ID: GS08)			11 9AR Project Project Client:	Name: Net Zer Location: Redo BP	o Teessid ar, North	de Onshore Yorkshire	Ground In	REGISTERED USER 20 Vestigation	- Front End	:t: 4 of 7 Engineering [Design (FEED)	Job No: 6067	8042
15.00 - 31.50 Ro	ary Coring	(Hammer ID: GS08)			Co-ordi E: 4568 N: 5254	nates: 370.692 151.755			Ground	Level (m):	7.530 AC	D	Date Started: Date Complete	16/08/2022 ed: 01/09/2	022
In S Depth (m)	Situ Tes Sample Ref &	ting Test Type and Result	Coring TCR SCR ROD	g Infor FI	mation Core Run		DES	SCRIPTION	l			Reduced Level (m)	Legend	Depth (Thick) (m)	Backfill/ Instrumen
	C	and Result PID = 0.0ppm	86 0 0	CLAY	15.00- 16.50 16.50 18.00- 18.00 19.50 21.00	Firm reddish Gravel is sub sandstone au (TILL: DEVE Pressureme pocket drilled From 18.77r	ter test d using ⁻	(HPD) co T2-101 cc 50m bgl:	ey slightl led fine t quartzite mpleted a re barrel	y gravelly o medium at 16.00n	y CLAY. n of				
Strike Flow Depth	Strikes Remark	i S	Hol (mn	lole D e Dia n)	iamete Depth Hole (r	r of Date n)	Progre Time	ess Hole Depth (m)	Casing Depth (m)	Water Depth (m)	1. Sonic/Rotary Redcar. Located 2. Concrete core 0.30m bgl on ha 3. SO/RC boreh Coring to 31.50r	Rema Core (SO/RC) bore in the east of Rem completed to 0.16 rd stratum. Permiss ole advanced via S ole advanced via S o bgl.	rks hole located in the Main rediation Zone PR2B. Im bgl. Buried Service In sion granted to progress onic drilling to 15.00m bg	Site area of Tee spection Pit term borehole via Soi gl, and complete	esworks, ninated at nic drilling. d via Rotary
											 Topography: L Groundwater a Slag material olfactory evidence Borehole back 	evel Ground. strikes not observe encountered in ma e of contamination filled with bentonite	d during drilling due to ac relial recovered from gro e pellets and arisings upo	Idition of flush w und level to 4.50 on completion.	ater. Dm bgl. No
Notes: For ex	planatio	on of symbols an	nd abbr	eviati	ons, se	e Key Sheet.	Sc	cale: 1:25	I	' 	Logged By: F	RB	Checked	By: JW	

ΛΞ		5	A	A 5th	ECO	M	6800	Bore	ehole	No. F-E	3H11	5
				2 C Lee LS	tity Walk eds 11 9AR	Fax: 0113 391	6899 om REGISTERED USER 2022	Sheet:	5 of 7			
Equipment & 0.00 - 0.18 X0	Methods alibre Nept	: une Coring Rig			Project Project	Name: Net Zero Teesside Onshore	Ground Investigation - Fro	ont End Eng	ineering D	Design (FEED)	Job No:	8042
0.18 - 0.30 In: 0.30 - 15.00 Sc	ulated Han nic Drilling	d Tools (Hammer ID: GS08)			Client:	BP					00070	5042
15.00 - 31.50 Ro	tary Coring	(Hammer ID: GS08)			Co-ordi E: 4568	inates: 870.692	Ground Level (m): 7.53	30 AOD		Date Started: Date Complete	16/08/2022 d: 01/09/2	022
Ins	Situ Test	ing	Coring	g Infor	N: 5254 mation				Reduced Level		Depth (Thick)	Backfill/
Depth (m)	Sample Ref & Type	Test Type and Result	SCR RQD	FI	Core Run	DESCRIPTION			(m)	Legend	(m)	
-											-	
-			95 0 0								-	
-											-	
-											-	
20.77-21.00	С											
-					01.00						-	
-					21.00- 22.50	Venuweak locally weak thinly	laminated bluich grov		-13.63		21.16	
-						MUDSTONE locally recovered (REDCAR MUDSTONE FORM	as gravel and clay				-	
- 21.50	ES										_	
-			100								-	
-			0	NI							-	
-											-	
-											-	
-						At 22.26m bgl: White calcare	ous deposits.				-	
				0	22.50-						_	
					24.00	Francisco O O Track al La comissión di	t. 00°				-	
				NI		From 22.67m bgi: Lamination	s at ~20°.				-	
											-	
= 23.25	с		60 11								-	
1 1.3			0	0							-	
						Pressuremeter test (HPD) co	mpleted at 23.50m bgl	l. Test			-	
				NI		pocket drilled using T2-101 cc	ore barrel.				-	
											-	
				0	24.00- 25.50						-	
											-	
											-	
			100	NI							-	
			21 15									
	Strikos				liamoto	ar Drogross	I		Remor	ks		
Strike Flow	Remark	S	Hol (mr	e Dia n)	Depth Hole (I	of Date Time Hole m) Depth (m)	Casing Water 1. Sor Depth (m) Depth (m) 2. Cor	nic/Rotary Core ar. Located in the ncrete core com	(SO/RC) bore e east of Rem pleted to 0.18	hole located in the Main ediation Zone PR2B. m bgl. Buried Service Ins	Site area of Tee pection Pit term	esworks, ninated at
						30-08-2022 15:30 24.00	24.00 0.30m 3. SO Coring 4. Tot	h bgl on hard stra /RC borehole ad g to 31.50m bgl. bography: Level	atum. Permiss Ivanced via So Ground.	ion granted to progress to pnic drilling to 15.00m bg	oorehole via Sor I, and complete	nic drilling. d via Rotary
							5. Gro 6. Sla olfacto 7. Bor	g material encou ory evidence of or rehole backfilled	s not observed untered in mati- contamination. with bentonite	I during drilling due to ad erial recovered from grou pellets and arisings upo	dition of flush w und level to 4.50 n completion	ater.)m bgl. No
									-	5 +-		
Notes: For ex	planatio	n of symbols an	d abbr	eviati	ons, se	e Key Sheet. Scale: 1:25	Logge	d By: RB		Checked E	By: JW	

	ΔΞ	1	M	A	A 5th	ECOI Floor	М	Te	el: 0113 391	6800			Bore	ehole	No	. F-E	3H11	5
					2 C Lee LS	City Walk eds 11 9AR		Fa	ax: 0113 391 ww.aecom.co	6899 m	REGISTERED USER	2022	Sheet: 6	6 of 7				
	Equipment &	Method: Calibre Nep	S: tune Coring Rig			Project	Name: Net Zerc) Teessid	e Onshore	Ground In	vestigatio	n - Fro	ont End Eng	ineering D)esign (FEED)	Job No:	2040
	0.18 - 0.30 In 0.30 - 15.00 Se	sulated Har	nd Tools (Hammer ID: GS08)			Project Client:	Location: Redca	ar, North	YORKSNIRE								60678	3042
	15.00 - 31.50 R	otary Coring	(Hammer ID: GS08)			Co-ordi E: 4568	nates: 70.692			Ground	Level (m)):			Date	Started: 1	6/08/2022	
	In	Situ Test	ting	Corin		N: 5254	51.755					7.00		Reduced	Date	Complete	d: 01/09/2	022 Backfill/
	Depth	Sample	Test Type	TCR	FI	Core		DES	CRIPTION					Level (m)	L	egend	(Thick) (m)	Instrument
	(m)	Туре	and Result	RQD		Run												
	-				0												-	
	-																-	
	-																-	
	-					25.50- 27.00											-	
	-																-	
	-																-	
	-				NI												-	
	-			100 0													-	
	-			0													-(10.34)	
	_																_	
ļ	26.63	С					Pressuremet	er test (usina T	(HPD) cor [2-101 co	npleted a re barrel	at 26.50	m bgl	. Test				-	
	-							5									-	
	-																-	
	-					27.00- 28.50											-	
	-																-	
	-																-	
	-																-	
	-			100 100													-	
	-			91													-	
ale: 22	_				2												-	
	-																-	
5.5	_																-	
ARY -	_					28.50-											_	
	-					30.00											-	
+ 0 0	-																-	
	-																-	
-IDIALY.	-																-	
	-			100 52 52	A.I.												-	
5	-																-	
	-																-	
	- 20.77				0												-	
би П	_ 23.11																-	
	Wate	r Strikes			 Hole D)iamete	r	Progre	ess					Remar	ks			
	Strike Flow Depth	Remark	(S	Hol (mr	le Dia n)	Depth Hole (r	of Date n)	Time	Hole Depth (m)	Casing Depth (m)	Water Depth (m	1. Sor Redca 2. Cor	nic/Rotary Core ar. Located in the acrete core com	(SO/RC) bore e east of Reme pleted to 0.18r	hole locate ediation Zo m bgl. Buri	d in the Main S one PR2B. ed Service Ins	Site area of Tee	sworks, inated at
				146	6	30.00	31-08-2022	17:30	30.00	30.00		0.30m 3. SO/ Coring	RC borehole ac to 31.50m bgl.	atum. Permissi Ivanced via Sc Ground	ion granted onic drilling	to progress b to 15.00m bgl	orehole via Sor , and complete	iic drilling. d via Rotary
NUAR												5. Gro 6. Slag	g material encou ory evidence of a	s not observed intered in mate contamination	l during dri erial recove	lling due to add ered from grou	lition of flush want and level to 4.50	ater. m bgl. No
AIC O												7. Bor	ehole backfilled	with bentonite	pellets an	d arisings upor	n completion.	
eport II	Notes: For a	nlanatia	n of symbols or	nd abb	'eviati		e Key Sheat	Sc	ale: 1:25		 	Logge	d By: RB			Checked B	y: JW	
٢L	Notes. FULE	pianau	n or symbols al	ເລັດນນ	Juai	5113, 30	o noy oneer.											

	A	EC	ON		5th 2 C	Floor Sity Walk	M	T F	Fel: 0113 391 Fax: 0113 391	6800 6899			Bore	ehole	No.	F-BH1	15
				_	Lee	eds 11 9AR	N. N. (7	v 	www.aecom.c	om	REGISTERED USER	2022	Sheet:	7 of 7			
	Equipmer 0.00 - 0.18	nt & Method: XCalibre Nep	S: tune Corina Ria			Project	Name: Net Zer	o Teessio	de Onshore	Ground Inv	vestigatio	on - Fron	it End Eng	ineering D	esign (FEE	ED) Job N	No:
	0.18 - 0.30	Insulated Har	nd Tools			Project	Location: Redo	ar, North	Yorkshire							60	678042
	0.30 - 15.00 15.00 - 31.50	Sonic Drilling Rotary Coring	(Hammer ID: GS08) (Hammer ID: GS08)		H		BP			Ground	l evel (m').			Date Sta	arted: 16/08/2	192
						E: 4568	70.692			Cround	Lovor(iii)	,. 7.530) AOD		Date Co	mpleted: 01/0	9/2022
-		In Situ Tes	ting	Corin	g Infor	N: 5254 mation	51.755							Reduced		Depth	Backfill/
	Depth	Sample	Test Type	TCR	FI	Core		DES	SCRIPTION	I				Level (m)	Lege	nd (Thick) Instrumen
	(m)	Туре	and Result	RQD	NI	Run											
+					INI	30.00- 31.50											
ł																_	
	-				0												
	-															_	
-																	
+				100 5													
F				0													
	_				NI												
+							Pressureme	ter test	(HPD) co	mpleted a	at 31.00	m bal.	Test				
+							pocket drilled	dusing	T2-101 co	ore barrel.							
t																	
	_													-23.97		31.50	
								End (Thi	l of Boreh	ole 31.50	m						
								(111	not pro	oven)							
2022																	
mber																	
Novel																	
: 291																	
Date																	
GLB																	
V1.3.																	
ARY																	
LIBR																	
340																	
L AGS																	
ZN :																	
ibrary																	
<u>זור</u>																	
GI.GF																	
NZT																	
11.1																	
ect: V																	
Proj																	
1901																	
OLE L	W Strike F	ater Strikes	s (S	Hol	lole D e Dia	iamete Depth	r of Date	Progr Time	ess Hole	Casing	Water	1. Sonic	/Rotary Core	Remark (SO/RC) boreh	KS Iole located in t	the Main Site area o	f Teesworks,
REH	Depth			(mr	n)	Hole (1	n)	00.15	Depth (m)	Depth (m)	Depth (n	n) Redcar. 2. Conc 0.30m b	. ∟ocated in the rete core com ogl on hard stra	e east of Reme pleted to 0.18n atum. Permissio	eulation ∠one P n bgl. Buried S on granted to p	'r≺∠b. ervice Inspection Pit vrogress borehole via	terminated at a Sonic drilling.
00						01.00	101-03-2022	09.10	01.00	51.50		3. SO/R Coring t	C borehole ac to 31.50m bgl. graphy: Level	lvanced via So Ground	nic drilling to 15	5.00m bgl, and com	pleted via Rotary
IDAR												5. Grou 6. Slag	ndwater strikes material encou	s not observed intered in mate	during drilling o rial recovered	due to addition of flu from ground level to	sh water. 4.50m bgl. No
STAN												7. Borel	y evidence of o hole backfilled	ontamination. with bentonite	pellets and aris	sings upon completion	on.
Ë																	
Repo	Notes: Fo	or explanatio	n of symbols an	d abbr	eviati	ons, se	e Key Sheet.	S	cale: 1:25			Logged	By: RB		Che	ecked By: JW	

	EC	ON		AECO 5th Floor 2 City Wall Leeds	M ĸ	Tel: 0113 391 Fax: 0113 391 www.aecom.co	6800 6899 om AGS	Bore	ehole	No. F-E	3H114	4			
Equipment & 0.00 - 0.20 0 0.20 - 0.55 1 0.55 - 15.00 \$	Calibre Nep Scalibre Nep Insulated Har Sonic Drilling	S: tune Coring Rig nd Tools (Hammer ID: GS002)		LS11 9AR Project Project Client:	t Name: Net Ze t Location: Red BP	ero Teesside Onshore car, North Yorkshire	REGISTERED USER 2 Ground Investigation	n - Front End Eng	jineering D	Design (FEED)	Job No: 6067	8042			
15.00 - 29.00 F	totary Coring	(Hammer ID: GS002)		Co-ord E: 456	inates: 803.946		Ground Level (m):	: 7.471 AOD		Date Started:	16/09/2022 d· 21/09/2	022			
In	Situ Tes	ting	Coring Ir	N: 525	469.587				Reduced		Depth	Backfill/			
Depth (m)	Sample Ref &	Test Type	TCR SCR F	-I Core Run		DESCRIPTION			(m)	Legend	(m)	Instrument			
	Гуре		RQU		MADE GRC Recovered a fine to medi (MADE GRC	DUND: Grey CONC as subrounded col um sand DUND)	RETE. From 0.20 obles of concrete	0m bgl: and some			- _ (0.55) -				
0.55- 0.60 0.60- 1.20 - - 0.80 -	ES ES	PID = 0.5ppm			MADE GRC coarse SAN subangular coarse of sla (MADE GRC	DUND: Dark brown ID with high cobble of slag. Gravel is a ag and brick DUND)	and grey very gra content. Cobble angular to subrou	avelly fine to s are nded fine to	6.92		- 0.55 - - -				
- 1.20- 1.50 - -	D	טיי = 0.7ppm									- - - -				
- 1.50- 2.20 - - - 1.80	ES	PID = 1.5ppm SPT(C) N<50 22,3 for 4mm/50 for 48mm									(1.00) - -				
- 2.00		PID = 1.8ppm													
- 2.20- 2.43	D														
2.43- 2.90	В	PID = 1.9ppm			MADE GRC medium SA subangular	DUND: Brown and ND with medium c of slag. Gravel is s	light brown grave obble content. Co subrounded fine to	lly fine to obbles are o medium of	5.04		- 2.43 				
- 2.80 - 2.90- 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - 3.00	ES D B SS	PID = 1.2ppm SPT(S) N=18 2,4/ 4,5,5,4			(MADE GRC	posed remediation	level 4.8m AOD.				-				
	D B ES	PID = 2.5ppm			From 3.79n	n bgl: Becomes lig	ht brownish grey	and very			- - - (2.87)				
	В	PID = 0.6ppm SPT(C) N<50			graveny.						-				
	ES	19,6 for 18mm/23,19,8 for 44mm									-				
Strike Flov	er Strikes v Remarł	i (S	Hole I (mm) 300 Insp.	e Diamete Dia Depth Hole (0.20 Pit 0.55	er of Date m) 15-09-2022 16-09-2022	Progress Time Hole Depth (m) 2 14:30 0.20 11:00 0.55	Casing Water Depth (m) Depth (m	1. Sonic/Rotary Core Redcar. Located in th 2. Concrete core cor 0.55m bij on hard str 3. SO/RC borehole a Corring to 23.00m bgl 4. Topography. Level 5. Groundwater strike 6. Slag and refractory bgl. No offactory evid 7. Borehole backfilled	Remar (SO/RC) bore e centre of Re pleted to 0.20 atum. Permiss dvanced via So Ground. s not observec material enco ence of contan with bentonite	rks hole located in the Main mediation Zone PR28. m bgl. Buried Service In son granted to progress i onic drilling to 15.00m bg d during drilling due to ad writered in material recom- ination.	Site area of Teo spection Pit term orrehole via So II, and complete dition of flush w vered from 0.55 n completion.	esworks, nia draiting. d via Rotary ater. m to 5.30m			
Notes: For e	xplanatic	on of symbols an	d abbrev	iations, se	e Key Sheet.	Scale: 1:25		Logged By: RB		Checked E	By: JW				
AE		CON		AE 5th 2 Ci	ECOI Floor ity Walk	M	T	Tel: 0113 391 Fax: 0113 391	6800 I 6899		B	orehole	No. F-I	3H11	4
---------------------------------	-----------------------------	---	-----------	--------------------------	---------------------------	---------------	---------------	--------------------------------	----------------	-------------------	--	--	---	-------------------	---------------
				Lee LS1	ds 19AR		v	www.aecom.c	om	REGISTERED USER 2	She	et: 2 of 6			
Equipment &	Method	s:		F	Project	Name: Net Ze	ero Teessio	de Onshore	Ground In	vestigatior	n - Front End	Engineering I	Design (FEED)	Job No:	
0.00 - 0.20 X 0.20 - 0.55 In	Calibre Nep Isulated Har	itune Coring Rig nd Tools		F	Project	Location: Rec	lcar, North	Yorkshire						6067	8042
0.55 - 15.00 S	onic Drilling	(Hammer ID: GS002)		0	Client:	BP									
15.00 - 29.00 R	otary Coring	g (Hammer ID: GS002)			Co-ordi	nates:			Ground	Level (m):			Date Started:	16/09/2022	2
					1: 4000 1: 5254	169.587					7.471 A	OD	Date Complete	ed: 21/09/2	2022
In	Situ Tes	ting	Coring	Inform	nation							Reduced		Depth	Backfill/
Depth	Sample	Test Type	TCR	FI	Core		DE	SCRIPTION	I			(m)	Legend	(Thick) (m)	Instrumen
(m)	Туре	and Result	RQD		Run										_
- 0.00														}	
+														}	
- 5.30- 5.40	D					Verv loose l	iaht brov	vn mottler	hlack sli	iahtly ara	velly fine t	2.17		5.30	
- 5.40- 6.00	В					coarse orga	nic SAN	D with oc	casional	shell frag	ments.		\cdot	-	
-5.50		PID = 1.0ppm				Gravel is su	Ibangula	r fine to m	edium of	sandsto	ne and			-	
Ē						(TIDAL FLA	T DEPO	SITS)					$\frac{1}{2}$,		
- 	E 0														
	E3														
-6.00 - 6.90	в	PID = 0.7ppm												L	
-	_	SPT(S) N=0											1/2 · · · · · · · · · · · · · · · · · · ·	F	
+		0,0,0												┣ │	
6.26- 6.57														F	
F						From 6.26r	n bgl: Be	ecomes m	ottled gre	ey.			$\begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot &$	F	
-6.50		PID = 0.8ppm				From 6.26r	n to 6.57	'm bgl: Be	comes g	ravelly. G	Gravel is			F	
F						medium to o	coarse of	f mudston	e.					-	
						From 6.57r	n bgl: Gr	avel no lo	nger pres	sent.					
6 90- 7 50	В						-		•				$\frac{\sqrt{1}}{\sqrt{2}}$		
													$\underline{t}_{\underline{t}}$, \underline{t}		
-													· · · · · · · ·	-	
-														-	
-													$\begin{array}{c} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot &$	-	
F													1/2	-	
7.50- 8.20	В	PID = 0.8ppm SPT(S) N=39													
		2,3/				From 7.50r	n bgl: Be	ecomes de	ense loca	lly very d	lense.				
		5,0,11,15											$\begin{array}{c} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot &$	[]	
													$\frac{1}{2}, \frac{1}{2}, \frac$		
													· · · · · · · ·	L	
														-	
													$\frac{1}{2} \cdot \frac{\sqrt{1}}{2} \cdot \frac{1}{2} \cdot \frac$	-	
8.30- 9.00	B												$\begin{array}{c} \circ & \cdot & \circ & \cdot \\ \underline{t_{\prime}} & \cdot & \cdot & \underline{t_{\prime}} \\ \cdot & \cdot & \cdot & \underline{t_{\prime}} \\ \cdot & \cdot & \cdot \\ \end{array}$	-	
-														-	
8.50		PID = 0.9ppm											0		
													$\left \begin{array}{cccc} \cdot & \underline{\sqrt{b}} & \underline{\sqrt{b}} \\ \cdot & \underline{\sqrt{b}} & \cdot & \cdot & \cdot & \underline{\sqrt{b}} \\ \cdot & \underline{\sqrt{b}} & \cdot & \cdot & \cdot & \cdot & \underline{\sqrt{b}} \\ \cdot & \underline{\sqrt{b}} & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \end{array}\right $	[]	
+ - 2 _													$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ľ	
														L	
9.00- 9.70	в	SPT(S) N<50												F	
		1,2/4,9,21,16 for 34mm											$\frac{1}{1} \cdot \frac{\sqrt{1}}{1} \cdot \frac{1}{1} \cdot \frac$	- (7.63)	
=		J-11111											$\begin{array}{c} \circ & \cdot & \circ \\ \downarrow_{1} & \cdot & \cdot \\ \downarrow_{2} & \cdot & \cdot \\ \end{array}$	F	
														F	
													0	F	
2 - 9.50		PID = 0.9ppm											$\frac{\sqrt{1/2}}{2}$ $\frac{\sqrt{1/2}}{2}$ $\frac{\sqrt{1/2}}{2}$		
													00 1/	[]	
9.75	D													[
9.80-10.50	В												0	L	
3			Ļ.	-1 -7			_				1		$(\underline{v},\underline{v},\underline{v},\underline{v})$		
Wate Strike Flow	er Strikes Remark	s <s< td=""><td>H Hole</td><td>ole Di Dia</td><td>amete Depth</td><td>r of Date</td><td>Progr Time</td><td>Hole</td><td>Casing</td><td>Water</td><td>1. Sonic/Rotary</td><td>Rema Core (SO/RC) bore</td><td>rKS ehole located in the Main</td><td>Site area of Te</td><td>esworks,</td></s<>	H Hole	ole Di Dia	amete Depth	r of Date	Progr Time	Hole	Casing	Water	1. Sonic/Rotary	Rema Core (SO/RC) bore	rKS ehole located in the Main	Site area of Te	esworks,
Depth			(mn	1)	Hole (r	m)		Depth (m	Depth (m)	Depth (m	Redcar. Locate	d in the centre of Re e completed to 0.20	emediation Zone PR2B. Om bgl. Buried Service In sion granted to progress	spection Pit terr	minated at
						16-09-202	2 17:30	9.00	9.00	4.49	3. SO/RC bore Coring to 23.00	nole advanced via S m bgl.	sonic drilling to 15.00m by	gl, and complete	ed via Rotary
											4. Topography: 5. Groundwate	Level Ground. strikes not observe	d during drilling due to a	dition of flush v	vater.
											b. Siag and refibel. No olfactor 7. Borehole base	actory material ence y evidence of contain chilled with bentonit	puntered in material reco mination. e pellets and arisings up	verea trom 0.58	om to 5.30m
													- Fonoso ana anomyo upi		
Notes: For e	xplanatio	on of symbols an	d abbre	eviatio	ons, se	e Key Sheet.	S	cale: 1:25			Logged By:	RB	Checked	By: JW	

Equipment &	Method			5th 2 C Lee LS	Floor Floor tity Walk eds 11 9AR Project	M Tel: 0113 391 Fax: 0113 391 www.aecom.c Name: Net Zero Teesside Onshore	6800 6899 om Realized Mar and Ground Investigation - Fro	Bore Sheet: 3	of 6	No. F-E	3H114	4
0.00 - 0.20 X(0.20 - 0.55 In 0.55 - 15.00 So	alibre Nep ulated Har nic Drilling	tune Coring Rig nd Tools (Hammer ID: GS002)			, Project Client:	Location: Redcar, North Yorkshire BP		5	5	5 ()	6067	8042
15.00 - 29.00 Ro	tary Coring	(Hammer ID: GS002)			Co-ordi E: 4568	inates: 303.946	Ground Level (m): 7.47	71 AOD		Date Started:	16/09/2022	
In	Situ Tes	tina	Corine		N: 5254 mation	469.587			Reduced	Date Complete	d: 21/09/2	022 Backfill/
Depth (m)	Sample Ref & Type	Test Type and Result	TCR SCR RQD	FI	Core Run	DESCRIPTION	I		Level (m)	Legend	(Thick) (m)	Instrument
- - - - - - - - - - - - - - - - - - -	B D ES	PID = 1.3ppm SPT(S) N=7 1,0/ 1,1,1,4				From 10.12m bgl: Occasiona coal present. From 10.50m bgl: Becomes la From 10.69m to 10.96m bgl:	l bands of coarse sand cose. Band of very clayey sa	d sized		$ \begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \frac{1}{2} & 0 \\ 0 & $		
- 11.40- 12.00 - 11.50 	В	PID = 1.1ppm SPT(S) N=37 1,1/ 4,8,11,14 PID = 0.9ppm				From 12.00m bgl: Becomes c	lense.		-5 46		- - - - - - - - - - - - - - - - - - -	
Date: 73.45	ES					Soft dark greyish brown mottle very organic CLAY (TIDAL FLAT DEPOSITS)	ed black slightly sandy	silty			 (0.52)	
	D B SS	PID = 0.9ppm SPT(S) N=13 1,0/ 2,2,4,5				Light brown mottled grey fine occasional shell fragments (TIDAL FLAT DEPOSITS) Firm brown mottled reddish br sandy silty CLAY. Gravel is su medium of sandstone and mu (TILL: DEVENSIAN)	to coarse SAND with own slightly gravelly s bangular to subrounde dstone. Sand is fine to	lightly ed fine to o medium	-5.98 -6.03		- - - - - - - - - - -	
L	ES D B	PID = 1.9ppm										
OT J Wate Strike Flow Depth Depth Notes: For P	Strikes Remark	s s n of symbols an	d abbr	e Dia n)	iamete Depth Hole (I 15.00	er Progress of Date Time Hole Depth (m) Depth (m) Scale: 1:25	Casing Water 1. Sor Pepth (m) Depth (m) 2. Cor 0.55m 3. SO, Coring 6. Sla bgl. N 7. Bor	hic/Rotary Core (S ar. Located in the crete core compl bgj on hard stratt (RC borenhe adv to 23.00m bg]. oography: Level G and refractory m ehole backfilled w d By: RB	Remar SO/RC) bore contre of Re- eted to 0.20 um. Permiss anced via So round. not observe- naterial enco ce of contan ith bentonite	ks hole located in the Main mediation Zone PR2B. In byl. Buried Service Ins ion granted to progress I nic drilling to 15.00m bg I during drilling due to ad untered in material reco- nination. pellets and arisings upo Checked E	Site area of Tere pection Pit term porehole via Sor or a Sor sorthole via Sor sorthole via Sorthole sorthole via Sorthole dition of flush w rered from 0.55 n completion.	isworks, nia drilling. d via Rotary ater. m to 5.30m

A	C	O		5th 2 C	ECOI Floor City Walk	М	T F V	Tel: 0113 391 Fax: 0113 39 ⁻ www.aecom.c	6800 1 6899 com	AGS			ehole	No.	F-B	H11	4
Equipment & 0.00 - 0.20 X 0.20 - 0.55 In 0.55 - 15.00 S	Method: Calibre Nep sulated Har pnic Drilling	S: tune Coring Rig Id Tools (Hammer ID: GS002)			Project Project Client:	Name: Ne Location: I BP	t Zero Teessio Redcar, North	de Onshore ı Yorkshire	Ground Ir	ivestigation	i - Front E	End Enç	gineering [Design (FEE	ED)	Job No: 6067	8042
15.00 - 29.00 R	otary Coring	(Hammer ID: GS002)			Co-ordi E: 4568	nates: 03.946			Ground	Level (m):	7.471	AOD		Date Sta	arted: 10 mpleted	6/09/2022 I· 21/09/2	2 2022
In	Situ Tes	ting	Corin	g Infoi	N: 5254 mation	69.587							Reduced	Date 00	mpieteu	Depth	Backfill/
Depth (m)	Sample Ref & Type	Test Type and Result	TCR SCR RQD	FI	Core Run		DES	SCRIPTION	I				Level (m)	Lege	nd	(Thick) (m)	Instrumen
- - _ 15.27- 15.50 -	С		100 0 0		15.00- 15.50	From 15	i.00m bgl: B	Becomes I	ocally sti	ff.						_	
			100 0 0	CLAY	15.50- 17.00	From 17 Occasior	'.19m bgl: G nal coal pres	Gravel bec sent.	comes fin	e to coars	se.					(6.73)	
овес и 11:1. ИХТ 16:1-0-1 Плану; ИХТ 14:0-2 4 Л ГРИДАНТ И 1-2:0-ГР II ГЛИГС 18.8.8.7 19.2.8.1 11.1 11.1 11.1 11.1 11.1 11.1 11.	с		000		18.50-20.00	From 18 From 18	9.24m to 18. 9.50m bgl: S	.27m bgl: Sand is ab	Become: sent.	s very gra	ivelly.					-	
ม 																	
Strike Flow Depth	r Strikes Remark	S	Hol (mr	Hole D le Dia n)	Depth Hole (r	r Date of Date n)	Progr Time	ress Hole Depth (m	Casing) Depth (m	Water) Depth (m)	1. Sonic/R Redcar. Lo 2. Concret 0.55m bgl 3. SO/RC I Coring to 2 4. Topogra 5. Groundv 6. Slag and bgl. No olfa 7. Borehole	otary Core ccated in th e core com on hard str borehole a 3.00m bgl uphy: Level vater strike d refractory actory evid e backfilled	Remai (SO/RC) bore e centre of Re pleted to 0.20 dum. Permiss dvanced via So Ground. is not observed material enco ence of contan with bentonite	ks hole located in t mediation Zone mole. Buried So ion granted to p onic drilling to 18 I during drilling to untered in mate nination. pellets and aris	the Main Si PR2B. ervice Inspo rogress bo 5.00m bgl, due to addi erial recove sings upon	te area of Te ection Pit terr rehole via Sc and complete tion of flush v red from 0.58 completion.	esworks, minated at nric drilling, ad via Rotary vater. 5m to 5.30m
∑ Notes: For e	planatio	n of symbols an	l Id abbi	reviati	l ons, se	e Key Shee	et. So	 cale: 1:25	<u> </u>		Logged By	y: RB		Che	ecked By	/: JW	

	A	EC	O		A 5th 2 0	ECOI Floor City Walk	M	T	Tel: 0113 391 Fax: 0113 391	6800 6899			Bore	ehole	No. F	-BH11	4
				_	Le LS	eds 11 9AR		V	www.aecom.c	om	REGISTERED USER	2022	Sheet:	5 of 6			
		t & Methods	S: tune Coring Rig			Project	Name: Net Zer	ro Teessio	de Onshore	Ground Inv	vestigatio	n - Fro	nt End Eng	jineering D	Design (FEED)) Job No:	
	0.20 - 0.55	Insulated Han	id Tools			Project	Location: Redo	car, North	I Yorkshire							6067	8042
	0.55 - 15.00	Sonic Drilling Rotary Coring	(Hammer ID: GS002) (Hammer ID: GS002)			Client:	BP			Creverd					Data Starta	4. 16/00/2020	<u></u>
			()			Co-orai E: 4568	nates: 03.946			Ground	Level (m)): 7.47	1 AOD		Date Starte	0: 16/09/2022	
		In City Teel	tion of	Carin		N: 5254	69.587							Deduced	Date Comp		Deel/fill/
	Dauth	In Situ Tesi Sample	ling	TCR	g Info T	rmation		DE	SCRIPTION	1				Level	Legend	(Thick)	Instrument
	Depth (m)	Ref &	Test Type and Result	SCR	FI	Run		52						(m)	Logona	(m)	
		Туре	unartoout	RQD		20.00-										_1 _1	
	-					21.50								10.76			
	- 20.30	ES				1 1	Weak friable	thinly la	aminated	blueish g	rey MUE	озто	NE.	-12.70		20.23	
	-						Locally recov	vered as	s very stiff	gravelly	clay. Gra	avel is	5				
+	-						(REDCAR M	UDSTO	NE FORM	ATION)						⊒- ∣	
ł	-																
ł	-			100 0													
ł	-			0													
ł	-																
Į																⊒ [
	_																
ļ	-															,	
╞	-				0												
ł	_					21 50											
ł	-					23.00											
ł	-																
ł	-																
Ī	- 21.97-22.	20 C															
	_																
	_			100													
	-			5 0													
	-															-	
ł																-	
2022	-																
ber ;	-				14	1										₽	
ovem	-						From 22.68	m bgl: L	ocally me	dium stro	ng with	shell	fossils.				
29 N	-						undulating ro	or prese ough, op	pen, clean	or infilled	, norizor d with so	oft gre	y clay.				
ate:	_					23.00-	0					Ū					
	_				CLAY	24.50										=[
GLE	_																
5	-															⊒	
MRY	_															-	
LIBR	-				0												
40	-			100 43	CLAY	.											
AGS	-			39	<u> </u>											}	
1Z	-																
ary: I	_				0												
Libr	_															I	
I L de	-				CLAY											╡	
0.10	-																
Z	_				-	24.50										⊒-	
11.1	-					24.50-	From 24.50	m to 25	.03m bal	Freauent	shell for	ssils.				- (8.77)	
sct: <	-							0.		-10-14						₽	
Proje	-																
1 D	-															=	
ЧЦ	Wa	ater Strikes		ŀ	Hole D	Diamete	r (F)	Progr	ress		144 1	4.0	in/Peter C	Remar	ks	Aoin Cita	
Щ	Strike Fl Depth	ow Remark	is <u> </u>	Ho (mr	le Dia m)	Depth Hole (r	of Date	Time	Hole Depth (m)	Casing Depth (m)	Water Depth (m	1. Son Redca	r. Located in the	(SO/RC) bore e centre of Re pleted to 0.20	hole located in the M mediation Zone PR m bgl. Buried Service	Main Site area of Te 2B. ce Inspection Pit terr	esworks,
SORE					,		20-09-2022	16:30	23.00	23.00	1.23	0.55m 3. SO/	bgl on hard stra RC borehole ad	atum. Permiss dvanced via Sc	ion granted to progr nic drilling to 15.00	ress borehole via Sc m bgl, and complete	nic drilling. ed via Rotary
RD C												Coring 4. Top	to 23.00m bgl. ography: Level	Ground.			-
NDA												5. Grou 6. Slag	unowater strike and refractory offactory evide	s not observed material enco ence of contan	utered in material	to addition of flush v recovered from 0.55	im to 5.30m
STA												7. Bore	ehole backfilled	with bentonite	pellets and arisings	upon completion.	
Ξ																	
Cepor	Notes: For	explanatio	n of symbols an	l Id abhi	reviati	ions se	e Kev Sheet	S	cale: 1:25		l	Logged	d By: RB		Check	ed By: JW	
۳ſ	110185. FUI	onpiai iati0	or symbols an	ັດປນ	Undl	513, 58	a nay oneet.								I		

	ΛΞ		M	A	A 5th	ECON Floor	M	Tel: 0113 391	6800			Bore	ehole	No.	F-E	3H114	4
				4	2 C Lee LS	ity Walk eds 11 9AR		Fax: 0113 391	l 6899 om	AGS REGISTERED USER 2	2022	Sheet: (6 of 6				
	Equipment 8	Method: Calibre Nep	S: tune Coring Rig			Project Project	Name: Net Zero Teessi Location: Redcar, North	de Onshore 1 Yorkshire	Ground Inv	/estigatior	n - Fron	nt End Eng	jineering D	esign (F	EED)	Job No: 60678	8042
	0.20 - 0.55 II 0.55 - 15.00 S 15.00 - 29.00 F	onic Drilling otary Coring	id Tools (Hammer ID: GS002) (Hammer ID: GS002)	1		Client:	BP		Ground	ovel (m)				Date	Started: 1	6/00/2022	
						E: 4568 N: 5254	03.946 69.587		Ground	Lever (III).	7.471	1 AOD		Date C	Complete	d: 21/09/2	022
-	In Depth	Situ Tes	ting Test Type	Corine TCR	g Infor	mation Core	DE	SCRIPTION					Reduced Level (m)	Le	gend	Depth (Thick) (m)	Backfill/ Instrument
	(m)	Туре	and Result	RQD		Run										(,	
ļ	-			100 100												-	
	-			94	4											-	
	-															-	
	- _ 25.77- 26.00	c														-	
	-															-	
-	-					26.00- 27.50										-	
ļ	-				CLAY		From 26.15m bgl: F 20-35° planar roug	⁻ racture se	et 2 prese lean or inf	nt: Close	ely spa h soft	aced, arev				-	
ļ	-				0		clay.	., .p, .				9.09				-	
	-			100	CLAY 0											-	
	-			71 49	CLAY											-	
	_															_	
	-				8											-	
	-				CLAY											-	
7.7.7	-				-	27.50- 29.00										-	
/ember 2	-															-	
: 29 Nov	-															_	
3 Date	-			100	4											-	
1.3.GLF	-			97 94												-	
KARY V	_															-	
4_0 LIB	28.66- 29.00	c			NI											-	
	-				0											-	
orary: Nz	_												-21.53 [_29.00	
iru Lit							F		- 1- 00 00								
5.15 17							Enc (Th	ickness of not prc	ole 29.00 basal lay oven)	m ver							
N 1.11 N									,								
Project:																	
LOG	\M/ot	Ar Strikes				iameter	- Drog	ress			1		Remark	ks			
AEHOLE AEHOLE	Strike Flov Depth	/ Remark	(S	Hol (mr	ne Dia n)	Depth Hole (r	of Date Time	Hole Depth (m)	Casing) Depth (m)	Water Depth (m	1. Sonic Redcar. 2. Conc	/Rotary Core Located in the rete core com	(SO/RC) boreh e centre of Ren pleted to 0.20n	nole located mediation Zo n bgl. Buried	in the Main S one PR2B. d Service Insp	ite area of Tee	esworks, ninated at
בי כי כי				146	6	29.00	21-09-2022 14:15	29.00	29.00		0.55m b 3. SO/R Coring t 4. Topo	ogi on hard stra C borehole ac o 23.00m bgl. graphy: Level	aum. Permissio Ivanced via So Ground.	on granted t	o progress b 15.00m bgl	orenole via Sor and complete	แc ariiling. d via Rotary
IANDA											5. Grou 6. Slag bgl. No 7. Borel	nowater strikes and refractory olfactory evide hole backfilled	s not observed material encou ence of contam with bentonite	uning drillir untered in m ination. pellets and	ig que to add aterial recove arisings upor	ered from 0.55	aller. m to 5.30m
9 2 6	Notes: For e	xplanatio	on of symbols an	id abbi	reviati	ons, see	e Key Sheet.	cale: 1:25			Logged	By: RB		C	Checked B	y: JW	

ΛΞ		5	A	AEC	OM		٦	Fel: 0113 301	6800		Boi	rehole	No. F	-BH12	20
				2 City V Leeds LS11 9	/alk AR		F	Fax: 0113 391	1 6899 om	AGS REGISTERED USER 20	2 Sheet:	1 of 8			
Equipment 8	Method	S: nd Tools		Proj	ect N	ame: Net Zer	o Teessio	de Onshore	Ground Ir	ivestigation	- Front End E	ngineering	Design (FEED)) Job No	
0.30 - 15.00 S	onic Drilling	(Hammer ID: GS10)		Proj	ect Lo	ocation: Redo	ar, North	Yorkshire						606	78042
15.00 - 39.00 H	otary Coring	(Hammer ID: GS IU)		Cilei Co-c	ordina	ates:			Ground	Level (m):			Date Starte	d: 02/08/202	2
				E: 4	5686	7.388				()	7.185 AOE)	Date Comp	oleted: 09/08/	2022
In	Situ Tes	ting	Coring	Informat	2540 ion	0.960						Reduced		Depth	Backfill/
Depth (m)	Sample Ref & Type	Test Type and Result	TCR SCR RQD	FI Co Ru	re in		DE	SCRIPTION	1			(m)	Legend	(Thick) (m)	Instrumen
					N (I	MADE GRO MADE GRO	UND: B UND)	lack ASPI	HALT					(0.25)	
-					N s	ADE GRO ubrounded	UND: B fine to c and is fi	rown and coarse GF	black sa RAVEL of	ndy angu slag, brid	lar to ck, concrete	6.94 6.92 6.77		(0.82) (0.75) (0.75) - 0.42	
0.50 		PID = 0.7ppm			(I N	MADE GRO	UND: G	rey CON	CRETE			_		\mathbf{X}	
-					(I N	MADE GRO	UND: B	rown mott	led black	very san	dy angular i	to		8	
		PID = 1.1ppm			re S (I	ounded fine Sand is fine MADE GRO	to coars to coars UND)	se GRAV se	EL of sla	g, concre	te and cher	I.		×-	
- 		PID = 0.9ppm													
														(2.58)	
-2.00 -		PID = 1.2ppm			F	From 1.90m	bgl: Oc	casional	organic r	naterial p	resent.			×-	
-															
-2.50		PID = 1.0ppm												8-	
		PID = 1.1ppm			N re	ADE GRO	UND: Li to coar	ght grey r se GRAV	nottled b EL of sla	rown san g. Sand is	dy angular to s fine to	4.19 o		3.00	
- 3.30- 3.74	в				(1	MADE GRO	UND)							(0.74)	
3.50 3.60	ES	PID = 0.8ppm SPT(C) N=19					iosed re	mediation	i ievel 3.	om AUD.				\mathbf{X}	
5 1 3.74- 4.10	В	2,4/ 3,3,5,8			N	IADE GRO	UND: B	rown mott	led grey	and yello	w gravelly	3.45		3.74	
4.00		PID = 0.5ppm			ti C (I	ne to coars oarse of sla MADE GRO	e SAND ig, sand UND)	stone, mu	s angula idstone a	r to subro and chert	unaed fine t	.0		(0.36)	
⁸ − 4.10-4.50	B				N re c	ADE GRO ounded fine oarse	UND: Li to coar	ght grey r se GRAV	nottled b EL of sla	rown san g. Sand is	dy angular t s fine to	0		4.10	
5 	D ES	PID = 1.0ppm SPT(C) N>50			(1	MADE GRO	UND)							(0.73)	
4.83- 5.20	в	/ 20,12,11,7 for 50mm			N	Aedium den	se vello	wish brow	/n mottle	d dark or	ev slightly	2.36		4.83	
8					g	ravelly silty	fine to o	coarse SA	ND with	occasion	al organic		· · · · · · · · · ·	.× .	
Wate	r Strikes	s (s	Hole	ole Diam	eter	f Date	Progr	ess Hole	Casing	Water	1. Sonic/Rotary Co	Rema	rks ehole located in the f	Main Site area of T	eesworks,
Depth			(mm Inst	b. Pit 0.3	<u>e (m)</u> 0	02-08-2022	12:00	Depth (m)) Depth (m) Depth (m)	Redcar. Located ir 2. Buried Services granted to progres 3. SO/RC borehold Coring to 39.00m t 4. Topography: Le 5. Groundwater str 6. Slag encountere bgl. No olfactory e	the west of Rer Inspection Pit te s borehole via Sogl. vel Ground. ikes not observe d in material rec vidence of conta	mediation Zone PR1 rminated at 0.30m b onic drilling. Sonic drilling to 15.00 d during drilling due overed from 0.25m t mination.	B. gl on hard stratum Im bgl, and comple to addition of flush to 0.27m bgl and 0	Permission ted via Rotary water. .42m and 4.83m
								cale: 1:25			Completion, to allow	ed with an 80mm w Vertical Seism	internal diameter stric Profiling.	red By: IW	bgl upon
2 Notes: For e	xplanatic	on of symbols an	d abbre	eviations,	see	Key Sheet.		JUID. 1.20				-	Check	y. UVV	

Control Control <t< th=""><th></th><th>ΛΞ</th><th></th><th></th><th>4</th><th>A</th><th>ECON</th><th>И</th><th>-</th><th></th><th></th><th></th><th></th><th>Bore</th><th>ehole</th><th>No.</th><th>F-E</th><th>3H12</th><th>0</th><th></th></t<>		ΛΞ			4	A	ECON	И	-					Bore	ehole	No.	F-E	3H12	0	
Capiter 4: End :: Project Name: Not 20 Tessible Ordero Good Investigation: Food Ed Egreering Design (FED) Abit: :: Design Name: Not 20 Tessible Ordero Good Investigation: Food Ed Egreering Design (FED) Abit: :: Design Name: Not 20 Tessible Ordero Good Investigation: Food Ed Egreering Design (FED) Abit: :: Design Name: Not 20 Tessible Ordero Good Investigation: Food Ed Egreering Design (FED) Abit: :: Design Name: Not 20 Tessible Ordero Good Investigation: Food Ed Egreering Design (FED) Abit: :: Design Name: Not 20 Tessible Ordero Good Investigation: Food Ed Egreering Design (FED) Abit: :: Design Name: Not 20 Tessible Ordero Good Investigation: Food Ed Egreering Design (FED) Abit: :: Design Name: Not 20 Tessible Ordero Good Investigation: Food Ed Egreering Design (FED) Abit: :: Design Name: Not 20 Tessible Ordero Good Investigation: Food Ed Egreering Design (FED) Abit: :: Design Name: Not 20 Tessible Ordero Good Investigation: Food Ed Egreering Design (FED) Abit: :: Design Name: Investigation: Food Ed Egreering Design (FED) Abit: :: Design Name: Investigation: Food Ed Egreering Design (FED) Design Name: Investigation: Food Ed		A				5th 2 C Lee LS1	Floor ity Walk ds 19AR		F W	el: 0113 391 ax: 0113 391 ww.aecom.c	6800 1 6899 om		2022	Sheet: 2	2 of 8					
Image: Table Reserved Web State Project Labeler Reserved Web State Example Reserved Web State <td></td> <td>Equipment &</td> <td>Methods</td> <td>5: </td> <td></td> <td>F</td> <td>Project I</td> <td>Name: Net Zer</td> <td>o Teessid</td> <td>le Onshore</td> <td>Ground Ir</td> <td>ivestigatio</td> <td>n - Fron</td> <td>nt End Eng</td> <td>jineering D</td> <td>Design (Fl</td> <td>EED)</td> <td>Job No:</td> <td></td> <td></td>		Equipment &	Methods	5: 		F	Project I	Name: Net Zer	o Teessid	le Onshore	Ground Ir	ivestigatio	n - Fron	nt End Eng	jineering D	Design (Fl	EED)	Job No:		
Party - 201 Early caregolithmetric Rolls Later III P Constrained Status Desk Team Desk Team <thdesk team<="" th=""></thdesk>		0.30 - 15.00 Sc	nic Drilling	(Hammer ID: GS10)		F	Project I	Location: Redo	ar, North	Yorkshire								6067	8042	
Example Grant Lening to Statute and the Statute and the Statute and th		15.00 - 39.00 Ro	tary Coring	(Hammer ID: GS10)			Client: E	BP			0	1	1.			Data 0	4 - 14 - 11 - C	0.00.000	<u> </u>	
In Stati Trading Descriptionality Descriptionality <thdescriptionality< th=""> <thdescriptionality< t<="" td=""><td></td><td></td><td></td><td></td><td></td><td>E</td><td>20-orair E: 4568</td><td>67.388</td><td></td><td></td><td>Ground</td><td>Level (m)</td><td>): 7.185</td><td>5 AOD</td><td></td><td>Date S</td><td>carted: (</td><td>JZ/U8/ZUZ</td><td><u><</u></td><td></td></thdescriptionality<></thdescriptionality<>						E	20-orair E: 4568	67.388			Ground	Level (m)): 7.185	5 AOD		Date S	carted: (JZ/U8/ZUZ	<u><</u>	
Definit Become Trade CR Point CR Point 500 Trade Terr Type CR Point P		In	Situ Test	lina	Coring	Infor	N: 5254	00.960							Reduced	Date C	ompiete	Denth		ackfill/
(m) PLA Let Use (m) (m) (m) (m) 500 5		Denth	Sample		TCR		Core		DES	CRIPTION	1				Level	Leg	gend	(Thick)	Ins	trument
100 PD = 12901 material and self fragments. Gravel is subangular to sub		(m)	Ref & Type	Test Type and Result	SCR RQD	FΙ	Run								()			(m)		
2.33.30 D Fill		5.00 -		PID = 1.2ppm				material and	shell fra	agments.	Gravel is	subang	ular to			× · · ×	× · · ×	-		
5.32 E0 Fig Fig <td></td> <td>- 5.20- 5.30</td> <td>D</td> <td></td> <td></td> <td></td> <td></td> <td>(TIDAL FLA)</td> <td>DEPOS</td> <td>SITS)</td> <td>muasion</td> <td>e and sa</td> <td>nastor</td> <td>le</td> <td></td> <td>×</td> <td>×</td> <td>- </td> <td></td> <td></td>		- 5.20- 5.30	D					(TIDAL FLA)	DEPOS	SITS)	muasion	e and sa	nastor	le		×	×	-		
5.50 E5 From 5.66m bgl: Becomes motified dark grey and clayey X X + - 6.60 6.0 8 SPT(5) 000 8 SPT(5) 000 7.60 0 8 SPT(5) 000 8 SPT(5) 000 7.60 0 8 SPT(5) Nodo 8 SPT(5) Nodo 7.60 0 8 SPT(5) Nodo 8 SPT(5) Nodo 7.60 0 8 SPT(5) Nodo 8 SPT(5) Nodo 7.60 0 8 SPT(6) Nodo SPT(6) Nodo SPT(6) Nodo 8.00 8 SPT(6) Nodo SPT(6) Nodo SPT(6) Nodo SPT(6) Nodo 8.00 8 SPT(6) Nodo SPT(6) Nodo SPT(6) Nodo SPT(6) Nodo 8.00 8 NUME PID = 1 Npern From 7.50m bgl: Becomes very dense. SPT(6) Nodo 8.00 8 PID = 1 Npern From 9.51m to 9.95m bgl: Becomes clayey. SPT(6) Nodo 8.00 8 PID = 1 Npern From 9.51m to 9.95m bgl: Becomes clayey. SPT(6) Nodo 8.00 <		- 5.30- 6.00	В													· · · × · · · · · · · · · · · · · · · ·	· · ·× · ·× · · ·	-		
		_														· . · .× .	· . · .× .	-		
400 610 0 8 BD = 1 fgrm 5.05 From 5.55m bgl: Becomes motiled dark grey and clayey with abundant organic material. X X 400 6.00 6 0 500 <td></td> <td>-5.50</td> <td>ES</td> <td></td> <td>× × .</td> <td>× × .</td> <td>- </td> <td></td> <td></td>		-5.50	ES													× × .	× × .	-		
From 5.65m bgl: Becomes metted dark grey and clayey s <		-														× · . · .	× · . · . · · ×	-		
Out D PD = 1.5pon 5.00 Notesting Section 2 (1) Section 2 (2) Sectin 2 (2) Section 2 (2) S		-						From 5.65m	bgl: Be	comes m	ottled da	rk grey a	and cla	yey		×	×	-		
= 600.6 0 8 371(5) 120 5 0.5 10 PID = 1.5ppn 5 0.5 10 PID = 1.5ppn 5 0.5 10 PID = 1.6ppn 7 0.0 PID = 0.4ppn PID = 1.5ppn 7 0.0 PID = 1.5ppn		-						with abundai	nt organ	ic materia	al.					· . · .× . · . · .	· . · .× . · . · .	-		
a 15 6 8.00 b 5.67 10 5.67 10 a 60 5 80 D 5.8.10 5.8.10 a 60 5 90 D 8.9 750 B 7 50 7 50 D S 3.17 / 20 30 ml 7 50 7 50 D S 3.17 / 20 30 ml 7 50 7 50 00 D S 3.17 / 20 30 ml 7 50 7 50 00 S 3.17 / 20 30 ml From 7.50m bgl: Becomes very dense. 6 8.00 B 3.17 / 20 30 ml From 7.50m bgl: Becomes very dense. 6 8.00 ES 3.17 / 20 ml From 7.50m bgl: Becomes very dense. 6 8.00 ES 9.10 D = 1.1ppm From 9.51m to 9.95m bgl: Becomes clayey. 9 8.00 810 D PID = 1.1ppm From 9.51m to 9.95m bgl: Becomes clayey. 9 8.00 810 D PID = 1.1ppm From 9.51m to 9.95m bgl: Becomes clayey. 9 8.00 810 D PID = 1.1ppm From 9.51m to 9.95m bgl: Becomes clayey. 9 8 8 9 70 D PID = 1.1ppm From 9.51m to 9.95m bgl: Becomes clayey. 9 8 8 9 70 D PID = 1.1ppm PID = 1.1ppm <tr< td=""><td></td><td></td><td>D</td><td>PID = 1.5ppm SPT(S) N=29</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>: . : .× .</td><td>- </td><td></td><td></td></tr<>			D	PID = 1.5ppm SPT(S) N=29													: . : .× .	-		
680.690 D 680.690 D 680.750 B 750.760 D 970.770.0 B 770.770.0 B 770.770.0 D 970.770.0 B 770.770.0 D 970.770.0 B 970.770.0		6.10- 6.80	В	5,5/												× × .	× 	-		
Sec. 6:00 6:80-6:00 7:00 D PID = 1.5ppm -7.50-7:00 7:50-7:00 B PID = 1.5ppm -7.50-7:00 7:50-7:00 D S SPT(5):N-50 7:70m -7.50-7:00 7:50-7:00 D S ST(2):22:81 fr 7:70m -7.50-7:00 D S From 7:50m bgl: Becomes very dense. -8.50 ES 9:00 S S -9:00 B S		-		5,0,0,10												× · . · .	× · . · . · · ×	_		
6.80-6.20 -7.00 D B BD = 1.6ppm From 7.50m bgl: Becomes very dense. X X X 7.80-7.00 7.70 D SS S12/22.20 for 75mm From 7.50m bgl: Becomes very dense. X X X 8.00 PID = 0.4ppm From 7.50m bgl: Becomes very dense. X X X X X 8.00 SS 3.12/22.20 for 75mm From 7.50m bgl: Becomes very dense. X X X X X 8.00 FID = 0.4ppm From 9.51m to 9.95m bgl: Becomes clayey. X X X X X 9.00-9.70 D 9.70-10.50 B From 9.51m to 9.95m bgl: Becomes clayey. X X X X 9.00-9.70 D 9.70-10.50 B Hole Dumber Progress Becomes clayey. X X 9.00-9.70 D 9.70-10.50 B Hole Dumber Progress Becomes clayey. X X X X 9.70-10.50 B Hole Dumber Progress Becomes clayey. X X X X X X 9.70-10.50 B Hole Dumber Hole Dumber Det Trop Becomes clayey. X X X X X X Becomes clayey. X X<		-														×	×	-		
6 80- 6 90 D 6 80- 750 B 7 80- 700 D SPT(S) N=50 X X X 7 80- 700 D SPT(S) N=50 X X X 7 80- 700 B 3112 / 22.28 for 755mm From 7.50m bgl: Becomes very dense. X X 8 80 ES Hole Set (1) X X X X 9 40- 9.70 D Set (1) X X X X 8 80 ES Hole Set (1) X X X X 9 40- 9.70 D Set (1) X X X X 9 40- 9.70 D Set (1) X X X X 9 40- 9.70 D Set (1) X X X X X 9 40- 9.70 D Set (1) Set (1) X X X X X X X X X X X X X X X X																· . · .× . ·× · . · .	·	-		
6.80.6.90 D -		-														`.`.×	`.`.×.	-		
- 630-100 D -																× × .	× × .			
-7.00 PID = 1.8ppm PID = 1.8ppm PID = 1.8ppm -7.60 0 D SPT(5) 16-50 SPT(5) 16-50 7.50 3.12 / 22.23 for 750mm From 7.50m bgl: Becomes very dense. X X X X V 8.00 B PID = 0.4ppm SX X X V X X X V 8.00 ES PID = 1.1ppm SX X X V X X X V 9.00-9.70 D SS PID = 1.1ppm SX X X V X X X V 9.00-9.70 D SS PID = 1.1ppm From 9.51m to 9.95m bgl: Becomes clayey. X X X V 9.00-9.70 D SS PID = 1.1ppm From 9.51m to 9.95m bgl: Becomes clayey. X X X V 9.00-9.70 D SS PID = 1.1ppm V V X X X V 9.00-10.50 B Imm From 9.51m to 9.95m bgl: Becomes clayey. X X X V X X X V 9.00 1.00 Imm Poble (m) Poble (m) Poble (m) Poble (m)		- 6.90- 7.50	В													× · · ×	× · . · . · · ×	_		
-7.50.7.00 D SPT(S) N-50 From 7.50m bgl: Becomes very dense. -		-7.00		PID = 1.6ppm												×	×	_		
7.50 D SS SPTTS1 N-50 ST 222.28 for 72mm From 7.50m bgl: Becomes very dense. X X Image: Comparison of the comparison of t		-														· · ·× · ·× · · ·	· · ·× ·	-		
From 7.50 D SPT(s) N>50 7.50 3.12/2222 for 7.50 From 7.50m bgl: Becomes very dense. X X 8.60 PID = 0.4ppm From 7.50m bgl: Becomes very dense. X X X 9.00 9.10 D Stress very dense. X X X 9.00 9.10 D PID = 0.4ppm X X X X 9.00 9.10 D PID = 1.1ppm X X X X X 9.00 9.10 D PID = 1.1ppm X X X X X 9.00 9.10 D PID = 1.1ppm X		-														· . · .× . 	· . · .× .	-		
- 7.60 D 7.80 SPT(S) N=50 S12/2/22.8 for 75mm From 7.50m bgl: Becomes very dense. X		-														× · · ·	×			
S 3.12/22.28 for 750: 9.00 S 3.12/22.28 for 750: 9.00 From 7.50m bgt: Becomes very dense. X X X 6.00 PID = 0.4ppm From 7.50m bgt: Becomes very dense. X		- 	D	SPT(S) N>50												×	×	_		
Base Form 9.51m to 9.95m bgl: Becomes clayey. South States Remarks Cr(7.33) 9.60-9.70 D PID = 1.1ppm From 9.51m to 9.95m bgl: Becomes clayey. X × X + X + X + X + X + X + X + X + X +	022	7.50	SS B	3,12 / 22,28 for 75mm				From 7 50m	bal: Be	comes ve	erv dense	•				×	×	-		
-8.00 PID = 0.4ppm Image: Strike Str	iber 2	-							bgi. Do		any denied					· · · × ·	· · ·× ·	-		
B.00 PID = 0.4ppm Image: Construction of the cons	over	-														· . · .× . 	· . · .× . · . · .	-		
Note: From 9.51m to 9.95m bgl: Becomes clayey. Remarks Remarks Hole Dia Depth of Date Time Hole Mathematication Remarks Hole Dia Depth of Date Time Hole Mathematication Remarks Hole Dia Depth of Date Time Hole Dia Depth (m) Depth (m) Depth (m) Remarks Remarks Hole Dia Depth of Date Time Hole Dia Depth (m) Depth (m) Remarks Remarks Hole Dia Depth of Date Time Hole Dia Depth (m) Dep	29 N			PID = 0.4 nnm												°.∶.×.	°.∶.×.	_		
8.80 ES -9.00-9.10 D 9.00 SS 9.00 SS 9.00-9.10 D 9.00-9.10 D 9.00-9.10 D 9.00 SS 9.00-9.10 D Depth Hole Diameter Progress Remarks Hole (m) Hole Diameter Depth	Date:	-		110 0. ippin												×	×	-		
8.80 ES 9.00 9.00 9.00 SS Strike Hole Diameter Progress Remarks Uppth Hole Dial Depth of D	8	-														·× · · ·	× · . · .	-		
8.80 ES 9.00 9.10 9.10 9.10 9.10 9.10 9.10 9.10 9.10 9.10 9.10 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10000 1000 <tr< td=""><td>1.3.G</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>×</td><td>×</td><td>- </td><td></td><td></td></tr<>	1.3.G	-														×	×	-		
8.80 ES 9.00 9.10 9.00 9.10 9.00 SS 9.00 SS 9.00 9.10 9.00 SS Strike Hole Dia Depth of Depth of Depth (m) Depth (m) Strates of Remeation 200 FR8. Strike Hole Dia Depth of Delate 02-08-2022 17.15 9.00 1.60 3.50R betweet advance droved strategin of Defator of Man 48 and 45 an	R V	-														× · · · ·	· × . ·× · . · .	- _(7.33)		
8.80 ES 9.00 9.10 9.00 SS Strike Hole Diameter Image: Note: Strikes Hole Diameter Image: Note: Strikes Hole Diameter Image: Note: Strike Hole Diameter Image: Note: Stri	BRA	-														`.`.×	· . · .× .	-		
9 8.80 ES 9.00 9.10 D SS 9.10 PID = 1.1ppm From 9.51m to 9.95m bgl: Becomes clayey. Image: Since Science Scien	4_0 L	-														* · · ·	* · · ·	-		
9.00-9.10 9.00 9.00 9.10-9.60 9.10-9.60 9.10-9.60 9.10-9.60 9.10-9.60 9.10-9.60 9.10-9.60 9.10-9.60 9.10-9.60 9.10-9.70 9.70-10.50 9.7	AGS	- 8.80	ES													× · · · ·	×	-		
Strike Hole Diameter Progress Remarks 02-08-2022 17:15 9.00 9.00 1.60 3.5.000 bbd B 02-08-2022 17:15 9.00 1.60 3.5.000 bbd Scale: 1:25 Logged By: NS Checked By: JW	LZN															×	×	-		
9.10-9.00 0 9.60-9.70 D 9.60-9.70 D 9.70-10.50 B Water Strikes Hole Diameter Progress Remarks Water Strikes Hole Diameter Progress Remarks Both O2-08-2022 17:15 9.00 9.00 1.60 3.000 mgl 2.500 mgr data 4.500 mgr data 02-08-2022 17:15 9.00 9.00 1.60 3.000 mgl 0.27m bgl and 0.42m and 4.83m ggl 4.500 mgr data 0.27m bgl and 0.42m and 4.83m ggl 4.500 mgr data 0.02m of symbols and abbreviations, see Key Sheet.	rary:	9.00-9.10	SS	ו = י. וppm												· · · × ·	· · ·× ·	-		
9.60-9.70 D 9.70-10.50 B Water Strikes Hole Diameter Progress Remarks Bepth Hole Diameter Strike Flow Remarks Hole (m) Depth (m) Depth (m) Depth (m) 02-08-2022 17:15 9.00 1.60 3. SORC borehole advanced via Sonic diling to 15.00m bgl, and completed via Rotary corre (SORC) borehole advanced via Sonic diling to 15.00m bgl, and completed via Rotary corre (SORC) borehole advanced via Sonic diling to 15.00m bgl, and completed via Rotary corre (SORC) borehole advanced via Sonic diling to 15.00m bgl, and completed via Rotary corre (SORC) borehole advanced via Sonic diling to 15.00m bgl, and completed via Rotary corre (SORC) borehole advanced via Sonic diling to 15.00m bgl, and completed via Rotary corre (SORC) borehole advanced via Sonic diling to 15.00m bgl, and completed via Rotary corres borehole via Sonic diling to 15.00m bgl, and completed via Rotary correy is 300m bgl. Notes; For explanation of symbols and abbreviations, see Key Sheet. Scale: 1:25 Logged By: NS Checked By: JW	2	9.10-9.60 -	в													`.`.×. .×	· . · .× . · . · ·	-		
9.60-9.70 D 9.70-10.50 B Water Strikes Hole Diameter Progress Remarks Strike Flow Remarks Hole Diameter Progress Return of Strike Hole Diameter Variable Depth Moter Hole Diameter Progress Remarks Strike Flow Remarks Hole Diameter Progress Return of Strike Hole Diameter Optimized Depth Hole Diameter Progress Return of Strike Hole Diameter Optimized Depth Optimized Depth Hole Diameter Progress Return of Restance of Remarks Return of Restance of Remarks Strike Flow Remarks Hole Dia Depth of Date Time Hole Depth Depth (m) Depth O2-08-2022 17:15 9.00 1.60 3.00RC borehole instaled in material recovered from 0.25m to 0.27m big and 0.42m and 4.83m big No diadov where in stale of contamization. <	LGP.	-														× .	× .	-		
9.60-9.70 D 9.70-10.50 B Water Strikes Hole Diameter Progress Remarks Strike Flow Remarks Hole (m) Date Depth Mater Strikes of Depth of Depth (m) Upph Depth (m) 02-08-2022 17:15 9.00 1.60 3.00/R Doervold advanced via Sonic drilling to 15.00m bgl. and completed via Rotary Corrig to 30.00m bgl. 02-08-2022 17:15 9.00 1.60 Strike For explanation of symbols and abbreviations, see Key Sheet.	5 LZ	-														×	×	-		
9.70-10.50 B 9.70-10.50 B Water Strikes Hole Diameter Progress Remarks Strike Flow Remarks Hole (m) Depth (m) Depth Hole (m) 02-08-2022 17:15 9.00 1.60 3.50/RC borehole installed wared from 25m bgl. Becomes clayey. Vater Strikes Hole Diameter Progress Remarks 02-08-2022 17:15 9.00 1.60 3.50/RC borehole incided wared from 0.25m bgl. and completed via Rotary Coring to 39.00m bgl. 02-08-2022 17:15 9.00 1.60 3.50/RC borehole incided wared from 0.25m bgl. and completed via Rotary Coring to 39.00m bgl. 3.50/RC borehole incided wared from 0.25m bgl. and completed via Rotary Coring to 39.00m bgl. 0.160 Scale: 1:25 Notes: For explanation of symbols and abbreviations, see Key Sheet. Scale: 1:25 Logged By: NS Checked By: JW	1.1 N	- 9.60-9.70						.								·× · . · .	× · . · .	_		
Water Strikes Hole Diameter Progress Remarks Water Strike Flow Remarks Hole Dia Depth of Hole (m) Date Time Hole Casing Depth (m) Depth (m) Sonic/Rotary Core (SORC) borehole located in the Main Site area of Teesworks, Redcar. Located in the west of Remarks Depth (mm) Hole (m) Depth (m) Depth (m) Depth (m) Depth (m) Sonic/Rotary Core (SORC) borehole located in the Main Site area of Teesworks, Redcar. Located in the west of Remarks 02-08-2022 17:15 9.00 9.00 1.60 Sonic/Rotary Core (SORC) borehole advanced via Sonic drilling. 0 15.00m bgl, and completed via Rotary Coring to 39.00m bgl. 02-08-2022 17:15 9.00 9.00 1.60 Sonic/Rotary Core (SORC) borehole advanced via Sonic drilling. 0 15.00m bgl, and completed via Rotary Coring to 39.00m bgl. 02-08-2022 17:15 9.00 9.00 1.60 Sonic drilling. 0 15.00m bgl, and completed via Rotary Coring to 39.00m bgl. 02-08-2022 17:15 9.00 9.00 1.60 Sonic drilling. 0 15.00m bgl, and 0.42m and 4.83m bgl. No offactory evidence of contamination. 03-00m bgl. Notes; For explanation of symbols and abbreviations, see Key Sheet. Scale: 1:25 Logged By: NS Checked By: JW <td>:: <1</td> <td>- 9.70- 10.50</td> <td>В</td> <td></td> <td></td> <td></td> <td></td> <td>From 9.51m</td> <td>to 9.95</td> <td>m bgl: Be</td> <td>comes c</td> <td>layey.</td> <td></td> <td></td> <td></td> <td>×</td> <td>×</td> <td>- </td> <td></td> <td></td>	:: <1	- 9.70- 10.50	В					From 9.51m	to 9.95	m bgl: Be	comes c	layey.				×	×	-		
Water Strikes Hole Diameter Progress Remarks Bepth Flow Remarks Hole Dia Depth of Depth of Depth of Depth of Depth (m) Depth (m) Depth (m) Depth (m) Strike 1. Sonic/Rotary Core (SO/RC) borehole located in the Main Site area of Teesworks, Redcar. Located in the west of Remarks 02-08-2022 17:15 9.00 9.00 1.60 Strike sont observed during drilling to 15.00m bgl, and completed via Rotary Core (SO/RC) borehole advanced via Sonic drilling. 3. SO/RC borehole advanced via Sonic drilling. 3. Sol/RC borehole advanced via Sonic drilling to 15.00m bgl, and completed via Rotary Core (SO/RC) and advanced via Sonic drilling to 15.00m bgl, and completed via Rotary Core (Solice during drilling to 15.00m bgl, and completed via Rotary Core (Solice during drilling to 15.00m bgl, and completed via Rotary Core (Solice during drilling to 15.00m bgl, and completed via Rotary Core (Solice during drilling to 15.00m bgl, and completed via Rotary Core (Solice during drilling to 15.00m bgl, and completed via Rotary Core (Solice during drilling to 15.00m bgl, and completed via Rotary Core (Solice during drilling to 15.00m bgl, and completed via Rotary Core (Solice during drilling drilling due to addition of flush water. 6. Stage encountered in meterial recovered form 0.25m to 0.27m bgl and 0.42m and 4.83m bgl. No offactory evidence of contamination of 0.25m to 30.00m bgl upon completion, to allow Vertical Seismic Profiling. Notes; For explanation of symbols and abbreviations, see Key Sheet. Scale: 1:25 Logged By: NS Checked By: JW	Projec	-														× · · ·	× .	-		
Water Strikes Hole Diameter Progress Remarks Strike Flow Remarks Hole Dia Depth of Hole (m) Date Time Hole Casing Depth (m) Water 1. Sonic/Retary Core (SO/RC) borehole located in the Main Site area of Teesworks, Redar. Located in the west of Remediation action PR1B. 2 Burget Survey Core (SO/RC) borehole located in the Main Site area of Teesworks, (mm) 02-08-2022 17:15 9.00 9.00 1.60 Sonic/Retary Core (SO/RC) borehole located in the Main Site area of Teesworks, Redar. Located in the west of Remediation action PR1B. 3 SO/RC borehole values of a sonic drilling. SO/RC borehole values of a sonic drilling. Sonic/Retary Core (SO/RC) borehole values of a sonic drilling. Sonic/Retary Core (SO/RC) borehole values of a sonic drilling. 3 SO/RC borehole values of a sonic drilling. Sonic/Retary Core (SO/RC) borehole values of a sonic drilling. Sonic/Retary Core (SO/RC) borehole values of a sonic drilling. 4 Topography. Level Ground. Servel of a drilling. Sonic/Retary core of contamination. Servel of a drilling. Sonic/Retary Core (SO/RC) borehole values of a drilling. Sonic/Retary core of contamination. 5 Groundwater strikes not observed during drilling due to addition of flush water. Servertary evidence of	0	-														· . · .× . · . · .	· . · .× . · .	-		
Open Provide From Remark S From Deptin on Deptin on Deptin on Deptin on Determination Date Imme Hole (m) Deptin (m		Wate	r Strikes	2	H		iameter	of Dete	Progre	ess	Coolin	Mate:	1 Sonia	Rotany Core	Remar	ks	n the Mair G	Site area of To	eswork	
Image: Construction of symbols and abbreviations, see Key Sheet. 9.00 9.00 1.60 granted to progress borehole via Sonic drilling. 3. SORC borehole via Sonic drilling. 3. SORC borehole via Sonic drilling to 15.00m bgl, and completed via Rotary Coring to 39.00m bgl. 4. Topography: Level Ground. 5. Groundwater strikes not observed during drilling due to addition of flush water. 6. Slag encountered in material recovered from 0.25m to 0.27m bgl and 0.42m and 4.83m bgl. No offactory evidence of contamination. 7. Borehole installed with an 80mm internal diameter standpipe to 30.00m bgl upon completion, to allow Vertical Seismic Profiling. Wotes; For explanation of symbols and abbreviations. see Key Sheet. Scale: 1:25 Logged By: NS Checked By: JW	EHO.	Depth	Remark	s	Hole (mr	: טומ ו)	Depth (Hole (n	n)	Ime	Depth (m)	Depth (m	vvater) Depth (m	1) Redcar. 2. Buried	Located in the	e west of Rem pection Pit ten	mediation Zon minated at 0.	e PR1B. 30m bgl on	hard stratum.	Permiss	', ion
Very Construction 4. Topography. Level Ground. 4. Topography. Level Ground. 5. Groundwater strikes not observed during drilling due to addition of flush water. 5. Groundwater strikes not observed during drilling due to addition of flush water. 6. Siag encountered in material recovered from 0.25m to 0.27m bgl and 0.42m and 4.83m bgl. No offactory evidence of contamination. 0. Device installed with an 80mm relation. 0.25m to 0.27m bgl and 0.42m and 4.83m bgl. No offactory evidence of contamination. 0. Device installed with an 80mm relation. 0.25m to 0.27m bgl and 0.42m and 4.83m bgl. No offactory evidence of contamination. 0. Device installed with an 80mm relation. 0.25m to 0.27m bgl and 0.42m and 4.83m bgl. No offactory evidence of contamination. 0. Device installed with an 80mm relation. 0.25m to 0.27m bgl and 0.42m and 4.83m bgl. No offactory evidence of contamination. 0. Device installed with an 80mm relation. 0.25m to 0.27m bgl and 0.42m and 4.83m bgl. No offactory evidence of contamination. 0. Device installed with an 80mm relation. 0.25m to 0.25m to 0.27m bgl and 0.42m and 4.83m bgl. No offactory evidence of contamination. 0. Device installed with an 80mm relation. 0.25m to 0.25m to 0.27m to 0.27m to 0.00m bgl upon completion, to allow Vertical Seismic Profiling. 0. Notes: For explanation of symbols and abbreviations, see Key Sheet. Scale: 1:25 Logged By: NS Checked By: JW	50							02-08-2022	17:15	9.00	9.00	1.60	granted 3. SO/R Coring to	to progress bo C borehole ac to 39.00m bol	orehole via So dvanced via So	nic drilling. onic drilling to	15.00m bgl	, and complete	ed via R	otary
b. Siag encountered in material recovered rom 0.25m to 0.27m bgl and 0.42m and 4.83m b. Siag encountered in material recovered rom 0.25m to 0.25m bgl and 0.42m and 4.83m b. Siag encountered in material recovered rom 0.25m to 0.25m bgl and 0.42m and 4.83m b. Siag encountered in material recovered rom 0.25m to 0.25m bgl and 0.42m and 4.83m b. Solfactory explanation of symbols and abbreviations, see Key Sheet. Scale: 1:25 Logged By: NS Checked By: JW	ARD												4. Topog 5. Grour	graphy: Level ndwater strikes	Ground. s not observed	d during drillin	g due to add	dition of flush v	vater.	14.82-
0 completion, to allow Vertical Seismic Profiling. 0 completion, to allow Vertical Seismic Profiling. 0 Notes; For explanation of symbols and abbreviations, see Key Sheet. Scale: 1:25 Logged By: NS	IANL												bgl. No 7. Boreh	olfactory evide	ence of contain with an 80mm	nination. internal diam	eter standpi	pe to 30.00m l	,∠ni anc	14.03III
Key State Scale: 1:25 Logged By: NS Checked By: JW	D:S												complet	uon, to allow V	ertical Seismic	c Profiling.				
	Report	Notes: For ex	planatio	n of symbols an	d abbre	eviatio	ons. see	Kev Sheet	 Sc	 ale: 1:25			Logged	By: NS		C	hecked E	sy: JW		

A		C	ON		5th 2 C Lee	Floor Floor ity Walk eds	M	Te Fa	el: 0113 391 ax: 0113 391 ww.aecom.c	6800 6899 om	AGS	Bore Sheet:	ehole	No. F-I	3H12	0
Equipn 0.00 - 0. 0.30 - 14 15.00 - 38	n ent & 30 Ins 5.00 So 9.00 Ro	Vethod: ulated Har nic Drilling tary Coring	S: nd Tools (Hammer ID: GS10) g (Hammer ID: GS10)		F F	Project Project Client:	Name: Net Ze Location: Rec BP	ero Teessid Icar, North	le Onshore Yorkshire	Ground In	vestigation	- Front End En	gineering [Design (FEED)	Job No: 6067	8042
					E	Co-ordi E: 4568	inates: 367.388			Ground	Level (m):	7.185 AOD		Date Started: Date Complete	02/08/2022 ed: 09/08/2	2 2022
Dept	In S h	Situ Tes Sample Ref &	ting Test Type	Coring TCR SCR	Infor FI	N: 5254 mation Core	100.960	DES	CRIPTION				Reduced Level (m)	Legend	Depth (Thick) (m)	Backfill/ Instrument
(III) 10.00 10.00 10.00 10.60 11.10 11.20 12.00 12.16 12.00 12.16 12.50 12.60 13.50 13.60 13.50 15	10.60 11.10 11.20 12.00 12.16 12.40 12.50 12.60 13.00 13.60 13.60 13.60 13.60 13.60	Type D SS B D B SS B ES D UT100 B UT100 B C Strikes	and Result PID = 1.1ppm SPT(S) N>50 4,10 / 12,15,11,12 for 65mm PID = 0.5ppm SPT(S) N=17 0,3 / 4,4,4,5 75 % recovery PID = 2.1ppm 100 % recovery PID = 1.2ppm	RQD		iamete	From 10.47 From 11.74 Soft locally sandy silty (angular to s sandstone, (TIDAL FLA) Stiff to very slightly sand subrounded limestone a (TILL: DEVI	7m to 10.7 4m bgl: Be firm brow CLAY with subrounde limestone T DEPOS stiff reddi dy silty CL d fine to c nd coal. S ENSIAN	78m bgl: ecomes of n mottleo h abunda ed fine to e and che SITS)	Becomes Becomes I black sli nt organi coarse c rt	grey sligt angular t a, sandsto	velly slightly I. Gravel is ne, htly gravelly oone, chert,	4.98			
Strike Depth Depth ID: StanDard	Water Flow	Strikes Remark	is Is	Hok (mn 194	iole D e Dia n)	iamete Depth Hole (i 15.00	r of Date m)	Time	ess Hole Depth (m)	Casing Depth (m	Water Depth (m)	1. Sonic/Rotary Core Redcar, Located in ti 2. Buried Services granted to progress I 3. SO/RC borehole a Coring to 39.00m bg 4. Topography: Leve 5. Groundwater strik 6. Slag encountered bgl. No offactory evic 7. Borehole installed completion, to allow '	Remail (SO/RC) bore he west of Rem spection Pit ter sorehole via So dvanced via So dvanced via So l. I Ground. Is not observed in material reco fence of contam with an 80mm Vertical Seismi	KS hole located in the Main minated at 0.30m bgi or nic drilling. onic drilling to 15.00m bg d during drilling due to ac vered from 0.25m to 0. internal diameter standp c Profiling.	Site area of Te hard stratum. I I, and complete Idition of flush w 27m bgl and 0.4 ipe to 30.00m b	esworks, Permission ed via Rotary vater. I2m and 4.83m vgl upon
Notes:	For ex	planatic	on of symbols an	 d abbr	eviatio	ons, se	e Key Sheet.	Sc	 ale: 1:25		L	Logged By: NS		Checked	By: JW	

	4=	C	O		5th 2 C Lee	ECOI Floor City Walk eds	M	-	Tel: 0113 39 Fax: 0113 39 www.aecom	1 6800 91 6899 com	AGS REGISTERED USER 202	BO	rehole	e No.	F-BH	120	C
E0 0.00 0.30 15.0	quipment & 0 - 0.30 Ins 0 - 15.00 So 00 - 39.00 Ro	Method: ulated Har nic Drilling tary Coring	S: nd Tools (Hammer ID: GS10) (Hammer ID: GS10)			Project Project Client:	Name: Ne Location: BP	et Zero Teessi Redcar, North	ide Onshor n Yorkshire	e Ground li	nvestigation	- Front End E	ingineering [Design (FEE	ED) Jo	b No: 6067	8042
						Co-ordi E: 4568	nates: 867.388			Ground	d Level (m):	7.185 AOI	C	Date Sta	arted: 02/08 mpleted: 09	/2022 9/08/2	022
	In S	Situ Tes Sample Ref &	ting Test Type	Corin TCR SCR	g Infor	mation Core	100.960	DE	SCRIPTIO	N			Reduced Level (m)	Lege	end (Th (n	pth ick) 1)	Backfill/ Instrument
	5.00 5.00 6.50- 16.80 9.80- 20.10	C	and Result PID = 0.8ppm	93 0 0	CLAY	16.50- 16.50 16.50 18.00 18.00 19.50 19.50- 21.00	From 17 brown.	7.31m to 17 8.85m bgl: E	58m bgl	Become gravelly.	s firm and	mottled	12.66				
	Water ike Flow pth	⁻ Strikes Remark	is is in the second sec	Ho (mi	Hole D le Dia m)	iamete Depth Hole (r	of Date	Time	Hole Depth (n	Casing n) Depth (m	Water) Depth (m)	1. Sonic/Rotary C Redcar. Located ii 2. Buried Services	Rema re (SO/RC) bore the west of Rem Inspection Pit ten s borberter in C	rks ehole located in t mediation Zone F rminated at 0.30	the Main Site are PR1B. Im bgl on hard st	a of Tee ratum. F	esworks, Permission
TID: STANDARD COF												granted to progres 3. SO/RC borehol Coring to 39.00m 4. Topography: Le 5. Groundwater st 6. Slag encountern bgl. No olfactory e 7. Borehole install completion, to allo	is borehole via Sc e advanced via S bgl. vel Ground. rikes not observe ad in material rec vidence of contar ad with an 80mm w Vertical Seism	onic drilling. ionic drilling to 15 d during drilling to overed from 0.25 mination. internal diamete ic Profiling.	5.00m bgl, and c due to addition o 5m to 0.27m bgl er standpipe to 3	omplete f flush w and 0.4 0.00m b	d via Rotary ater. 2m and 4.83m gl upon
Nopor No	otes: For ex	planatio	n of symbols an	l Id abb	reviati	l ons, se	e Key She	et. S	l Scale: 1:25		L	Logged By: N	S	Che	ecked By: J	W	

ſ	ΛΞ			4	A	ECO	Μ		Tal: 0112 201	6900		Bor	ehole	No. F-E	3H12	0
					2 C	City Walk		1	Fax: 0113 39 www.aecom.c	1 6899 om	AGS	Sheet:	5 of 8			
F	Equipment &	Methods	S:			Project	Name: Net Zer	o Teessi	ide Onshore	Ground In	vestigation	n - Front End En	gineering D	Design (FEED)	Job No:	
	0.00 - 0.30 Ins 0.30 - 15.00 So	ulated Han nic Drilling	id Tools (Hammer ID: GS10)			Project	Location: Redo	ar, North	h Yorkshire						6067	8042
	15.00 - 39.00 Ro	tary Coring	(Hammer ID: GS10)			Client: Co-ordi	nates:			Ground	Level (m)	:		Date Started:)2/08/2022	2
						E: 4568 N: 5254	67.388 00.960					7.185 AOD		Date Complete	d: 09/08/2	022
	In S	Situ Test	ting	Coring	g Infor	mation		DE	SCRIPTION				Reduced Level	Legend	Depth (Thick)	Backfill/ Instrument
	Depth (m)	Ref & Type	Test Type and Result	SCR	FI	Core Run		DE		•			(m)	Legend	(m)	
F	20.00- 20.10 -	ËS					fine to coars	e of mu	udstone. S	and is fin ATION)	e to coar	se		······································	-	
-	-			100 0			(-	
ļ	-			0												
┝	_													<u> </u>	(1.50)	
	-													 	- (1.00)	
+	-														-	
t	-															
	-					21.00- 22.50									-	
t	-															
-	-				0 NI		Very weak lo	cally w	eak fractu	red thinly	to thickl	y laminated	-14.16		- 21.34	
Ē	-				8		closely space	ed, sub	horizonta	l to 20°, p	lanar ro	ugh, partly				
-	-			100	0		subangular t	o subro	bunded fin	e to medi	um of m	udstone.			-	
	-			64	CLAY		planar rough	to smc	both, tight	to closed	infilled	with grey silt				
		С					(REDCAR M								_	
-	-				5		Sand is fine	n to 21 to coars	.84m bgl: se	Stiff dark	grey sar	ndy CLAY.			-	
	-															
ŀ	-														-	
022	-				NI	22.50- 24.00									-	
mber 2	-				2										-	
Nove	-				2											
ate: 29	-				NI										-	
	- _ 23.18	С		100												
1.3.G	-			89	4										-	
ARY	-															
	-														-	
GS 4	-				CLAY		From 22 71	to 22 7	'8m hal· S	iff dark a						
NZT A	-				9		Sand is fine	to coars	se.	an uaik y	Sy Sanu					
brary: .	-					24.00- 25.50										
	-															
5	-															
	_														\vdash	
ίζ 11.	-			98												
Projec	-			98 95	4											
LOG	- 	01."										1				
	Strike Flow	Strikes Remark	(S	Hol	lole D e Dia	Depth	r of Date	Progi Time	Hole	Casing	Water	1. Sonic/Rotary Core Redcar. Located in t	Reman (SO/RC) bore ne west of Rem	KS hole located in the Main nediation Zone PR1B.	Site area of Tee	esworks,
CRE CORE	Depth			(mn	1)	Hole (r	03-08-2022	17:15	22.50	epth (m) 15.00	epth (m 1.00	2. Buried Services In granted to progress I 3. SO/RC borehole a	spection Pit ter porehole via So dvanced via So	minated at 0.30m bgl on nic drilling. onic drilling to 15.00m bg	hard stratum. F I, and complete	Permission ed via Rotary
												Coring to 39.00m bg 4. Topography: Leve 5. Groundwater strik	Ground. es not observed	during drilling due to ad	dition of flush w	ater.
STAND												b. Siag encountered bgl. No olfactory evid 7. Borehole installed	In material reco lence of contant with an 80mm	overed from 0.25m to 0.2 nination. internal diameter standpi	rm bgi and 0.4 pe to 30.00m b	∠m and 4.83m gl upon
10:2												Completion, to allow	v er ucer ƏelSMİ	o r rommig.		
Repo	Notes: For ex	planatio	n of symbols an	d abbr	eviati	ons, se	e Key Sheet.	S	Scale: 1:25	•		Logged By: NS		Checked E	By: JW	

	A	=(CON		5th 2 C Lee	Floor ity Walk	Λ	Te Fa W	el: 0113 391 ax: 0113 391 ww.aecom.c	6800 6899 om	AGS		Bore	hole	No. F-E	3H12(C
	Equipme 0.00 - 0.30 0.30 - 15.00	nt & Metho Insulated I Sonic Drill	ods: land Tools ng (Hammer ID: GS10)		F	Project Project	Name: Net Ze _ocation: Red	ero Teessid Icar, North `	le Onshore Yorkshire	Ground In	vestigation	n - Front I	End Eng	ineering D	esign (FEED)	Job No: 60678	8042
	15.00 - 39.00) Rotary Co	ing (Hammer ID: GS10)			Client: E	3P			Ground	Level (m):	:			Date Started: ()2/08/2022	
					E	E: 4568 N: 5254	67.388 00.960				()	7.185	AOD		Date Complete	d: 09/08/2	022
	Depth (m)	In Situ To Samp Ref	esting le & Test Type	Corino TCR SCR	lnfor Fl	mation Core Run		DES	CRIPTION					Reduced Level (m)	Legend	Depth (Thick) (m)	Backfill/ Instrument
	(***) 	Typ.		100 97 92	CLAY 7 CLAY 2	25.50- 27.00 27.00- 28.50	From 25.80 Sand is fine) to 25.84 to coarse	lm bgl: Fil	rm dark g	rey sand	ły CLAY	7.				
3RARY V1.3.GLB Date: 29 November 2022	- - - - - - - - - - - - - - - - - - -	с		100 94 84	CLAY 0 CLAY 5	28.50-	From 27.56 Sand is fine From 27.74 Sand is fine	to 27.60 to coarse to 27.79 to coarse	0m bgl: St e. 0m bgl: St e.	iff dark gi	rey sand	y CLAY	, , ,				
COREHOLE LOG Project: V11.1 NZI GI.GPJ LIDRARY: NZI AGS 4_0 LIE	- - - - - - - - - - - - - - - - - - -	Vater Strik	es	98 84 74 Holo (mr	CLAY 12 CLAY 3 CLAY 2 CLAY 2 Iole D e Dia n)	iameter Depth of Hole (n	From 28.61 sandy CLA of mudstone From 28.93 sandy CLA mudstone. S	to 28.76 C Gravel Sand is to 28.99 C Gravel Sand is fin Progree Time	ess Hole Depth (m)	rm dark g r to subro oarse. rm dark g r-subrour rse.	rey grav, bunded fi rey grav, nded fine Water Depth (m)	elly slig ine to c elly slig e to coa	htly oarse htly rse of otary Core (ocated in the services Insp progress be borehole ad	Remari SO/RC) borer west of Rem vection PIt terr rehole via Sor vanced via So	KS Cole located in the Main in diation Zone PR 18. minated at 0.30m bgl on ic drilling, to 15.00m bg		sworks, termission d via Rotary
ort ID: STANDARD (Coring to 3 4. Topogra 5. Groundv 6. Slag end bgl. No olfa 7. Borehold completion	89.00m bgl. aphy: Level (water strikes countered in actory evide e installed w h, to allow Vo	Ground. s not observed material reco nce of contam rith an 80mm i ertical Seismic	during drilling due to ad vered from 0.25m to 0.2 ination. Iternal diameter standpi Profiling.	dition of flush w. 7m bgl and 0.4: pe to 30.00m b	ater. 2m and 4.83m gl upon
ě ř	Notes: Fo	or explana	tion of symbols ar	nd abbr	eviatio	ons, see	e Key Sheet.	Sc	ale: 1:25		l	Logged B	y: NS		Checked E	by: JVV	

Λ			N	A	A 5th	ECO Floor	М	т	el: 0113 391	6800			Bore	ehole	No. F	-BH12	0
					2 C Lee LS	ity Walk eds 11 9AR		F	ax: 0113 391 ww.aecom.c	1 6899 som	AGS REGISTERED USER 20	8 1022 S	Sheet: 7	7 of 8			
Equipr 0.00 - 0	nent & N .30 Insu	Aethods	: d Tools			Project Project	Name: Net Zer	o Teessic	le Onshore	Ground In	vestigation	n - Front E	End Eng	ineering D	esign (FEED)	Job No	20040
0.30 - 1 15.00 - 3	5.00 Son 9.00 Rota	ic Drilling ary Coring	Hammer ID: GS10) (Hammer ID: GS10)			Client:	BP	ar, norur	TURSTILE							0007	0042
						Co-ordi E: 4568	nates: 67.388			Ground	Level (m):	: 7.185	AOD		Date Started	I: 02/08/202	2
	In S	itu Test	ing	Corin	g Infor	N: 5254 mation	100.960							Reduced	Date Comple	Depth	Backfill/
Dept (m)	th ⁸	Sample Ref & Type	Test Type and Result	TCR SCR ROD	FI	Core Run		DES	SCRIPTION	1				(m)	Legend	(Thick) (m)	Instrumen
30.00-	31.50	Č			CLAY	30.00- 31.50										(17.66)	
L					4		From 30.05 Sand is fine	to 30.10 to coars)m bgl: St .e.	tiff dark g	rey sand	y CLAY	-				
- 30.41		с			CLAY		_										
F					0		From 30.37 Sand is fine	to 30.41 to coars	lm bgl: St e.	tiff dark g	rey sand	y CLAY					
-				100 84	CLAY		From 30.63	to 30.72	2m bgl: Fi	rm dark g	grey grav	elly slig	hlty				
F				81	0		sandy CLAY of mudstone	. Gravel . Sand is	is angula s fine to c	ar to subr coarse.	ounded fi	ine to c	oarse				
F					NII.												
F					INI												
F					10												
					CLAY	31.50-											
-					0 CLAY	00.00	From 31.57	to 31.59)m bgl: Fi	rm dark ç	grey sand	dy CLAY	<i>(</i> .				
-							From 31.73	to 31.76	o. Sm bal: Fi	rm dark o	arev sand	dv CLAY	(.				
F					0		Sand is fine	to coars	e.	· · · ·	, ,	y -					
-				100 77	NI		From 31.88 sandy CLAY	to 32.00 Gravel)m bgl: Fi is angula	rm dark (ar to subr	grey grav ounded fi	elly slig	htly oarse				
Ę				62	11		of mudstone	. Sand is	s fine to c	oarse.							
22					NI												
1 1																	
Noven					2												
ate: 29						33.00-											
					0	34.50											
1.3.0					CLAY												
BRARY							From 33.36 Sand is fine	to 33.39 to coars)m bgl: St e.	tiff dark g	rey sand	y CLAY					
33.72		с		96 84	4												
T AGS				69	CLAY												
ary: NZ					0 CLAY		From 33.87 fine to coars	to 33.91 e	lm bgl: da	ark grey s	andy CL	AY. Sar	nd is				
					5		From 33.98	to 34.04	Im bgl: St	tiff dark g	rey sand	y CLAY					
GI.GP					0 CLAY		Sand is fine	to coars	e.	-		-					
- I NZT					0 CLAY CLAY	34.50-	From 34.23 Sand is fine	to 34.28 to coars	βm bgl: St e.	tiff dark g	rey sand	y CLAY				-	
ict: V11					0 CLAY 7	36.00											
Proje					CLAY												
	Water	Strikes			lole D) iamete	r	Progre	ess					Remar	ks		
TOH Depth	Flow F	Remark	S	Hol (mr	e Dia n)	Depth Hole (I	of Date n)	Time	Hole Depth (m)	Casing) Depth (m	Water) Depth (m)	1. Sonic/Ro Redcar. Lo 2. Buried S	otary Core ocated in the Services Ins	(SO/RC) bore e west of Rem pection Pit ten	hole located in the M lediation Zone PR1B minated at 0.30m bg	ain Site area of Te on hard stratum.	eesworks, Permission
SD COF							04-08-2022	17:00	34.50	34.50	1.20	granted to 3. SO/RC I Coring to 3 4. Topogra	progress bo borehole ac 39.00m bgl. aphy: Level	prenole via So Ivanced via So Ground.	nic aniling. onic drilling to 15.00m	bgl, and complet	ed via Rotary
ANDAF												5. Groundv 6. Slag end bgl. No olfa	water strikes countered in actory evide	s not observed material reco	I during drilling due to wered from 0.25m to nination.	addition of flush 0.27m bgl and 0.	water. 42m and 4.83m
ID: ST												completion	n, to allow V	ertical Seismi	n remai diameter star c Profiling.	արրե լո 20.00m	ngi aholi
Notes:	For exp	olanatio	n of symbols ar	nd abbr	eviati	 ons, se	e Key Sheet.	So	 cale: 1:25	I		Logged By	y: NS		Checke	d By: JW	

[ΛΞ			4	Α	ECO	M		Bore	ehole	No. F-E	3H12	C
	A=		UN		5th 2 C Lee	I Floor City Walk eds 11 0∆₽	Tel: 0113 391 k Fax: 0113 391 www.aecom.co	6800 6899 om	Sheet: 8	3 of 8			
ľ	Equipment &	Methods	:			Project	Name: Net Zero Teesside Onshore	Ground Investigation - Fr	ront End Eng	ineering D	esign (FEED)	Job No:	
	0.00 - 0.30 In: 0.30 - 15.00 Sc	ulated Han	d Tools (Hammer ID: GS10)			Project	Location: Redcar, North Yorkshire					6067	8042
	15.00 - 39.00 Ro	tary Coring	(Hammer ID: GS10)			Client: Co-ordi	BP inates:	Ground Level (m):			Date Started: ()2/08/2022	
						E: 4568 N: 5254	867.388 400.960	7.1	185 AOD		Date Complete	d: 09/08/2	022
	In	Situ Test	ing	Corin	g Infoi	rmation				Reduced Level	Lanand	Depth (Thick)	Backfill/
	Depth (m)	Ref &	Test Type and Result	SCR	FI	Core Run	DESCRIPTION			(m)	Legend	(m)	
ļ	35.00 -	Č			8							_	
ŀ	-			98 83	CLAY	-						-	
ļ	-			79	9								
+	_				CLAY	-						-	
ŀ	-					1						-	
ļ	-				11							-	
-	-											-	
ľ	-				CLAY	36.00-						_	
-	-				3	57.50						-	
ł	-				NI	-						-	
ļ	_				12	1						-	
	-				CLAY	-						-	
ļ	-			97 84 53	0 NI	-	From 36.62m to 36.65m bgl: I	Firm dark grey sandy	CLAY.				
-	-			00	5		Sand is line to coarse.					-	
ł	_				CLAY		From 36 96m to 37 03m bal.	Firm dark grev sandv				-	
ļ	-				3		Sand is fine to coarse.	inin dank groy sandy	02/11			-	
-	-				CLAY	-						-	
ļ	-				0		From 37.34m to 37.37m bgl: 5	Stiff dark grey sandy	CLAY.			-	
2022	-				NI	37.50- 39.00	Sand is fine to coarse.					-	
smber	- 37.70 -	С				1						-	
9 Nov	-											-	
ate: 2	-				6		fragments present.	Abundant shells and	shell			_	
 9_	-			98								-	
1.3.G	-			71								-	
ARY \	-				CLAY	-						_	
LIBR	-											-	
S 4 0	-				2		From 38.59m to 38.96m bgl: /	Abundant shells and	shell				
IZT AG	-											-	
rary: N	_				NI					-31.82 [39.00	
ll Libr													
SI.GPJ							End of Boreh	ole 39.00 m					
NZT (not pro	ven)					
V11.1													
oject: /													
GIIP													
ЙЦ	Wate	r Strikes			lole C	l Diamete	Progress			Remar	ks	24-21-27	
SEHOL	Strike Flow Depth	Remark	s	Hol (mr	e Dia n)	Depth Hole (m) Time Hole Depth (m)	Casing Water ^{1. S} Depth (m) Depth (m) ^{2. B}	onic/Rotary Core Icar. Located in the uried Services Ins	SO/RC) boreh west of Rem pection Pit terr	nore located in the Main s ediation Zone PR1B. ninated at 0.30m bgl on	ыте area of Tee hard stratum. F	esworks, ermission
D COF				146	6	39.00	05-08-2022 12:30 39.00	39.00 1.20 gran 3. S Cori	Net to progress be O/RC borehole ac ing to 39.00m bgl.	prenole via Sor Ivanced via So Ground	nic arilling. nic drilling to 15.00m bg	l, and complete	d via Rotary
NDAR								4. 1 5. G 6. S	opography: Level proundwater strikes lag encountered in No olfactory evide	s not observed material reco	during drilling due to ad vered from 0.25m to 0.2	dition of flush w 7m bgl and 0.4	ater. 2m and 4.83m
STA								7. B Com	orehole installed v pletion, to allow V	vith an 80mm i ertical Seismic	nternal diameter standpi Profiling.	pe to 30.00m b	gl upon
ort ID											Observer	D IVA/	
Я. В	Notes: For ex	planatio	n of symbols an	d abbr	eviati	ons, se	ee Key Sheet.	Logg	jeu dy: NS		Checked E	by. JVV	

ΛΞ				AE 5th		N	т	el: 0113 391	6800			Bore	ehole	No. F-E	3H10	2
				2 Ci Lee LS1	ty Walk ds 1 9AR		Fi W	ax: 0113 391 ww.aecom.c	6899 om	AGS REGISTERED USER 20	9 1022	Sheet: 1	of 8			
Equipment & 0.00 - 0.90 So 0.90 - 1.00 In 1.00 - 16.50 S	Method onic Drilling nsulated Har onic Drilling	S: (Hammer ID: GS10) nd Tools (Hammer ID: GS10)		F	'roject I 'roject I Client: I	Name: Net Zero [·] Location: Redcar BP	Teessid	le Onshore Yorkshire	Ground In	<i>i</i> estigation	ı - Front∣	End Engi	ineering [Design (FEED)	Job No: 6067	8042
16.50 - 39.00 R	otary Coring	g (Hammer ID: GS10)		C E	co-ordir : 4568	nates: 86.025			Ground	Level (m):	9.088	AOD		Date Started: (08/09/202: d: 20/09/2	2 2022
In	Situ Tes	ting	Coring	Inforr	1: 52574 mation	46.644							Reduced		Depth (Thick)	Backfil
Depth (m)	Sample Ref &	Test Type and Result	TCR SCR ROD	FI	Core Run		DES	SCRIPTION					(m)	Legend	(m)	Insuume
-						MADE GROUI (MADE GROUI	ND: Da ND)	ark grey A	SPHALT				8.79		(0.30) 0.30	
-						MADE GROUI (MADE GROUI	ND: Gr ND)	rey CONC	CRETE						- (0.50) -	0///0
	FS					MADE GROUI to coarse GRA	ND: Gr	rey subro of slag wit	unded to h high co	subangu bble con	ular med itent. Cr	dium obbles	8.29		- _ 0.80 -	Н
	LJ					N.B. Sulphur a noted. (MADE GROU	and iron ND)	n stained	cobbles	<i>w</i> ith sulp	hurous	odour			- - -	I
	ES														- - - -	I
	ES														- - - (3.35)	I
															- - -	I
	В				,	From 3.00m b sampling.	igl: Ma	aterial too	coarse fo	or enviror	nmenta	ıl			- - -	Ι
- - -																I
															-	
= 4.20	ES	PID = 0.9ppm				MADE GROUI subangular fin to coarse	ND: Blue of the second	ueish gre barse GR/	y sandy s AVEL of ध	ilty angu slag. San	lar to nd is me	edium	4.94		4.15 - - (0.35)	Н
4.50- 6.00	В	SPT(C) N>50 22,3 for 5mm/50 for 40mm				N.B: Sulphurou (MADE GROU NOTE: Propo	us odo ND) sed re	our noted. mediatior	n level 4.8	Sm AOD.			4.59		4.50 - -	
<u>}</u> +						MADE GROUN to coarse GRA	ND: Gr VEL c	rey subro of slag wit	unded to h high co	subangu bble con	ilar med itent. C	dium obbles			-	
Wate	 er Strikes	s	<u> </u> н	ole Di	ameter		Progre	ess	-		10.5		Remar		2#0 15	
Strike Flow Depth	/ Remarł	(5	Hole (mm	∍ Dia <u>ı)</u> p. Pit	Depth o <u>Hole (n</u> 1.00	of Date Ti 1) 08-09-2022 11	ime 6:15	Hole Depth (m) 0.90	Casing Depth (m) 0.90	Water Depth (m)	1. Sonic/R Redcar. Ld 2. Buried 9 granted to 3. SO/RC Coring to 3 4. Topogra 5. Ground 6. Slag an 6.51m bgl 7. Installec HDPE sta	Iotary Core (poated in the Service Inspec progress bo borehole ad 39.00m bgl. aphy: Level (water strikes id refractory I. Sulphurous d with 35mm indpipe to 31	SO/RC) bore r north west o ection Pit term rehole via So vanced via So Ground. a not observed material enco odour noted ID HPDE sta .00m bgl (sloi	hole located in the Main 1 of Remediation Zone PR2 ninated at 1.00m bgl on h onic drilling, onic drilling to 16.50m bg d during drilling due to ad- yuntered in material recov 0.80-4.50m and 6.51-7.1 andpipe to 11.50 (slotted tted 28.00-31.00m bgl). C	Site area of Te A. ard stratum. F I, and complet dition of flush v ered from gro 5m bgl. 8.50-11.50m) Datalogger inst	esworks, ermission ed via Rotary vater. und level to and 50mm ID alled in 35mm
4								1	1	(Isminhhe	ac i nuorin al		naniapipo ar 00.00111 DGI.		

ΛΞ		Borehole	No. F-E	3H102							
		2 City Wal Leeds LS11 9AR	k Fax: 0113 391 www.aecom.co	6899 im REDISTERED USER 2022	Sheet: 2 of 8						
Equipment & 0.00 - 0.90 Sc 0.90 - 1.00 In: 1.00 - 16.50 Sc	Methods: onic Drilling (Hammer ID: GS10) sulated Hand Tools onic Drilling (Hammer ID: GS10)	Projec Projec Client:	t Name: Net Zero Teesside Onshore (t Location: Redcar, North Yorkshire BP	Ground Investigation - Fron	t End Engineering D	lesign (FEED)	Job No: 60678042				
16.50 - 39.00 Ro	otary Coring (Hammer ID: GS10)	Co-orc E: 456	linates: 886.025	Ground Level (m): 9.088	AOD	Date Started:	08/09/2022				
In	Situ Testing	N: 525 Coring Information	746.644		Reduced Level		Depth Backfill/				
Depth (m)	Ref & Test Type Type and Result	SCR FI Core RQD	DESCRIPTION		(m)	Legend	(m)				
5.00 - - - - - - -	PiD = 0.0ppr		are subrounded of slag N.B. Material too coarse for en (MADE GROUND)	vironmental sampling.			- - - - -(2.01) - - -				
6.00 - 6.10- 6.30 - -	PID = 0.2ppm SPT(C) N>50 8,11/10,16,24 for 45mm		From 6.07m bgl: Gravel becor	nes fine to coarse.	0.50		-				
- 6.60	ES		MADE GROUND: Blueish grey subangular fine to coarse GRA	/ sandy silty angular to VEL of slag. Sand is n	nedium		- 6.51 - (0.22)				
6.75- 7.15	в		to coarse	Ū	2.36		- 6.73 -				
- 7.00 -	PID = 0.3ppm		MADE GROUND: MADE GROUND: MADE GROUND: Blueish grey fine to coarse GRAVEL of slag	/ sandy angular to suba . Sand is fine to coarse	angular e 1.94		- (0.42) 				
	ES		N.B. Sulphurous odour noted. (MADE GROUND)								
7.50- 7.75	D SPT(S) N=14 SS 2,1/ 1,2,3,8		MADE GROUND: Brown mottle to coarse SAND. Gravel is ang coarse of slag (MADE GROUND)	ed black slightly gravel jular to subangular fine	ly fine to		- (0.60) 				
7.75- 8.15	В		From 7.27m bgl: Gravel is abs Dense black mottled brown fin (TIDAL FLAT DEPOSITS)	sent. e to medium SAND	1.34		- 7.75 				
8.20 8.27- 9.00	ES PID = 0.4ppm B		From 8.15m to 8.27m bgl: Fos	sil band present.		· · · · · · · · ·	- 000 - 000				
	B PID = 0.2ppm ES SPT(S) N=37 7,11/ 10.98.10		From 8.27m bgl: Becomes bro	own mottled black.							
9.60- 9.70 	DB		Light brown fine to coarse SAM fragments (TIDAL FLAT DEPOSITS) At 9.68m bgl: Layer of rounder	ND with frequent shell a	-0.48 and coal im to -0.91						
Water Strikes Hole Diameter Progress Remarks Strike Flow Remarks Hole Dia (mm) Depth of Hole (m) Date Time Hole Casing Depth (m) Water 1. Sonic/Roitary Core (SO/RC) borehole located in the Main Site area (mm) Redar Located in the north west of Remediation Zone PR2A. 2. Build Service Inspection Pit terminated at 1.00m bgl on hard strat granted to progress borehole via Sonic drilling. 3. SO/RC borehole advanced via Sonic drilling to 16.50m bgl, and co Coring to 33.00m bgl. 3. SO/RC borehole advanced via Sonic drilling to 16.50m bgl, and co Coring to 33.00m bgl. Solid Water (mem) Solid Water Hole (m) Solid Water (mem) 3. SO/RC borehole advanced via Sonic drilling 3. SO/RC borehole advanced via Sonic drilling to 16.50m bgl, and co Coring to 33.00m bgl. 3. SO/RC borehole advanced via Sonic drilling to 16.50m bgl, and co Coring to 33.00m bgl. 4. Topography: Level Ground. 5. Groundwater strikes not observed uning drilling due to addition of 6. Stag and refractory material arecovered in material recovered for finaled with 35mm DH PDE standpipe to 11.00 (solted 28.00-31.00m bgl. Strategraphic to 31.00m bgl. 4. Topography: Level Ground. For explanation of symbols and aphreviations see Key Sheet Scale: 1:25 Logged By: RB Checked By: Ji											

	AE	C	ON		AECON Sth Floor City Walk Leeds St1 00 P	Tel: 0113 391 Fax: 0113 391 www.aecom.cc	6800 6899 om AGS	Boreho	le No. F-I	3H10	2
	Equipment &	Method	s:	L	Project I	Name: Net Zero Teesside Onshore	Ground Investigation	- Front End Engineerir	ig Design (FEED)	Job No:	
	0.00 - 0.90 So	nic Drilling	(Hammer ID: GS10)		Project I	Location: Redcar, North Yorkshire				6067	8042
	1.00 - 16.50 So	nic Drilling	(Hammer ID: GS10)		Client: I	BP					
	16.50 - 39.00 Ro	tary Coring	g (Hammer ID: GS10)	-	Co-ordir	nates:	Ground Level (m):		Date Started:	08/09/2022	2
					N: 5257	746.644		9.088 AOD	Date Complete	ed: 20/09/2	2022
ľ	In S	Situ Tes	ting	Coring Inf	formation		I.	Redu	xed	Depth (Thick)	Backfill/
	Depth	Sample Ref &	Test Type	TCR SCR F	Core	DESCRIPTION		(m)	Legend	(m)	Instrument
+	10.00	Type ES	and Result PID = 0.3ppm	RQD	Kull	coarso gravel of sandstone			0		
	Depth (m) 10.00 - - - - - - - - - - - - -	B B B B B B B B B B B B B B B B B B B	Test Type and Result PID = 0.3ppm SPT(S) N=35 2,2/ 8,7,10,10 PID = 0.3ppm SPT(S) N>50 5,7/9,22,19 for 35mm PID = 1.3ppm SPT(S) N>50 2,9/12,23,15 for 30mm		Core Run	Coarse gravel of sandstone. Dense light brown slightly grav shell and coal fragments. Grav fine to medium of mudstone at (TIDAL FLAT DEPOSITS) At 11.43m bgl: Shell fragment From 11.98m bgl: Coal fragment From 11.98m to 12.09m bgl: Coarse. From 12.00m bgl: Becomes v Very dense light brown slightly SAND with rare shell fragment to medium of sandstone and n (TIDAL FLAT DEPOSITS)	velly fine to coarse vel is rounded to so nd sandstone ts become more al ents become abur Gravel becomes fin ery dense.	minimum (minimum (min	Legend 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(m) (m) (m) (m) (m) (m) (m) (m)	
	- - - - - - - - - - - - - - - - - - -	B ES D	PID = 0.5ppm			From 14.02m bgl: Becomes g Very dense dark brown very gr with frequent shell fragments. subrounded fine to coarse of s (TIDAL FLAT DEPOSITS) From 14.57m to 14.76m bgl: 0	ravelly. ravelly fine to coar Gravel is rounded sandstone and mu Gravel is absent.	-5.1 se SAND to dstone	5	- (0.87) - - - - - - - - - - - - - -	
봙	-								· · · · · · · ·	┠│	
2	-								0.00	╞	
2	Water	Strikes	l;	Hole	Diameter	r Progress		Re	marks	I – – – –	
	Strike Flow	Remark	(S	Hole D	ia Depth o	of Date Time Hole	Casing Water	1. Sonic/Rotary Core (SO/RC) Redcar. Located in the north w	borehole located in the Main est of Remediation Zone PR	Site area of Te	esworks,
								2. Suried service inspection Pi granted to progress borehole v 3. SORC borehole advanced 1 Coring to 39.00m bgl. 4. Topography: Level Ground. 5. Groundwater strikes not obs 6. Slag and refractory material 6.51m bgl. Sulphurous odour n 7. Installed with 35mm ID HPD DHDE standpipe to 31.00m bg standpipe at 11.00m and in 50	a Sonic drilling. a Sonic drilling. a Sonic drilling to 16.50m b encountered in material reco ted 0.80-4.50m and 6.51-7. E standpie to 11.50 (slotted (slotted 28.00-31.00m bgl), nm standpipe at 30.50m bg	Idition of flush w vered from grou 15m bgl. 8.50-11.50m) a Datalogger insta	vater. and level to and 50mm ID alled in 35mm
	Notes: For ex	planatic	on of symbols and	d abbrevia		e Key Sheet Scale: 1:25		ogged By: RB	Checked	By: JW	

	ΛΞ		5	A	AE		И	т	al: 0112 201	6900			Bore	ehole	No. F-E	3H10	2
4					2 Ci	ty Walk ds		F	ax: 0113 39 ww.aecom.c	6899 om		3022	Sheet: 4	l of 8			
	Equipment &	Methods	6:		F	Project	Name: Net Zer	o Teessid	le Onshore	Ground Ir	vestigatio	n - Front	t End Eng	ineering D	Design (FEED)	Job No:	
0. 0.	.00 - 0.90 So .90 - 1.00 Ins	nic Drilling ulated Han	(Hammer ID: GS10) d Tools		F	Project	Location: Redo	ar, North	Yorkshire							6067	8042
1.	.00 - 16.50 So	nic Drilling	(Hammer ID: GS10)		C	Client: I	BP										
	0.00 - 00.00 110	tary coring	(namine ib. coro)		E	: 4568	nates: 86.025			Ground	Level (m)): 9.088	AOD		Date Started: (08/09/2022 d: 20/09/2	022
	In S	Situ Test	ling	Corinc	Inforr	I: 5257 nation	46.644							Reduced		Depth	Backfill/
	Depth	Sample	Test Type	TCR	FI	Core		DES	SCRIPTION	I				Level (m)	Legend	(Thick) (m)	Instrument
	(m) 15.00- 15.31	Type	and Result SPT(S) N>50	RQD		Run									· . · ·		
F	15.00- 15.45	SS	5,9/17,18,15 for 40mm												· · · · · · · · · · · ·	- (1.76)	
Ľ	15 21 16 00	Б													· · · · · · · ·		
F	13.31- 10.00	Б					From 15 31	n hal· B	ecomes (u volly v	vith low c	obble				-	
\vdash	15.50		PID = 1.2ppm				content. Cob	bles are	e rounded	to subro	unded o	of sands	stone.		· • · · · · · • · · · · ·	-	
Ē															· · · · · · · · · · · ·		
F															\cdot	-	
+														0.04	· · · · · · · ·	-	
F	16.00- 16.50	В				ŀ	Stiff locally fi	rm redd	ish browr	slightly	gravelly	slightly	sandy	-0.91		00.01	
F							silty CLAY w Gravel is rou	th occa nded to	sional ligl angular f	nt bluish ine to me	grey silty edium of	/ fissure coal.	es.				
+	16 34	FS	PID = 1 1ppm				mudstone ar	d sands	stone. Sa	nd is fine	to coars	se			<u> </u>	-	
F	16 50 40 70	_															
F	16.50- 16.73	C				16.50- 18.00										-	
ł															 	-	
F							Energy 40 77		00	D		. b				-	
Ĺ									oun bgi:	Decome	s greyisn		1.		<u> </u>		
-																-	
F				100 0												-	
E				0													
F																_	
2022																-	
mber																	
Nove																	
te: 29					ŀ	18.00-										-	
- Da						19.50										-	
3.GLB																	
- <1.																-	
RAR																-	
				100													
GS 4				0												(5.68)	
																-	
ary: N																	
GPJ																	
ZT GI															······································	-	
1:1 N					Ī	19.50-											
l <1																	
Proje					CLAY												
00-																	
	Wate Strike Flow	Strikes Remark	s	Hole	ole Di e Dia	ameter Depth	of Date	Progre Time	Hole	Casing	Water	1. Sonic/	Rotary Core (Remar SO/RC) borel	ks hole located in the Main S	Site area of Tee	esworks,
OREH	Depth			(mn 194	ו)	Hole (n 16.50	n) 12-09-2022	17:00	Depth (m 16.50	Depth (m 16.50) Depth (m 6.20	1) 2. Buried granted t	d Service Inspector to progress bo	ection Pit term rehole via So	ninated at 1.00m bgl on h nic drilling.	ard stratum. Pe	ermission d via Rotary
RD C						-						Coring to	o 39.00m bgl. graphy: Level (Ground.	7 no uning to 10.0000 Dg		a via i votal y
ANDA												5. Groun 6. Slag a 6.51m b	iowater strikes and refractory gl. Sulphurous	not observed material enco odour noted	a ouring drilling due to ad untered in material recov 0.80-4.50m and 6.51-7.1	attion of flush w rered from grou 5m bgl.	ater. nd level to
): ST/												7. Installe HDPE st standpip	ed with 35mm tandpipe to 31 e at 11.00m a	ID HPDE sta .00m bgl (slot nd in 50mm s	ndpipe to 11.50 (slotted ted 28.00-31.00m bgl). I tandpipe at 30.50m bgl.	8.50-11.50m) a Datalogger insta	nd 50mm ID Illed in 35mm
port IC) 210: 1:05				םם מ		Charlert	21/- 11/1	
Re	Notes: For ex	planatio	n of symbols and	d abbr	eviatio	ons, see	e Key Sheet.	So	ale: 1:25			Lugged	ру. КВ			by. JVV	

	A		C	O		5th 2 C Lee	ECOI Floor tity Walk	И	Ti Fi W	el: 0113 391 ax: 0113 391 ww.aecom.co	6800 6899 om	AGS	E	Bore	hole	No.	F-B	3H10	2
	Equipm	nent &	Methods	6:			11 9AR Project	Name: Net Zero	o Teessid	le Onshore	Ground Ir	registered user 202	- Front E	ind Eng	ineering D	Design (FEE	D)	Job No:	
	0.00 - 0.9 0.90 - 1.0 1.00 - 16	90 So 00 Ins 6.50 So	nic Drilling ulated Han nic Drilling	(Hammer ID: GS10) d Tools (Hammer ID: GS10)			Project Client:	Location: Redc	ar, North	Yorkshire								6067	8042
	16.50 - 39	0.00 Ro	tary Coring	(Hammer ID: GS10)			Co-ordi	nates: 86.025			Ground	Level (m):	0.088			Date Star	rted: 0	8/09/2022	2
							N: 5257	46.644					9.000	AOD		Date Con	npleted	d: 20/09/2	022
	Depth (m)	h	Sample Sample Ref & Type	Test Type and Result	TCR SCR RQD	FI	mation Core Run		DES	SCRIPTION					Level (m)	Leger	nd	Deptn (Thick) (m)	Backfill/ Instrument
OLE LOG Project: V11.1 NZT GI.GPJ Library: NZT AGS 4_0 LIBRARY V1.3.GLB Date: 29 November 2022		21.39 Waten Flow	C C Strikes Remark	S	100 0 100 0 0 100 100 84 100 100 84 100 100 84	17 5 NI 14 NI CLAY	21.00- 22.50 22.50 24.00 25.50	Stiff reddish I angular fine t (TILL: DEVEN MUDSTONE recovered as to closely spa firm grey clay mudstone (MERCIA MU From 24.37n From 24.63n angular grave	brown m to mediu NSIAN) Pack fract with oc gravel aced, 45 aced, 4	tured thinl casional t and firm c -70°, plar bangular E GROUF 63m bgl: f dstone.	y lamina Juish gri Jay. Fraci ar rougi fine to c P) Recover Recover	Iy CLAY.	Gravel sh brow s. Loca 1: Very o nfilled w vel of	is n Ily close rith ay. se	-12.59 -14.14			21.68 	esworks,
ID: STANDARD COREHOL	Strike Depth	Flow	≺emark	S	Hole (mn	e Dia n)	Depth Hole (r	or i Date n)	IIMe	Hole Depth (m)	Casing Depth (m	vvater) Depth (m)	2. Buried Sv granted to p 3. SO/RC b Coring to 33 4. Topograf 5. Groundw 6.51m bgl. 1 7. Installed HDPE stanu standpipe a	cary COTE cated in the ervice Insp orogress bo orehole ac 0.00m bgl. oby: Level ater strike: refractory Sulphurous with 35mm dpipe to 3 ⁻¹ t 11.00m a	e orr(c) borel e north west of ection Pit term prehole via So foround. s not observed material enco s odour noted i ID HPDE sta .00m bgl (slot and in 50mm s	in responsibility of the second secon	ue to add ial recove 6.51-7.15 (slotted 8 m bgl). Di 50m bgl.	and area of 166 A. and stratum. Per ition of flush w ered from grou im bgl. 50-11.50m) a atalogger insta	ermission ed via Rotary ater. ind level to ind 50mm ID alled in 35mm
Report	Notes:	For ex	planatio	n of symbols an	ld abbr	eviati	ons, se	e Key Sheet.	Sc	 :ale: 1:25		L	Logged By	: RB		Che	cked B	y: JW	

	Λ				A	A 5th	ECO	М	-	Tel: 0113 391	6800		В	orehc	ole N	lo. F-E	3H10	2	
4						2 C Lee LS	City Walk eds 11 9AR		1	Fax: 0113 391 www.aecom.c	om	AGS REGISTERED USER 202	n Sh	eet: 6 of	8				
0	Equipm .00 - 0.9 .90 - 1.0 .00 - 16	1 ent & M 90 Sor 00 Insi 1.50 Sor	Methods nic Drilling (ulated Hano nic Drilling (CHammer ID: GS10) d Tools (Hammer ID: GS10)			Project Project Client:	Name: Net Zer Location: Redo BP	ro Teessi car, North	ide Onshore n Yorkshire	Ground In	vestigation	- Front En	id Engineeri	ing Desig	ın (FEED)	Job No: 6067	8042	
1	6.50 - 39	.00 Rot	ary Coring	(Hammer ID: GS10)			Co-ordi E: 4568	nates: 86.025			Ground	Level (m):	9.088	AOD	D	ate Started: ate Complete	1 08/09/2022 ed: 20/09/2	2	
F	Dept	In S	itu Test Sample	ing Test Type	Coring TCR	Infor	mation Core	40.044	DE	SCRIPTION	1			Redu Lev (m	uced vel 1)	Legend	Depth (Thick) (m)	Back	.fill/ nent
F	(m)		Туре	and Result	RQD	NI	Run										-		
F																	-		
F						CLAY	25.50-	From 25.32 horizontal to	m bgl: F 10°, un	Fracture sendulating s	et 2 prese mooth, o	ent: Wide pen, infill	spaced, ed with fi	rm			-		
E						NI 11	27.00	From 25.50	n to 25	ar fine to c .59m bgl:	coarse gr Recoved	avei of m as firm g	udstone. Irey clay.						
F						NI		From 25.90	m to 27	.00m bal:	Recovered	ed as stiff	arev cla	v.			-		
F					100 85								<u>.</u>				-		
Ē	_				13	CLAY											-		
F																	-		
F																	-		
E	•						27.00- 28.50	From 27.00	m bgl: F	Fracture se	et 1 no lo	nger pres	sent.				-		
F																	-		
r 2022	-				100	2													0
Novembe					100 100 94												-	000	0
Date: 29																	-		l ô
V1.3.GLB						NI												000	
LIBRARY	-					0 NI	28.50- 30.00										-	0 0 0 0 0 0	000
AGS 4_0																	-		
In NZT	-					9											-	0 0 0 0 0 0	000
.GPJ ILI					100 63 63												-		
1.1 NZT G	-					4											-	0 0 0 0 0 0	0 0 0 0
roject: V1'	29.72		с			-													
LOG P	29.91	Water	C Strikes			lole D	iamete	r	Prog	ress				Re	emarks		-		
COREHOLE	Strike Depth	Flow I	Remark	S	Hol (mn	e Dia n)	Depth Hole (r	of Date n) 13-09-2022	Time 17:00	Hole Depth (m) 27.00	Casing Depth (m 27.00	Water Depth (m) 1.60	1. Sonic/Rota Redcar. Loca 2. Buried Sen granted to pro 3. SO/RC bor Coring to 39.0	ry Core (SO/RC ted in the north v vice Inspection F ogress borehole ehole advanced 00m bgl.) borehole lo west of Rem Pit terminated via Sonic dri I via Sonic dri	ocated in the Main ediation Zone PR2 d at 1.00m bgl on h lling. illing to 16.50m bg	Site area of Te 2A. hard stratum. P I, and complete	esworks, ermission ed via Rotary	,
ID: STANDARD													4. Topograph 5. Groundwat 6. Slag and re 6.51m bgl. Su 7. Installed wi HDPE standp standpipe at 1	y: Level Ground. er strikes not ob fractory materia llphurous odour th 35mm ID HPI ipe to 31.00m b 11.00m and in 50	served durin al encountere noted 0.80-4 DE standpip gl (slotted 28 0mm standp	g drilling due to ad d in material recov 50m and 6.51-7.1 e to 11.50 (slotted 8.00-31.00m bgl). I ipe at 30.50m bgl.	dition of flush w /ered from grou 15m bgl. 8.50-11.50m) a Datalogger insta	vater. Ind level to and 50mm ID alled in 35mm) n
Report	Notes:	For exp	olanatio	n of symbols an	ld abbr	eviati	ons, se	e Key Sheet.	s	Scale: 1:25		L	Logged By:	RB		Checked E	By: JW		

A		C	ΌΛ		5th 2 C Lee	ECO Floor City Walk eds	VI	Te Fa W	el: 0113 391 ax: 0113 391 ww.aecom.co	6800 6899 om	AGS REGISTERED USER 20	Bor Sheet:	ehole	No. F-l	3H10	2
Equip	ment &	& Methods	:			Project	Name: Net Zer	o Teesside	e Onshore	Ground Ir	vestigation	- Front End En	gineering [Design (FEED)	Job No	:
0.00 - 0	0.90 S 1.00 I	Sonic Drilling (nsulated Han	(Hammer ID: GS10) d Tools			Project	Location: Redo	car, North `	Yorkshire						6067	78042
1.00 -	16.50 S 39.00 F	Sonic Drilling (Rotary Coring	(Hammer ID: GS10) (Hammer ID: GS10)			Client:	BP			Creating				Data Startadi	00/00/202	0
		, · · · ·				E: 4568	86.025			Ground	Level (m):	9.088 AOD		Date Started:	og/09/202	2 2022
	In	Situ Test	ina	Corin	a Info	N: 5257 mation	46.644						Reduced	Date Complete	Depth	Backfill/
Dep	oth	Sample	Test Type	TCR	FI	Core		DES	CRIPTION				Level (m)	Legend	(Thick)	Instrument
(m)	Type	and Result	RQD		Run									(,	
+					5	30.00- 31.50										
+					NI											000000
-																
Ĺ					NI		From 30.30	m to 30.4	16m bgl:	Recover	ed as stiff	grey clay.			Ĺ	
Ļ					0		From 31.20	m bgl: Fr	acture se	et 3 prese	ent: Wide	spaced,				
+				100			>70°, planar angular fine	rough, o	pen, infil e gravel o	led with the formulation of mudate	firm grey	clay and				
+				66	CLAY											
F							From 30.63	m to 31.0	J5m bgi:	Recover	ed as stiff	grey clay.				
F															(15.77)	
+					3										Ĺ	00000
+							From 30.46	m to 30.6	63m bgl:	Band of	medium s	trong grey				
+					NI 0		thinly lamina	ted siltst	one with	disperse	d fine sar	nd sized				00000
					CLAY	31.50-	planes.	000	ondary of		Sent on h	lacture				
-					0 CLAY	33.00	From 31.50	m to 31.5	59m bgl:	Recover	ed as stiff	grey clay.				
+						1	From 31 60	m to 31.7	74m bal:	Pacavar	od og gtiff					
+					5		FI0III 31.09	11 10 51.7	411 byl.	Recover	eu as sun	grey clay.				
-																
[100	CLAY											
-				100 62			From 32.12	m to 32.2	21m bgl:	Recover	ed as stiff	grey clay.				
+					3											
															-	
r 202							From 32 56	m to 33 (0m bal	Recover	ed as stiff	arev clav				
					CLAY		110111-02.001	11 10 00.0	Joini bgi. I			grey day.				
NOV NOV																
te: 29						33.00-									-	
						34.50										
B C																
- <1.3																
KARY					NI										-	
<u> </u>					0											
8 4 0				100	4		From 33.64	m to 34.0)2m bgl:	Recover	ed as stiff	grey clay.				
				87	CLAY				Ū							
¥33.96 ≍		С														
librar																
					2											
5-0-0																
Ž–																
11.1					0	34.50- 36.00									$\left \right $	
							From 34 65	m to 25 ()1m hal·	Recover	ad as stiff	arev clav				
L L					CLAY		1-10111 34.031	11 10 33.0	un bgi: l	1 COVER	ะน สร รแก	grey ciay.			t	
9 				<u> </u>								1				
J Strike	Wate Flow	er Strikes v Remark	s	Ho	Hole D le Dia	iamete Depth	r of Date	Progre Time	ess Hole	Casing	Water	1. Sonic/Rotary Core	Rema (SO/RC) bore	rks shole located in the Main	Site area of Te	esworks,
H Depth				(m	m)	Hole (r	n)		Depth (m)	Depth (m) Depth (m)	Redicar. Located in t 2. Buried Service Ins granted to progress	pection Pit terr borehole via Sc	n remediation Zone PR: minated at 1.00m bgl on pnic drilling.	2A. hard stratum. F	Permission
												3. SO/RC borehole a Coring to 39.00m bg 4. Topography: Leve	advanced via S I. I Ground.	onic drilling to 16.50m bo	gi, and complet	ed via Rotary
NDAF												5. Groundwater strik 6. Slag and refractor	es not observe y material enco	d during drilling due to ac ountered in material reco	dition of flush vered from gro	vater. und level to
STA												7. Installed with 35m HDPE standpipe to	m ID HPDE sta 31.00m bgl (slo	andpipe to 11.50 (slotted tted 28.00-31.00m bgl).	8.50-11.50m) Datalogger ins	and 50mm ID alled in 35mm
												sanopipe at 11.00m	ana in 50mm :	sianopipe at 30.50m bgl		
Notes	: For e	explanation	n of symbols ar	nd abb	reviati	ons, se	e Key Sheet.	Sca	ale: 1:25		L	ogged By: RB		Checked	By: JW	

	A		C	O N		5th 2 C Lee	Floor Floor ity Walk	M	Te Fi W	el: 0113 391 ax: 0113 39 ww.aecom.c	6800 1 6899 om	AGS	B		No. F-E	3H10	2
-	Equipn 0.00 - 0.1 0.90 - 1.1	nent &	Methods onic Drilling (sulated Han	: Hammer ID: GS10) I Tools			119AR Project Project	Name: Net Zer	o Teessid ar, North	le Onshore Yorkshire	Ground In	registered user 202 vestigation	- Front End	d Engineering [Design (FEED)	Job No: 6067	8042
	1.00 - 16	.50 S .00 R	onic Drilling (otary Coring	Hammer ID: GS10) (Hammer ID: GS10)			Co-ordi	nates:			Ground	Level (m):	0.088 /		Date Started:	08/09/2022	
-		In	Situ Test	ing	Corin	g Infor	N: 5257 mation	46.644					9.000 F	Reduced	Date Complete	ed: 20/09/2	022 Backfill/
	Dept (m)	h	Sample Ref &	Test Type	TCR SCR	FI	Core Run		DES	SCRIPTION	1			Level (m)	Legend	(Thick) (m)	Instrument
	- - -		Туре		100 82 72	NI 2 1											
	- - -					NI		From 35.46r	n to 35.	55m bgl:	Recover	ed as stiff	grey clay	1.			
	-						36.00- 37.50										
	-					NI											
-	_					0										-	
ļ	-				100	NI											
	-				29	0 NI											
	_					0											
	-					CLAY					_					-	
	_					NI	37.50-	From 37.29r	n to 37.3	38m bgl:	Recovere	ed as stiff	grey clay	/.		-	
ovember 202	- - 37.85		с			10	39.00										
Jate: 29 N	- 																
V1.3.GLB	-				100 78 44	2		From 38.21r	n bgl: Fr	racture se	et 4 prese	ent: Unkn	own				
LIBRARY	-					<u>NI</u> 9		angular fine f	to coars	e gravel o	of mudsto	one.					
AGS 4_0						NI											
ary: NZ I	-													-29.91			
-0G Project: V11.1 NZ I GI.GPJ LIBr									End (Thio	of Boreh ckness of not pro	ole 39.00 f basal la oven)) m yer					
HOLE	Strike Denth	Wate Flow	r Strikes Remark	6	Hol (mr	Hole D le Dia m)	iamete Depth Hole (r	r of Date m)	Progre Time	ess Hole Denth (m	Casing	Water	1. Sonic/Rotar Redcar. Locat	Remain y Core (SO/RC) bore ed in the north west of ion langestics Division	rks hole located in the Main f Remediation Zone PR2	Site area of Te	esworks,
NOR ID: SLANDARD CORE	- 5011				146	3	39.00	14-09-2022 15-09-2022 20-09-2022	16:30 11:30 09:00	36.00 39.00 39.00	36.00 39.00 39.00	1.30	 Joured Service Solver Service Solver Service Solver Service Topography Groundwate Slag and rei Stalled wit HDPE standpi standpipe at 1 	we inspection Pit tem gress borehole via Sc om bgl. . Level Ground. er strikes not observer fractory material encc phurous odour noted h 35mm ID HPDE sta born ID HPDE sta .1.00m bgl (slo	Immated at 1.00m bgl on 1 ninc drilling, onic drilling to 16.50m bg d during drilling due to ad untered in material reco 0.80-4.50m and 6.51-7. Indpipe to 11.50 (slotted tied 28.00-31.00m bg], standpipe at 30.50m bgl	Idero stratum. Po pl, and complete Idition of flush w vered from grou 15m bgl. 8.50-11.50m) a Datalogger insta	d via Rotary ater. nd level to nd 50mm ID Illed in 35mm
r P	Notes:	For e	xplanatio	n of symbols an	d abbi	reviati	ons, se	e Key Sheet.	Sc	ale: 1:25		L	ogged By:	KB	Checked I	∃y: JW	

ΛΞ		101			М	т	Fol: 0113 301	6800		Bore	ehole	No. F-E	3H104	4
A				City Walk eeds S11 9AR		F	Fax: 0113 391	om	AGS REGISTERED USER 2022	Sheet:	1 of 7			
Equipment & 0.00 - 0.18 In 0.18 - 16.50 St 16.50 - 32.00 R	Method sulated Ha onic Drilling otary Coring	S: nd Tools (Hammer ID: GS08) g (Hammer ID: GS08)		Project Project Client:	Name: Net Ze Location: Red BP	ero Teessic Icar, North	de Onshore Yorkshire	Ground In	vestigation	- Front End Eng	ineering [Design (FEED)	Job No: 6067	8042
				Co-ordi E: 4569	nates: 11.322			Ground	Level (m):	7.635 AOD		Date Started: Date Complete	16/08/2022 ed: 19/08/2	022
In Depth	Situ Tes Sample Ref &	ting Test Type	Coring Info	N: 5256 ormation	41.198	DES	SCRIPTION	1			Reduced Level (m)	Legend	Depth (Thick) (m)	Backfill/ Instrumer
(m) (m) (m) (m) (m) (m) (m) (m)	ES B ES B	PiD = 18.1ppm PID = 23.6ppm PID = 65.4ppm PID = 21.6ppm PID = 18.7ppm PID = 26.8ppm PID = 18.1ppm SPT(C) N=4 1,1/ 1,1,1 PID = 22.7ppm PID = 21.4ppm	SCR FI	Run	MADE GRC subrounded coarse (MADE GRC From 0.73n From 1.00n MADE GRC Coarse SAN coarse of sl (MADE GRC CLAY. Grav (MADE GRC SAND with 1 slag. Gravel slag (MADE GRC SAND with 1 slag. Gravel slag. Gravel slag. Sand i (MADE GRC subrounded content. Col coarse (MADE GRC	DUND: Da I fine to c DUND DUND: Da ID. Grave ag and re DUND: Da ID. Grave ag and re DUND: So PUND: So PUND: Da high cobl I is subar DUND: Da bibles are DUND: Da	ark brown coarse GR rong organ im bgl: Be ark brown el is suban efractory n oft pale ye rounded of ark brown ble conter ngular to s emediation oft pale ye . Gravel is coarse ark brown ble conter ngular to s	nic odour comes lig novery gra ngular to material ellowish t of slag	r noted. ght brown velly silty subround prown slig velly fine es are sul ed fine to <u>Bm AOD.</u> prown slig ided fine to slag with ag. Sand	gular to d is fine to fine to ed fine to htly gravelly to coarse of coarse of gular to high cobble is fine to	 6.14 5.25 4.88 4.43 4.14 		(m) (1.50) (1.50) (1.50) (1.50) (1.50) (0.89) (0.89) (0.37) (0.37) (0.37) (0.45) (0.29) (0.37) (0.29) (0.37) (0.29) (0.37) (0.29) (
		16,9 for 20mm/ 21,20,9 for 28mm												
Wate	r <u>Stri</u> kes	 s	Hole	 Diamete	r	Progre	ess				Rema	KXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
Strike Flow Remarks Hole Dia (mm) Depth of Hole (m) Date Time Hole Depth (m) Casing Depth (m) Water (mm) 1. Sonic/Rotary Core (SO/RC) borehole located in the Main Site area of Teesworks, Redcar. Located in the south east of Remediation Zone PR2A. Lepth Insp. Pit 0.18 16-08-2022 17:00 0.18 Unit of the terminated at 10.03 method in the function of the terminated at 10.03 method in the function of the terminated at 10.03 method in the function of the terminated at 10.03 method in the function of the terminated at 10.03 method in the function of the terminated at 10.03 method in the function of the terminated at 10.03 method in the function of the function of the terminated at 10.03 method in the function of the terminated at 10.03 method in the function of the terminated at 10.03 method in the function of the terminated at 10.03 method in the function of the terminated at 10.03 method in the function of the terminated at 10.03 method in the function of the terminated at 10.03 method in the function of the terminated at 10.03 method in the function of the terminated at 10.03 method in the function of the terminated at 10.03 method in terminated at 10.03 method in terminated at 10.03 method in the terminated at 10.03 method in terminated at 10.03 method in terminated at 10.03 method in terminated at 10.03 method in terminated at 10.03 method in the terminated at 10.03 method in terminated at 10.03 method in terminated at 10.03 method in terminated at 10.03 method in terminated at 10.03 method in terminated at 10.03 method in terminated at 10.03 method in terminated at 10.03 method in the terminated at 10.03 method in terminated at 10.03 method in terminated at 10.03 method in tereminated at 10.03 method in tereminated at 10.03 meth														
Notes: For e	volanativ	on of symbols an	1 abbrevia	tions se	e Key Sheet	Sc	cale: 1:25			ogged By: RB		Checked E	By: JW	

ΛΞ	-	5	4	AE 5th		M	т	صار مار مار مار مار مار مار مار مار مار م	6800		Bo	orehole	e No. F-I	3H10	4
				2 C Lee LS1	ity Walk ds 119AR		F. W	ax: 0113 39 ww.aecom.c	0000 1 6899 com	AGS REGISTERED USER 202	n She	et: 2 of 7			
Equipment 8 0.00 - 0.18 Ir 0.18 - 16.50 S 16.50 - 32.00 F	NIETNOC Insulated Ha Sonic Drilling Rotary Corin	I S: nd Tools g (Hammer ID: GS08) g (Hammer ID: GS08)		F	Project Project Client:	Name: Net Ze Location: Red BP	ro Teessid car, North	ie Onsnore Yorkshire	Ground Ir	nvestigation	- Front End	Engineering	Design (FEED)	500 003 6067	8042
				C E N	Co-ordir E: 4569 N: 5256	nates: 11.322 41.198			Ground	d Level (m):	7.635 A	OD	Date Started: Date Complete	16/08/202: ed: 19/08/2	2 2022
In Depth (m)	Situ Tes Sample Ref &	Test Type	Coring TCR SCR	Infor	mation Core Run		DES	SCRIPTION	1			Reduced Level (m)	Legend	Depth (Thick) (m)	Backfill Instrume
5.00 - - 5.30- 6.00 - 5.30 	B D	PID = 16.1ppm PID = 15.0ppm			-	Medium der slightly grav fragments. ((TIDAL FLA)	ise light l ely fine to Gravel is T DEPOS	brown mo o coarse fine to m SITS)	ottled gre SAND w edium of	ey slightly ith occasi f mudston	clayey onal shell e	2.36		5.28 - - - - - - - - - - - - - - - - - - -	
- - - 6.00- 6.70 - - - -	B ES SS	PID = 14.6ppm SPT(S) N=20 4,2/ 5,4,6,5			-	Medium der (TIDAL FLA From 6.00rr longer prese	use light l T DEPOS en bgl: Gra ent.	brown mo SITS) avel, clay	ottled gre	ey fine to c	coarse SA nts no	1.64		- - - - - -	
- 6.75 - 6.80- 7.50 - - - -	D B	PID = 11.7ppm												-	
- 7.50 - 8.20 - -	В	SPT(S) N=27 3,4/ 6,6,7,8				From 7.50m occasional s	n bgl: Ab shell frag	undant b ments pr	lack orga esent.	anic specs	and			- - - - (3.56)	
- 	D B	PID = 10.8ppm												- - - - -	
- - - - - 9.25 -	B	PID = 11.8ppm SPT(S) N=27 1,2/ 5,6,7,9												- - - - -	
9.56- 9.95 9.60 9.75 9.95- 10.50	B ES D B				-	Very dense to coarse SA subrounded mudstone a (TIDAL FLA)	light brow AND with to round nd sands T DEPOS	wn mottle abundar led fine to stone SITS)	d dark b nt shell fr o mediun	rown very agments. n of quartz	r gravelly f Gravel is zite	-1.93		9.56 - - -	
Wate	er Strikes	3 8	H		iameter	r of Dete	Progre	ess	Capira	Water	1. Sonic/Rotan	Core (SO/RC) bo	arks	Site area of To	esworks
Strike Flow	v kemar	KS	(mm	שוע פ ו)	Hole (n	n)	lime	Depth (m) Depth (m	vvater i) Depth (m)	Redcar. Locate 2. Buried Servic granted to prog 3. SO/RC borel Coring to 32.00 4. Topography: 5. Groundwater 6. Slag encount noted in materia 7. Borehole bac	d in the south east a Inspection Pit te ress borehole via S nole advanced via m bgl. Level Ground. strikes not observ ered in material re a recovered from (kfilled with benton	or Remediation Zone PR minated at 0.18m bgl on Sonic drilling. Sonic drilling to 16.50m bg ed during drilling due to at covered from ground leve 7.73m to 1.50m bgl. ite pellets and arisings upo	Alter and of TE 2A. hard stratum. F and complet Idition of flush v to 5.28m bgl. on completion.	lermission ed via Rotary vater. Organic odour
Notos: For o	volanati	on of symbols an	d abbre	eviatio	ons. see	e Kev Sheet	Sc	l ale: 1:25	1		Logged By:	RB	Checked	By: JW	

A	C	CON		5th 2 C Lee	Floor Floor ity Walk	M Tel: 0113 391 Fax: 0113 391 www.aecom.cr	6800 6899 om AGS	Bore	hole	No. F-E	3H104	4
Equipment 8 0.00 - 0.18 li 0.18 - 16.50 S 16.50 - 32.00 F	Method Insulated Ha Ionic Drilling Itotary Coring	Is: nd Tools g (Hammer ID: GS08) g (Hammer ID: GS08)			<u>119AR</u> Project I Project I Client: E	Name: Net Zero Teesside Onshore Location: Redcar, North Yorkshire BP	REGISTERED VERY ANZ	Front End Eng	ineering De	esign (FEED)	Job No: 6067	8042
) 	Co-ordir E: 4569 N: 5256	nates:)11.322)41.198	Ground Level (m):	7.635 AOD		Date Started: Date Complete	16/08/2022 ed: 19/08/2	2
In Depth (m)	Situ Tes Sample Ref &	ting Test Type and Result	Coring TCR SCR	Infor FI	mation Core Run	DESCRIPTION			Reduced Level (m)	Legend	Depth (Thick) (m)	Backfill/ Instrument
10.00 10.25 10.25 10.50- 11.20 10.50- 11.20 11.00 11.25 11.30- 12.00 11.25 11.30- 12.00 11.20 11.60 12.00- 12.70 12.00 12.70 13.00 13.00 14.25 13.00 14.20 14.00 14.25 13.00 14.20 14.00 14.30- 15.00 14.30- 15.00 15.	D B D B D B SS D B SS D B B SS D B B B B	PID = 11.3ppm SPT(S) N> 50 1,2/ 2,6,10,32 for 70mm PID = 10.0ppm SPT(S) N> 50 9,16 for 67mm/ 22,28 for 72mm PID = 11.6ppm SPT(S) N>50 11,14 for 60mm/ 27,23 for 65mm PID = 11.8ppm				From 11.50m to 11.70m bgl: I abundant shell fragments. From 12.30m to 12.51m bgl: I fine to coarse.	ghtly gravelly and s Becomes very grav Becomes gravelly.	shell relly with Gravel is	-7.37		- - - - - - - - - - - - - - - - - - -	
Water Strikes Hole Diameter Progress Remarks Strike Flow Remarks Hole Dia Depth of Hole (m) Date Time Hole Casing Depth (m) Depth (m) Depth (m) Sonic/Rotary Core (SORC) borehole located in the Main Site a granted to progress borehole was of Remarks 0 0 Hole (m) Depth (m) Depth (m) Depth (m) Depth (m) Sonic/Rotary Core (SORC) borehole located in the Main Site a granted to progress borehole was of Remarks 0 0 Hole (m) Depth (m) Depth (m) Depth (m) Depth (m) Sonic/Rotary Core (SORC) borehole located in the Main Site a granted to progress borehole advanced was sonic drilling. 3 SO/RC borehole advanced was Sonic drilling. Source Sonehole advanced was Sonic drilling. Source Sonehole advanced was Sonic drilling. 6 Super Sonehole advanced was Sonic drilling. Source Sonehole advanced was Sonic drilling. Source Sonehole advanced was Sonic drilling. 6 Super Sonehole advanced was sonic drilling. Source Sonehole advanced was sonic drilling. Source Sonehole advanced was sonic drilling. 6 Super Sonehole advanced was sonic drilling. Source Sonehole advanced was sonic drilling. Source Sonehole advanced was sonic drilling. 7 Borehole backfilled with bentonit												esworks, ermission ud via Rotary vater. Organic odour
Notes: For e	xplanatio	on of symbols and	d abbre	eviatio	ons, see	e Key Sheet. Scale: 1:25		ogged By: RB		Checked E	By: JW	

	AE	C	O		A 5th 2 C	ECO Floor City Walk	M		Tel: 0113 391 Fax: 0113 39	6800 1 6899	AGS	В	orehole	e No	. F-E	3H10	4
					LS	11 9AR			www.aecom.c		REGISTERED USER 2	She	eet: 4 of 7				
	Equipment &	Method	S:			Project	Name: Net Ze	ro Teess	side Onshore	Ground Ir	vestigatior	n - Front En	d Engineering	Design ((FEED)	Job No:	
	0.00 - 0.18 In 0.18 - 16.50 S	sulated Har onic Drilling	I (Hammer ID: GS08)			Project	Location: Red	car, Norl	th Yorkshire							6067	8042
	16.50 - 32.00 R	otary Coring	g (Hammer ID: GS08)			Client:	BP										
						Co-ordi	nates:			Ground	Level (m):	3 005 /		Date	Started:	16/08/2022	2
						L: 4308 N: 5256	541.198					7.035 F	AOD	Date	Complete	ed: 19/08/2	022
	In	Situ Tes	ting	Corin	g Infor	mation							Reduce	d		Depth	Backfill/
	Depth	Sample	Test Type	TCR	FI	Core		D	ESCRIPTION	1			(m)	L	egend	(Thick) (m)	Instrument
	(m)	Туре	and Result	RQD		Run											
	- 1 3.00- 13.50		SPT(S) N=29				Firm locally	stiff gre	eyish brow	n mottled	light grey	y slightly				-	
	_		3,4/				subrounded	fine to	medium o	f sandsto	one and n	nudstone.		[-	
	_		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Sand is fine	to coa	rse							-	
	-						(TILL: DEVE	NSIAN	I)					E		-	
	-15.50- 16.00	в														-	
	15.50	D												<u> </u>		┣	
	-	50												[-	
	- 15.75	ES												1		-	
	-													E		┠│	
	—16.00- 16.50	В	PID = 9.8ppm											[┝│	
	F													1		┠│	
	-													[┠│	
	-													<u> </u>		┠│	
	-													<u> </u>			
	_					16.50-								[- <u>-</u> -			
	-					17.50								1			
	-													[
	- 16.80- 17.00	C															
				100													
				0										[- <u>-</u> -		[
	_																
	_													<u>[</u>			
	_																
	_																
322	_					17.50- 19.00	From 17 50	m to 10	0.01m hal	Pagama		off		[-	
er 2(_								9.0411 byl.	Decome	s locally s	SOIL.				-	
emb	17 93 19 03	C												E		-	
Nov	-															-	
e: 29	_															\vdash	
Dat	-													[-	
B	-			100												- (6.44)	
Э.G	-			Ő										E		-	
۲ ۲	-													[-	
ZAR.	_															┣ │	
LIBF	-													[-	
4	-													<u> </u>		┠│	
4GS	-													<u> </u>		┠│	
IZT /	-													[┠│	
Z Z	-				ULAY	19.00-								<u> </u>		┢╵	
-ibra,	+					20.50								1			
ן ד ר	-													[┠│	
Ъ.	F													<u> </u>		 	
ZT G	F													<u> </u>			
1 NZ	<u> </u>													[┢╵	
V11.	F													<u> </u>		 	
sct:	F			100 0			From 19.62	m bal:	Occasiona	l coarse	gravel pr	esent.		<u> </u>			
Proj	-			0				3.7			.			[
0	-													1			
ĒLC	Wate	r Strikes	\$	<u> </u>	Hole D	iamete	r	Proç	gress				Rem	arks			
HOL	Strike Flow Depth	Remark	ks	Ho (mr	le Dia m)	Depth Hole (of Date m)	Time	Hole Depth (m	Casing) Depth (m	Water) Depth (m	1. Sonic/Rotar Redcar. Locat	ry Core (SO/RC) bo ted in the south east rice Inspection Dit to	rehole locate of Remedia	ed in the Main ition Zone PR2 0.18m bol on 5	Site area of Te A.	esworks,
ORE				194	1	16.50	17-08-2022	2 17:30	16.50	16.50	5.60	granted to pro 3. SO/RC bor	gress borehole via s ehole advanced via	Sonic drilling. Sonic drilling	u. rom by on h 1 to 16.50m bo	iaru stratum. P	ed via Rotarv
SD C												Coring to 32.0 4. Topography	0m bgl. /: Level Ground.	o animiy	, <i>s</i> .com by	., 00.11piete	
IDAF												5. Groundwate 6. Slag encou	er strikes not observ ntered in material re	ed during dri covered from	illing due to ad n ground level	dition of flush w to 5.28m bgl. (/ater. Drganic odour
STAN												7. Borehole ba	nal recovered from ackfilled with benton	u.73m to 1.5 ite pellets an	um bgl. nd arisings upo	n completion.	
Ü.																	
sport	Noto: 5	mle :: P						<u> </u>	 Scale: 1:25		<u> </u>	Logged Bv:	RB		Checked F	By: JW	
Å	Notes: For ea	kpianatio	on of symbols an	a abbi	eviati	ons, se	e Key Sheet.				[2 ····	

	ΔΞ		O	1	A 5th	ECO	M	Tel: 0 Fax: ()113 391 6 0113 391	5800 6899		B	lore	hole	No. F-l	3H10	4
					Lee	eds 11 9AR	· · · · · · · · · · · · · · · · · · ·	www.a	aecom.co	m	AGD REGISTERED USER 2022	, Sh	ieet: 5	of 7	()		
0.	Equipment &	Methods	s: d Tools			Project Project	Name: Net Zero Tee	esside O)nshore (Ground Inv	estigation	- Front Er	nd Engi	ineering D	esign (FEED)	Job No:	8042
0.	.18 - 16.50 So 6.50 - 32.00 Ro	nic Drilling tary Coring	(Hammer ID: GS08) (Hammer ID: GS08)			Client:	BP		Karine							0007	0042
						Co-ordi E: 4569	inates: 911.322			Ground	Level (m):	7 635			Date Started:	16/08/2022	2
	In S	Situ Test	ing	Corin		N: 5256	641.198					1.000		Reduced	Date Complete	ed: 19/08/2	022 Backfill/
	Depth (m)	Sample Ref & Type	Test Type and Result	TCR SCR RQD	FI	Core Run		DESCR	RIPTION					Level (m)	Legend	(Thick) (m)	Instrument
-	20.21- 20.46	С															
				100 0		20.50-22.00											
	21.80	ES					Weak friable blui Locally recovered (REDCAR MUDS	sh grey l as gra TONE l	y thinly avel or FORM	laminate clay ATION)	d MUDS	TONE.		-13.81		21.44	
	22.10	С			NI	22.00- 23.50											
: 29 November 2022				100 11 11	0		At 22.51m bgl: 6	0mm p	oyrite rid	ch band.							
1.3.GLB Dat					NI		From 22.95m bg At 23.22m bal: 5	l: Becc cm pvr	omes lo rite rich	band.	ong.						
					6	23.50- 25.00											
NZT AGS 4_(NI		From 23.78m bg	I: Becc	omes p	ale grey.							
PJ Library:				100 49	0												
				38	NI												
roject: V11.					0 NI 0												
					NI												
	Water Strike Flow Depth	Strikes	s	Hol (mr	Hole D le Dia n)	Diamete Depth Hole (I	er Profiles	ogress Hc De	ole epth (m)	Casing Depth (m)	Water Depth (m)	1. Sonic/Rota Redcar. Loca 2. Buried Sea granted to pr 3. SO/RC bo Coring to 32. 4. Topograp 5. Groundwa 6. Slag encoi noted in mate 7. Borehole b	any Core (; ated in the vice Inspe ogress bo rehole ad 00m bgl. ny: Level C ter strikes untered in erial recov packfilled v	Remar SO/RC) borel south east of action Pit term rehole via So vanced via So Ground. not observed material reco ered from 0.7 with bentonite	ks hole located in the Main Remediation Zone PR innated at 0.18m bgl on nic drilling. I during to 16.50m bgl. I during drilling due to a vereaf from ground leve '3m to 1.50m bgl. pellets and arisings upp Chacked	Site area of Ter 2A. hard stratum. P and complete dition of flush w to 5.28m bgl. C on completion.	asworks, ermission vd via Rotary vater. Jrganic odour
Ϋ́	Notes: For ex	planatio	n of symbols an	id abbr	reviati	ons, se	e Key Sheet.	Jocale:	1.20		[L	оууси БУ:	170		Checked	y. Jvv	

	Δ	=/	'	A	A 5th	ECO Floor	М	Tel: 0113 39'	6800		Bore	ehole	No. F-I	3H104	4
					2 C Le LS	City Walk eds 11 9AR	<	Fax: 0113 39 www.aecom.o	1 6899 com	AGS REGISTERED USER 2022	Sheet:	6 of 7			
	Equipment 0.00 - 0.18 0.18 - 16.50 16.50 - 32.00	Insulated Han Sonic Drilling Rotary Coring	S: Id Tools (Hammer ID: GS08) I (Hammer ID: GS08)			Project Project Client:	: Name: Net Zero Tee : Location: Redcar, N BP	esside Onshore	e Ground In	vestigation - F	-ront End Eng	Jineering De	esign (FEED)	Job No: 6067	8042
						Co-ordi E: 4569 N: 5256	inates: 911.322 641.198		Ground	Level (m): 7	.635 AOD		Date Started: Date Complete	16/08/2022 ed: 19/08/2	022
-	Depth (m)	In Situ Test Sample Ref & Type	ting Test Type and Result	Corine TCR SCR	g Info	rmation Core Run		DESCRIPTION	N			Reduced Level (m)	Legend	Depth (Thick) (m)	Backfill/ Instrument
-	-	Туре			0	25.00- 26.50									
-	-														
Ī	25.52	с													
	-			100 4											
	-				NI										
	-														
-	-														
						26.50-									
	-				0	20.00								-(10.56)	
	-				NI									-	
	-			100	0										
	-			57 43	NI										
22	_				_									-	
ember 20	-				5										
: 29 Nove	-				NI 0										
B Date	-				NI	28.00- 29.50	From 28.00m bg	I: Becomes	bluish gre	у.					
V1.3.GL	-				0	-									
IBRARY	 -													-	
3S 4_0 L	-			100 13 7			From 28.57m bg	I: Becomes	brown mo	ttled grey.					
/: NZT A(-				NI										
Library	-														
r gi.gp.)	-														
11.1 NZ1	-					29.50- 31.00									
roject: V	-				CLAY		From 29.86m to	29.87m bgl:	Soft brow	n gravelly s	sandy				
LOG P	-	ator Strikoo				liomoto	CLAY. Gravel is a mudstone. Sand	angular to su is medium to	bangular coarse.	fine to mec	lium of	Bomork	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
DARD COREHOLE	Strike Fle Depth	ow Remark	SS ST	Hol (mr	n)	Depth Hole (a File File File File File File File File	Hole Depth (m 0 29.50	Casing) Depth (m) 29.50	Water 1.3 Depth (m) 2.1 5.60 3.1 Co 4.3 Co 4.3 Co 6.5	Sonic/Rotary Core dcar. Located in th Buried Service Insp anted to progress b SO/RC borehole a boring to 32.00m bgl Topography: Level Groundwater strike Slag encountered i	(SO/RC) boreh e south east of pection Pit termi orehole via Son dvanced via Sor Ground. s not observed n material recov	IS ole located in the Main Remediation Zone PR nated at 0.18m bgl on ic drilling. nic drilling to 16.50m b during drilling due to as rered from ground leve	Site area of Ter 2A. hard stratum. Po gl, and complete Idition of flush w I to 5.28m bgl. C	esworks, ermission d via Rotary ater. Drganic odour
ort ID: STAN										7.	ted in material reco Borehole backfilled	wered from 0.73 with bentonite	om to 1.50m bgl. pellets and arisings up	on completion.	
Rep	Notes: For	explanatio	n of symbols ar	nd abbr	reviati	ons, se	e Key Sheet.	Scale: 1:25		Log	ged By: RB		Checked	By: JW	

Employee List Jobs Processor Difference Difference<	A		C	O		5th 2 C Lee	ECON Floor City Walk	И	T F V	Fel: 0113 391 Fax: 0113 391 www.aecom.c	6800 6899 om	AGS		Bore	ehole	e No.	F-E	3H10	4	
United by the set of	Equip: 0.00 - 0 0.18 - 1 16.50 - 3	ment & 0.18 Ins 16.50 So 12.00 Ro	Methods ulated Han nic Drilling tary Coring	5: d Tools (Hammer ID: GS08) (Hammer ID: GS08)		LS	11 9AR Project I Project I Client: I	Name: Net Zer Location: Redo BP	o Teessic ar, North	de Onshore Yorkshire	Ground In	REGISTERED USER 202 Vestigation	- Front	End Eng	yineering [Design (F	EED)	Job No: 6067	7804	2
Water Share Hole Cannot Share Description Share Descrip share Description Share Des							Co-ordir E: 4569	nates: 11.322 41.198			Ground	Level (m):	7.635	AOD		Date S	Started: Complete	16/08/2022 ed: 19/08/2	2 2022	
Umb Test Types Sch T Vision Constraints Prof	Dem	In S	Situ Test Sample	ling	Corin	g Infoi	mation	41.130	DES	SCRIPTION	I				Reduced Level	Le	aend	Depth (Thick)	In	Backfill/ istrumen
30.27 C 100 3 3 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10<	(m)	Ref ['] & Type	Test Type and Result	SCR RQD	FI	Run								(11)		5	(m)		
Water Strike Hole Demoter France Hole Demoter Progress 24.37 22.00 Strike Hole Demoter Progress Renarks Hole Demoter Progress	- _ 30.27 - - -		С		100 0 0	NI												-		
- -	-						31.00- 32.00											-		
Water Strikes Hole Dameter Progress Remarks Water Strikes Hole Dameter Progress Water Strikes Hole Dameter Progress Image: Strike Hole Dameter Progres Image: Strike St	- - - - - -				100 0 0										-24.37			- - - - - - - - - - - - - - - - - - -		
Water Strikes Hole Diameter Progress Strike Flow Remarks Hole Dia Depth of Date Strike Hole Dia Depth of Date Time Loght Hole Dia Depth of Date Time 146 32.00 19-08-2022 146 32.00 19-08-2022 15000 Strike Strikes Hole Dia Depth of Date 146 32.00 19-08-2022 10-00 32.00 32.00 10-000 10-000 10-000 10-000 10-000 10-000 10-000 10-000 10-000 10-0000 10-0000 10-0000 10-00000 10-00000 10-00000000000000000000000000000000000									End (Thi	l of Boreh ickness of not prc	ole 32.00 basal lay oven)	m /er								
Water Strikes Hole Diameter Progress Strike Flow Remarks Hole Diameter (mm) Time Hole Casing Depth (m) Depth (m) Water Strikes in the Main Ste area of Texeworks, Rectar Located in the Main Ste area of Texeworks, Rectar Located in the Main Ste area of Texeworks, Importance of the Main Ste area of Texeworks, Rectar Located in the State of Texeworks, Rectar																				
Water Strikes Hole Diameter Progress Remarks Strike Flow Remarks Hole Dia Depth of Date Time Hole Depth (m) Depth (m) Depth (m) Depth (m) Service (SORC) borehole located in the Main Site area of Teesworks, Redcar. Located in the south east of Remediation Zone PR2A. Depth (mm) Hole (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Sorie/Rotary Core (SORC) borehole located in the Main Site area of Teesworks, Redcar. Located in the south east of Remediation Zone PR2A. Lought Hole (m) Hole (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Sorie/Rotary Core (SORC) borehole located in the Main Site area of Teesworks, Redcar. Located in the south east of Remediation Zone PR2A. Lought 146 32.00 19-08-2022 10:00 32.00 32.00 Sorie/Rotary Core (SORC) borehole advanced via Sorie dilling. 3. SO/RC borehole advanced via Sorie dilling. 3. So/RC borehole advanced via Sorie dilling. 3. So/RC borehole advanced via Sorie dilling. 3. So/RC borehole advanced via Sorie dilling. 3. So/RC borehole advanced via Sorie dilling. 3. So/RC borehole advanced via Sorie dilling. 3. So/RC borehole advanced via Sorie dilling. 3. So/RC borehole advanced via Sorie dilling. 3. So/RC borehole advanced via Sorie dilling.<																				
Water Strikes Hole Diameter Progress Remarks Strike Flow Remarks Hole Dia Depth of Depth of Date Time Hole Casing Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Store PR2A. 1. Sonic/Rotary Core (SORC) borehole located in the Main Site area of Tessworks, Redar, Located in the south east of Remediation Zone PR2A. Image: Depth of Depth of Depth of Depth of Depth of Depth (m) 19-08-2022 10:00 32.00 32.00 32.00 32.00 granted to progress borehole located in the Main Site area of Tessworks, Redar, Located in the south east of Remediation Zone PR2A. Image: Depth of Depth of Depth of Depth of Depth of Depth of Depth (m) 19-08-2022 10:00 32.00 32.00 granted to progress borehole located in the Main Site area of Tessworks, Redard to progress borehole was onic drilling. Sonic/Rotary Core (Sonic) and Core PR2A. Image: Depth of Depth of Depth of Depth of Depth of Depth of Depth (m) 146 32.00 32.00 32.00 32.00 Image: Redard to progress borehole was onic drilling. Sonic/Rotary Core (Sonic) drilling to 16.50m bgl, and completed via Rotary Coring to 32.00m bgl. Topography. Level Ground. 5. Ground test via recovered from Ground level to 528m bgl. Organic odour noted in material recovered from Soning to 15.00m bgl.			- 04 "										I							
Notes Scale: 1:25 Logged By: RB Checked By: JW	Strike Depth	Flow	Remark	S	Ho (mi 140	Hole Ω le Dia m) δ	Depth of Hole (n 32.00	of Date n) 19-08-2022	Progr Time 10:00	ess Hole Depth (m) 32.00	Casing Depth (m) 32.00	Water Depth (m)	1. Sonic/R Redcar. L 2. Buried 3 granted to 3. SO/RC Coring to 3 4. Topogra 5. Ground 6. Slag en noted in m 7. Borehol	Rotary Core ocated in th Service Insp progress b borehole at 32.00m bgl. aphy: Level countered i naterial reco le backfilled	Kemai (SO/RC) bore e south east o section Pit tern orehole via Sc dvanced via Sc Ground. s not observer n material reco vered from 0. with bentonite	rKS ehole located of Remediati minated at 0. onic drilling. onic drilling t d during drilli overed from 73m to 1.50 e pellets and	l in the Main on Zone PR2 18m bgl on I to 16.50m bg ing due to ad ground level m bgl. arisings upo	Site area of Te YA. aard stratum. F I, and complet dition of flush v to 5.28m bgl. n completion.	eeswor Permiss ed via water. Organi	ks, sion Rotary ic odour
I NOTOS: FOR OXDIGRATION OF SUMPOR AND ADDROVIDTIONS COO K OV Shoot	Note-	. For all	planetic	n of our mhala	d of the	rouict		Koveheet	S	cale: 1:25			_ogged B	y: RB		(Checked E	By: JW		

Issued:

09-Aug-22

Certificate Number 22-14779

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- Our Reference 22-14779
- *Client Reference* 60678042

Order No (not supplied)

Contract Title NZT FEED GI

Description 4 Soil samples, 1 Leachate sample.

- Date Received 01-Aug-22
- Date Started 01-Aug-22
- Date Completed 09-Aug-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lopmood

Kirk Bridgewood General Manager

Derwentside Environmental Testing Services Limited Unit 2, Park Road Industrial Estate South, Consett, Co Durham, DH8 5PY Tel: 01207 582333 • email: info@dets.co.uk • www.dets.co.uk

Page 1 of 8

Summary of Chemical Analysis Soil Samples

			Lab No	2040423	2040424	2040425	2040426
		.Sa	ample ID	F-BH128	F-BH128	F-BH128	F-BH128
			Depth	3.90	4.90	8.50	13.50
			Other ID				
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL
		Sampl	ing Date	28/07/2022	28/07/2022	28/07/2022	29/07/2022
		Sampl	ing Time	0900	0930	1000	0800
Test	Method	LOD	Units				
Preparation							
Moisture Content	DETSC 1004	0.1	%	5.2	19	21	23
Metals	1						
Arsenic	DETSC 2301#	0.2	mg/kg	7.3	6.5	6.2	18
Beryllium	DETSC 2301#	0.2	mg/kg	0.6	< 0.2	< 0.2	0.8
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	0.8	< 0.2	3.4	4.5
Cadmium	DETSC 2301#	0.1	mg/kg	0.2	< 0.1	< 0.1	< 0.1
Chromium III	DETSC 2301*	0.15	mg/kg	870	3.8	4.4	41
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	30	3.6	5.4	17
Lead	DETSC 2301#	0.3	mg/kg	12	20	4.4	15
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	DETSC 2301#	1	mg/kg	10	2.4	4.4	27
Selenium	DETSC 2301#	0.5	mg/kg	5.7	< 0.5	< 0.5	< 0.5
Vanadium	DETSC 2301#	0.8	mg/kg	2400	12	13	72
Zinc	DETSC 2301#	1	mg/kg	48	16	22	63
Inorganics						1	
рН	DETSC 2008#		рН	11.7	9.6	8.9	9.1
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.3	0.3	0.3	0.3
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg	< 0.6	4.3	7.3	< 0.6
Organic matter	DETSC 2002#	0.1	%	1.2	0.6	2.0	2.3
Nitrate as NO3	DETSC 2055	1	mg/kg	3.2	< 1.0	< 1.0	< 1.0
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	36	72	64	420
Sulphide	DETSC 2024*	10	mg/kg	690	79	55	210
Sulphur (free)	DETSC 3049#	0.75	mg/kg	8.5	< 0.75	< 0.75	30
Sulphur as S, Total	DETSC 2320	0.01	%	0.17	0.02	0.05	0.31
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.23	0.05	0.03	0.17
Petroleum Hydrocarbons							
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >EC10-EC12: EH_2D_AL	DETSC 3521#	1.5	mg/kg	1.86	2.41	3.77	2.62
Aliphatic >EC12-EC16: EH_2D_AL	DETSC 3521#	1.2	mg/kg	2.07	3.01	5.40	3.32
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	1.99	3.79	2.28
Aliphatic >EC21-EC35: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40	< 3.40	< 3.40
 Aliphatic >EC35-EC40: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40	< 3.40	< 3.40
Aliphatic C5-C40: EH_2D+HS 1D AL	DETSC 3521*	10	mg/kg	12.72	15.82	21.62	17.07
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01

Summary of Chemical Analysis Soil Samples

			Lab No	2040423	2040424	2040425	2040426
		.Sa	mple ID	F-BH128	F-BH128	F-BH128	F-BH128
			Depth	3.90	4.90	8.50	13.50
		(Other ID				
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL
		Sampl	ing Date	28/07/2022	28/07/2022	28/07/2022	29/07/2022
		Sampli	ng Time	0900	0930	1000	0800
Test	Method	LOD	Units				
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/kg	< 0.90	< 0.90	< 0.90	< 0.90
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	< 0.50	< 0.50	< 0.50	< 0.50
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	2.33	2.70	18.29	16.43
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg	< 1.40	< 1.40	< 1.40	< 1.40
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40	< 1.40	< 1.40
Aromatic C5-C40: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	< 10.00	< 10.00	23.66	21.91
TPH Ali/Aro C5-C40: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	19.51	23.73	45.28	38.98
PAHs							
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	0.04
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	0.03
Pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	< 0.10	< 0.10	< 0.10	< 0.10
Phenols							
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
Subcontracted Analysis							
Benzene	\$*	<2	ug/kg	<2			
Toluene	\$*	<5	ug/kg	<5			
Ethylbenzene	\$*	<2	ug/kg	<2			
p & m-xylene	\$*	<2	ug/kg	<2			
o-xylene	\$*	<2	ug/kg	<2			
МТВЕ	\$*	<5	ug/kg	<5			
TAME	\$*	< 5	ug/kg	<5			

Summary of Chemical Analysis

Leachate Samples

.Sample ID F-BH128 Depth 3.90 Other ID Sample Type Sampling Date 28/07/2022 Sampling Time 0900 Test Method LOD Preparation
Depth 3.90 Other ID Sample Type Sampling Date 28/07/2022 Sampling Time 0900 Test Method LOD Units Preparation
Other ID Sample Type LEACHATE Sampling Date 28/07/2022 Sampling Time 0900 Test Method LOD Units Preparation
Sample Type LEACHATE Sampling Date 28/07/2022 Sampling Time 0900 Test Method LOD Units Preparation Used and a construction of the second
Sampling Time 28/07/2022 Sampling Time 0900 Test Method LOD Units Preparation
Sampling Time 0900 Test Method LOD Units Preparation
Test Method LOD Units Preparation
Preparation Leachate 2:1 250g Non-WAC DETSC 1009* Y Metals Y Arsenic, Dissolved DETSC 2306 0.16 ug/l 0.76 Boron, Dissolved DETSC 2306* 12 ug/l 15 Cadmium, Dissolved DETSC 2306 0.03 ug/l < 0.03
Leachate 2:1 250g Non-WAC DETSC 1009* Y Metals Arsenic, Dissolved DETSC 2306 0.16 ug/l 0.76 Boron, Dissolved DETSC 2306* 12 ug/l 15 Cadmium, Dissolved DETSC 2306 0.03 ug/l 4 Chromium III, Dissolved DETSC 2306* 1 ug/l 3.4 Chromium, Hexavalent DETSC 2306 0.4 ug/l 4.0 Iron, Dissolved DETSC 2306 5.5 ug/l 4.5
Metals Arsenic, Dissolved DETSC 2306 0.16 ug/l 0.76 Boron, Dissolved DETSC 2306* 12 ug/l 15 Cadmium, Dissolved DETSC 2306 0.03 ug/l <0.03
Arsenic, Dissolved DETSC 2306 0.16 ug/l 0.76 Boron, Dissolved DETSC 2306* 12 ug/l 15 Cadmium, Dissolved DETSC 2306 0.03 ug/l <0.03
Boron, Dissolved DETSC 2306* 12 ug/l 15 Cadmium, Dissolved DETSC 2306 0.03 ug/l < 0.03
Cadmium, Dissolved DETSC 2306 0.03 ug/l < 0.03 Chromium III, Dissolved DETSC 2306* 1 ug/l 3.4 Chromium, Hexavalent DETSC 2203 0.007 mg/l < 0.007
Chromium III, Dissolved DETSC 2306* 1 ug/l 3.4 Chromium, Hexavalent DETSC 2203 0.007 mg/l < 0.007
Chromium, Hexavalent DETSC 2203 0.007 mg/l < 0.007 Copper, Dissolved DETSC 2306 0.4 ug/l 4.0 Iron, Dissolved DETSC 2306 5.5 ug/l < 5.5
Copper, Dissolved DETSC 2306 0.4 ug/l 4.0 Iron, Dissolved DETSC 2306 5.5 ug/l < 5.5
Iron, Dissolved DETSC 2306 5.5 ug/l < 5.5
,
Lead, Dissolved DETSC 2306 0.09 ug/l 0.82
Mercury, Dissolved DETSC 2306 0.01 ug/l 0.27
Nickel, Dissolved DETSC 2306 0.5 ug/l 0.6
Selenium, Dissolved DETSC 2306 0.25 ug/l 0.74
Zinc, Dissolved DETSC 2306 1.3 ug/l 1.9
Inorganics
pH DETSC 2008 PH 11.0
Cyanide, Total Low Level DETSC 2131 0.1 ug/l 0.4
Cyanide, Free Low Level DETSC 2131 0.1 ug/l < 0.1
Thiocyanate DETSC 2130 20 ug/l 42
Total Hardness as CaCO3 DETSC 2303 0.1 mg/l 172
Ammoniacal Nitrogen as NH4 DETSC 2207 0.015 mg/l 0.03
Ammoniacal Nitrogen as NH3 DETSC 2207 0.015 mg/l 0.029
Ammoniacal Nitrogen as N DETSC 2207 0.015 mg/l 0.024
Nitrate as NO3 DETSC 2055 0.1 mg/l 0.93
Nitrite as NO2 DETSC 2055 0.1 mg/l < 0.10
Sulphate as SO4 DETSC 2055 0.1 mg/l 6.3
Total Organic Carbon DETSC 2085 1 mg/l 3.6
PAHs
Acenaphthene DETSC 3304 0.01 ug/l 0.02
Acenaphthylene DETSC 3304 0.01 ug/l < 0.01
Anthracene DFTSC 3304 0.01 $ug/l < 0.01$
Benzo(a)anthracene DETSC 3304* 0.01 $\mu g/l < 0.01$
Benzo(a) pyrene DETSC 3304 0.01 µg/l < 0.01
Benzo(b)fluoranthene DFTSC 3304 0.01 $\mu g/l = 0.01$
Benzo(g h i)nervlene DFTSC 3304 0.01 $ug/l < 0.01$
Benzo(k)fluoranthene DFTSC 3304 0.01 $\mu\sigma/l$ < 0.01
Chrysene DETSC 3304 0.01 $ug/l < 0.01$
Dibenzo(a h)anthracene DETSC 3304 0.01 $ug/l < 0.01$
Eluoranthene $PETSC 3304 = 0.01 = ug/l < 0.01$

Summary of Chemical Analysis

Leachate Samples

			Lab No	2040427
		.Sa	ample ID	F-BH128
			Depth	3.90
			Other ID	
		Sam	ple Type	LEACHATE
		Samp	ling Date	28/07/2022
		Sampl	ing Time	0900
Test	Method	LOD	Units	
Fluorene	DETSC 3304	0.01	ug/l	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01
Naphthalene	DETSC 3304	0.05	ug/l	< 0.05
Phenanthrene	DETSC 3304	0.01	ug/l	< 0.01
Pyrene	DETSC 3304	0.01	ug/l	< 0.01
PAH Total	DETSC 3304	0.2	ug/l	< 0.20

I DETS

Summary of Asbestos Analysis Soil Samples

Lab No	Sample ID	Material Type	Result	Comment*	Analyst			
2040423 F-BH128 3.90 SOIL NAD none Michael Kay								
Crocidolite = Blue Samples are analy Detected. Where not included in lab	Asbestos, Amosite = Brown Asbestos, rsed by DETSC 1101 using polarised lig a sample is NAD, the result is based or poratory scope of accreditation.	Chrysotile = White Asbestos. An ht microscopy in accordance wit n analysis of at least 2 sub-sampl	thophyllite, Actinolite and T h HSG248 and documented es and should be taken to n	remolite are other forms in-house methods. NAD = nean 'no asbestos detecte	of Asbestos. = No Asbestos d in sample'. Key: * -			

.....

Information in Support of the Analytical Results

Our Ref 22-14779 *Client Ref* 60678042 *Contract* NZT FEED GI

Containers Received & Deviating Samples

		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2040423	F-BH128 3.90 SOIL	28/07/22	GJ 250ml, GJ 60ml, PT 1L		
2040424	F-BH128 4.90 SOIL	28/07/22	GJ 250ml, GJ 60ml, PT 1L		
2040425	F-BH128 8.50 SOIL	28/07/22	GJ 250ml, GJ 60ml, PT 1L		
2040426	F-BH128 13.50 SOIL	29/07/22	GJ 250ml, GJ 60ml, PT 1L		
2040427	F-BH128 3.90 LEACHATE	28/07/22	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

	, ,
Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Acronym

List of HWOL Acronyms and Operators

Det

Aliphatic C5-C6	HS 1D AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC12	EH_2D_AL
Aliphatic >EC12-EC16	EH_2D_AL
Aliphatic >EC16-EC21	EH_2D_AL
Aliphatic >EC21-EC35	EH_2D_AL
Aliphatic >EC35-EC40	EH_2D_AL
Aliphatic C5-C40	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC12	EH_2D_AR
Aromatic >EC12-EC16	EH_2D_AR
Aromatic >EC16-EC21	EH_2D_AR
Aromatic >EC21-EC35	EH_2D_AR
Aromatic >EC35-EC40	EH_2D_AR
Aromatic C5-C40	EH_2D+HS_1D_AR
TPH Ali/Aro C5-C40	EH_2D+HS_1D_Total

End of Report

Issued:

12-Aug-22

Certificate Number 22-15026

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- *Our Reference* 22-15026
- *Client Reference* 60678042

Order No (not supplied)

Contract Title NZT FEED GI

Description 4 Soil samples, 1 Leachate sample.

- Date Received 04-Aug-22
- Date Started 04-Aug-22

Date Completed 12-Aug-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lopmood

Kirk Bridgewood General Manager

Derwentside Environmental Testing Services Limited Unit 2, Park Road Industrial Estate South, Consett, Co Durham, DH8 5PY Tel: 01207 582333 • email: info@dets.co.uk • www.dets.co.uk

			Lab No	2041654	2041655	2041656	2041657
		.Sa	ample ID	F-BH124	F-BH124	F-BH124	F-BH124
		-	Depth	3.80	5.10	7.80	10.80
		1	Other ID		-	-	
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL
		Sampl	ing Date	01/08/2022	01/08/2022	01/08/2022	02/08/2022
		Sampl	ing Time	0900	0930	1100	1100
Test	Method	LOD	Units	<u>, </u>		I	
QTSSubcon Prep	\$	0		Y	Y		Y
Subcon to QTS	\$	0		Y	Y		Y
Preparation							
Moisture Content	DETSC 1004	0.1	%	8.3	15	17	20
Metals							
Arsenic	DETSC 2301#	0.2	mg/kg	9.0	9.4	6.5	3.6
Beryllium	DETSC 2301#	0.2	mg/kg	1.9	< 0.2	< 0.2	< 0.2
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	1.1	0.4	0.6	0.8
Cadmium	DETSC 2301#	0.1	mg/kg	0.1	< 0.1	< 0.1	< 0.1
Chromium III	DETSC 2301*	0.15	mg/kg	410	4.1	4.9	2.7
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	130	3.7	3.2	2.9
Lead	DETSC 2301#	0.3	mg/kg	17	34	4.4	3.1
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	DETSC 2301#	1	mg/kg	12	3.2	3.4	2.6
Selenium	DETSC 2301#	0.5	mg/kg	4.1	< 0.5	< 0.5	< 0.5
Vanadium	DETSC 2301#	0.8	mg/kg	1300	14	19	9.1
Zinc	DETSC 2301#	1	mg/kg	38	32	20	13
Inorganics							
рН	DETSC 2008#		pН	11.6	8.9	9.2	8.7
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.4	< 0.1	< 0.1	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg	0.7	0.8	< 0.6	< 0.6
Organic matter	DETSC 2002#	0.1	%	< 0.1	0.3	0.2	0.4
Nitrate as NO3	DETSC 2055	1	mg/kg	2.2	5.8	5.1	6.6
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	140	240	47	130
Sulphide	DETSC 2024*	10	mg/kg	1400	140	28	16
Sulphur (free)	DETSC 3049#	0.75	mg/kg	17	11	< 0.75	< 0.75
Sulphur as S, Total	DETSC 2320	0.01	%	0.26	0.05	0.02	0.02
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.86	0.13	0.04	0.04
Petroleum Hydrocarbons		·				. <u></u>	
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >EC10-EC12: EH_2D_AL	DETSC 3521#	1.5	mg/kg	2.63	2.14	2.30	2.61
Aliphatic >EC12-EC16: EH_2D_AL	DETSC 3521#	1.2	mg/kg	2.69	2.55	2.64	2.97
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg	2.71	2.20	2.37	2.83
Aliphatic >EC21-EC35: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40	< 3.40	< 3.40
Aliphatic >EC35-EC40: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40	< 3.40	< 3.40
Aliphatic C5-C40: EH 2D+HS 1D AL	DETSC 3521*	10	mg/kg	15.48	14.97	15.51	16.99

			Lab No	2041654	2041655	2041656	2041657
		.Sa	ample ID	F-BH124	F-BH124	F-BH124	F-BH124
			Depth	3.80	5.10	7.80	10.80
			Other ID				
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL
		Sampl	ing Date	01/08/2022	01/08/2022	01/08/2022	02/08/2022
		Sampl	ing Time	0900	0930	1100	1100
Test	Method	LOD	Units				
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/kg	1.36	1.22	< 0.90	< 0.90
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	0.58	< 0.50	< 0.50	< 0.50
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	2.04	1.73	1.22	1.26
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg	< 1.40	< 1.40	< 1.40	< 1.40
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40	< 1.40	< 1.40
Aromatic C5-C40: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	< 10.00	< 10.00	< 10.00	< 10.00
TPH Ali/Aro C5-C40: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	22.53	21.85	21.80	23.56
PAHs							
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
, Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	0.04	< 0.03	< 0.03	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	0.04	< 0.03	< 0.03	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
PAH - USEPA 16. Total	DETSC 3303	0.1	mg/kg	< 0.10	< 0.10	< 0.10	< 0.10
Phenols			0, 0				
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
Phenol	DETSC 3451*	0.01	mg/kg	< 0.01			
4-Chloro-3-methylphenol	DETSC 3451*	0.01	mg/kg	< 0.01			
2.4-Dichlorophenol	DETSC 3451*	0.01		< 0.01			
2 4-Dimethylphenol	DETSC 3451*	0.01		< 0.01			
p-cresol	DETSC 3451*	0.01		< 0.01			
2.6-Dimethylphenol	DFTSC 3451*	0.01	mø/kø	< 0.01			
2.6-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01			
2.4.6-Trichlorophenol	DFTSC 3451*	0.01	mø/kø	< 0.01			
Subcontracted Analysis	52150 5451	0.01	6/ י/6	- 0.01			
Benzene	ς *	<2	uø/ko	</td <td><?</td><td></td><td><7</td></td>	</td <td></td> <td><7</td>		<7
	17		~~/\``S	~~	~~	1	~ 2

			Lab No	2041654	2041655	2041656	2041657
		.Sa	mple ID	F-BH124	F-BH124	F-BH124	F-BH124
			Depth	3.80	5.10	7.80	10.80
		(Other ID				
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL
		Sampl	ing Date	01/08/2022	01/08/2022	01/08/2022	02/08/2022
		Sampling Time		0900	0930	1100	1100
Test	Method	LOD	Units				
Toluene	\$*	<5	ug/kg	<5	<5		<5
Ethylbenzene	\$*	<2	ug/kg	<2	<2		<2
p & m-xylene	\$*	<2	ug/kg	<2	<2		<2
o-xylene	\$*	<2	ug/kg	<2	<2		<2
MTBE	\$*	<5	ug/kg	<5	<5		<5
TAME	\$*	<5	ug/kg	<5	<5		<5

Summary of Chemical Analysis

Leachate Samples

			Lab No	2041658
		.Sa	F-BH124	
			Depth	3.80
		(Other ID	
		Samp	ole Type	LEACHATE
		Sampli	ing Date	01/08/2022
		Sampli	ng Time	0900
Test	Method	LOD	Units	
Preparation				
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y
Metals				
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.91
Boron, Dissolved	DETSC 2306*	12	ug/l	< 12
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03
Chromium III, Dissolved	DETSC 2306*	1	ug/l	2.0
Chromium, Hexavalent	DETSC 2203	0.007	mg/l	< 0.007
Copper, Dissolved	DETSC 2306	0.4	ug/l	5.4
Iron, Dissolved	DETSC 2306	5.5	ug/l	8.9
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.68
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.08
Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5
Selenium, Dissolved	DETSC 2306	0.25	ug/l	0.83
Zinc, Dissolved	DETSC 2306	1.3	ug/l	2.8
Inorganics				
рН	DETSC 2008		pН	10.7
Cyanide, Total Low Level	DETSC 2131	0.1	ug/l	0.4
Cyanide, Free Low Level	DETSC 2131	0.1	ug/l	< 0.1
Thiocyanate	DETSC 2130	20	ug/l	< 20
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	109
Ammoniacal Nitrogen as NH4	DETSC 2207	0.015	mg/l	0.26
Ammoniacal Nitrogen as NH3	DETSC 2207	0.015	mg/l	0.24
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	0.20
Nitrate as NO3	DETSC 2055	0.1	 mg/l	0.36
Nitrite as NO2	DETSC 2055	0.1	mg/l	< 0.10
Sulphate as SO4	DETSC 2055	0.1	mg/l	12
Total Organic Carbon	DETSC 2085	1	mg/l	3.6
PAHs	52130 2003	-		5.0
Acenaphthene	DETSC 3304	0.01	uø/l	< 0.01
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01
Anthracene	DETSC 3304	0.01	ug/l	< 0.01
Benzo(a)anthracene	DETSC 3304*	0.01	ر <u>می</u> ارور	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	رون ارون	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01		< 0.01
Benzo(g h i)pervlene	DETSC 3304	0.01	<u>υσ/Ι</u>	0.01
Benzo(k)fluoranthene	DETSC 2204	0.01	ug/1	< 0.01
Chrysone	DETSC 2204	0.01		< 0.01
Dibenzo(a h)anthracono	DE13C 3304	0.01		< 0.01
Eluoranthono	DE 13C 3304	0.01	ug/1	< 0.01
FIUUIdIILIIEIIE	DE13C 3304	0.01	ug/1	< U.U.L

Summary of Chemical Analysis

Leachate Samples

			Lab No	2041658
		.Sa	ample ID	F-BH124
			Depth	3.80
			Other ID	
		Sam	ple Type	LEACHATE
		Samp	ling Date	01/08/2022
		Sampl	ing Time	0900
Test	Method	LOD	Units	
Fluorene	DETSC 3304	0.01	ug/l	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01
Naphthalene	DETSC 3304	0.05	ug/l	< 0.05
Phenanthrene	DETSC 3304	0.01	ug/l	0.01
Pyrene	DETSC 3304	0.01	ug/l	< 0.01
PAH Total	DETSC 3304	0.2	ug/l	< 0.20

I DETS

Summary of Asbestos Analysis Soil Samples

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2041654	F-BH124 3.80	SOIL	NAD	none	Darryl Fletcher
Crocidolite = Blue Samples are analy Detected. Where not included in lab	Asbestos, Amosite = Brown Asbestos, rsed by DETSC 1101 using polarised lig a sample is NAD, the result is based or poratory scope of accreditation.	Chrysotile = White Asbestos. An ht microscopy in accordance wit n analysis of at least 2 sub-sampl	thophyllite, Actinolite and T n HSG248 and documented es and should be taken to n	remolite are other forms in-house methods. NAD = nean 'no asbestos detecte	of Asbestos. = No Asbestos d in sample'. Key: * -

.....

Information in Support of the Analytical Results

Our Ref 22-15026 *Client Ref* 60678042 *Contract* NZT FEED GI

Containers Received & Deviating Samples

		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2041654	F-BH124 3.80 SOIL	01/08/22	GJ 250ml, GJ 60ml, PT 1L		
2041655	F-BH124 5.10 SOIL	01/08/22	GJ 250ml, GJ 60ml, PT 1L		
2041656	F-BH124 7.80 SOIL	01/08/22	GJ 250ml, GJ 60ml, PT 1L		
2041657	F-BH124 10.80 SOIL	02/08/22	GJ 250ml, GJ 60ml, PT 1L		
2041658	F-BH124 3.80 LEACHATE	01/08/22	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

	, ,
Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Acronym

List of HWOL Acronyms and Operators

Det

Aliphatic C5-C6	HS 1D AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC12	EH_2D_AL
Aliphatic >EC12-EC16	EH_2D_AL
Aliphatic >EC16-EC21	EH_2D_AL
Aliphatic >EC21-EC35	EH_2D_AL
Aliphatic >EC35-EC40	EH_2D_AL
Aliphatic C5-C40	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC12	EH_2D_AR
Aromatic >EC12-EC16	EH_2D_AR
Aromatic >EC16-EC21	EH_2D_AR
Aromatic >EC21-EC35	EH_2D_AR
Aromatic >EC35-EC40	EH_2D_AR
Aromatic C5-C40	EH_2D+HS_1D_AR
TPH Ali/Aro C5-C40	EH_2D+HS_1D_Total

End of Report

Issued:

16-Aug-22

Certificate Number 22-15290

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- *Our Reference* 22-15290
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT FEED GI
 - Description 3 Soil samples, 2 Leachate samples.
 - Date Received 08-Aug-22
- Date Started 08-Aug-22
- Date Completed 16-Aug-22
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lopmood

Kirk Bridgewood General Manager

Derwentside Environmental Testing Services Limited Unit 2, Park Road Industrial Estate South, Consett, Co Durham, DH8 5PY Tel: 01207 582333 • email: info@dets.co.uk • www.dets.co.uk

			Lab No	2043031	2043033
		.Sa	mple ID	F-BH120	F-BH120
			Depth	3.50	5.50
		(Other ID		
		Sam	ple Type	ES	ES
		Sampl	ing Date	02/08/2022	02/08/2022
		Sampli	ng Time	1400	1500
Test	Method	LOD	Units		
Preparation					
Moisture Content	DETSC 1004	0.1	%	12	18
Metals					
Arsenic	DETSC 2301#	0.2	mg/kg	4.7	4.7
Beryllium	DETSC 2301#	0.2	mg/kg	6.3	< 0.2
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	1.3	< 0.2
Cadmium	DETSC 2301#	0.1	mg/kg	< 0.1	< 0.1
Chromium III	DETSC 2301*	0.15	mg/kg	2.3	3.3
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	3.3	4.4
Lead	DETSC 2301#	0.3	mg/kg	2.6	22
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05
Nickel	DETSC 2301#	1	mg/kg	< 1.0	3.1
Selenium	DETSC 2301#	0.5	mg/kg	0.7	< 0.5
Vanadium	DETSC 2301#	0.8	mg/kg	12	10
Zinc	DETSC 2301#	1	mg/kg	7.1	16
Inorganics					
рН	DETSC 2008#		рН	10.2	9.3
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg	1.9	1.2
Organic matter	DETSC 2002#	0.1	%	0.2	0.2
Nitrate as NO3	DETSC 2055	1	mg/kg	1.3	< 1.0
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	480	95
Sulphide	DETSC 2024*	10	mg/kg	1500	120
Sulphur (free)	DETSC 3049#	0.75	mg/kg	1.3	49
Sulphur as S, Total	DETSC 2320	0.01	%	0.22	0.05
Sulphate as SO4, Total	DETSC 2321#	0.01	%	1.7	0.10
Petroleum Hydrocarbons					1
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C6-C8: HS 1D AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C8-C10: HS 1D AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic >EC10-EC12: EH 2D AL	DETSC 3521#	1.5	mg/kg	< 1.50	1.94
Aliphatic >EC12-EC16: EH 2D AL	DETSC 3521#	1.2	mg/kg	< 1.20	< 1.20
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	< 1.50
Aliphatic >EC21-EC35: EH 2D AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40
Aliphatic >EC35-EC40: EH 2D AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40
Aliphatic C5-C40: EH 2D+HS 1D AL	DETSC 3521*	10	mg/kg	12.58	13.63
Aromatic C5-C7: HS 1D AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic C7-C8: HS 1D AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01

			Lab No	2043031	2043033
		.Sa	ample ID	F-BH120	F-BH120
			Depth	3.50	5.50
			Other ID		
		Sam	ple Type	ES	ES
		Sampl	ing Date	02/08/2022	02/08/2022
		Sampl	ing Time	1400	1500
Test	Method	LOD	Units		
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/kg	< 0.90	< 0.90
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	< 0.50	< 0.50
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	< 0.60	< 0.60
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg	< 1.40	< 1.40
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40
Aromatic C5-C40: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	< 10.00	< 10.00
TPH Ali/Aro C5-C40: EH 2D+HS 1D Total	DETSC 3521*	10	mg/kg	18.08	19.55
PAHs		1	0, 0		
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03
, Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
PAH - USEPA 16. Total	DETSC 3303	0.1	mg/kg	< 0.10	< 0.10
PCBs		1	0, 0		
PCB 28 + PCB 31	DETSC 3401#	0.01	mg/kg	< 0.01	
PCB 52	DETSC 3401#	0.01	mg/kg	< 0.01	
PCB 101	DETSC 3401#	0.01	mg/kg	< 0.01	
PCB 118	DETSC 3401#	0.01	mg/kg	< 0.01	
PCB 153	DETSC 3401#	0.01	mg/kg	< 0.01	
PCB 138	DETSC 3401#	0.01	mg/kg	< 0.01	
PCB 180	DETSC 3401#	0.01	mg/kg	< 0.01	
РСВ 77	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 81	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 105	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 114	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 118	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 123	DETSC 3401*	0.01	mg/kg	< 0.01	

			Lab No	2043031	2043033
		.Sa	ample ID	F-BH120	F-BH120
			Depth	3.50	5.50
			Other ID		
		Sam	ple Type	ES	ES
		Sampl	ing Date	02/08/2022	02/08/2022
		Sampl	ing Time	1400	1500
Test	Method	LOD	Units		
PCB 126	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 156	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 157	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 167	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 169	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 189	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 7 Total	DETSC 3401#	0.01	mg/kg	< 0.01	
Phenols					
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3
Subcontracted Analysis					
Benzene	\$*	<2	ug/kg	<2	<2
Toluene	\$*	<5	ug/kg	<5	<5
Ethylbenzene	\$*	<2	ug/kg	<2	<2
p & m-xylene	\$*	<2	ug/kg	<2	<2
o-xylene	\$*	<2	ug/kg	<2	<2
МТВЕ	\$*	<5	ug/kg	<5	<5
TAME	\$*	< 5	ug/kg	< 5	< 5

Summary of Chemical Analysis

Leachate Samples

	Lab No			2043034	2043035
		.Sa	ample ID	F-BH120	F-BH120
		Depth		3.50	5.50
			Other ID		
		Sam	ple Type	ES	ES
		Sampl	ing Date	02/08/2022	02/08/2022
		Sampl	ing Time	1400	1500
Test	Method	LOD	Units		
Preparation					
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y	Y
Metals					
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	1.9	5.8
Boron, Dissolved	DETSC 2306*	12	ug/l	34	< 12
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03
Chromium III, Dissolved	DETSC 2306*	1	ug/l	< 1.0	< 1.0
Chromium, Hexavalent	DETSC 2203	0.007	mg/l	< 0.007	< 0.007
Copper, Dissolved	DETSC 2306	0.4	ug/l	6.2	4.6
Iron, Dissolved	DETSC 2306	5.5	ug/l	< 5.5	47
Lead, Dissolved	DETSC 2306	0.09	ug/l	1.3	3.8
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.04	0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5	< 0.5
Selenium, Dissolved	DETSC 2306	0.25	ug/l	14	2.4
Zinc, Dissolved	DETSC 2306	1.3	ug/l	< 1.3	1.3
Inorganics					
рН	DETSC 2008		рН	10.1	8.9
Cyanide, Total Low Level	DETSC 2131	0.1	ug/l	0.8	0.6
Cyanide, Free Low Level	DETSC 2131	0.1	ug/l	< 0.1	< 0.1
Thiocyanate	DETSC 2130	20	ug/l	160	230
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	99.3	32.7
Ammoniacal Nitrogen as NH4	DETSC 2207	0.015	mg/l	0.94	0.11
Ammoniacal Nitrogen as NH3	DETSC 2207	0.015	mg/l	0.88	0.10
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	0.73	0.084
Nitrate as NO3	DETSC 2055	0.1	mg/l	0.18	0.16
Nitrite as NO2	DETSC 2055	0.1	mg/l	< 0.10	< 0.10
Sulphate as SO4	DETSC 2055	0.1	mg/l	52	11
Total Organic Carbon	DETSC 2085	1	mg/l	2.9	3.1
PAHs					
Acenaphthene	DETSC 3304	0.01	ug/l	0.01	0.07
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	، <u>ہے۔</u> ا/ میں	< 0.01	< 0.01
Benzo(g.h.i)pervlene	DETSC 3304	0.01	رهي ا/عرا	< 0.01	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	، روب ا/ مرر	< 0.01	< 0.01
Chrysene	DETSC 3304	0.01	ر <u>می</u> ارهب	< 0.01	< 0.01
Dibenzo(a.h)anthracene	DETSC 3304	0.01	ر می ا/ میں	< 0.01	< 0.01
Fluoranthene	DETSC 3304	0.01	ا/میں ا/میں	< 0.01	0.01

Summary of Chemical Analysis

Leachate Samples

			Lab No	2043034	2043035
		.Sa	ample ID	F-BH120	F-BH120
			Depth	3.50	5.50
			Other ID		
		Sam	ple Type	ES	ES
		Sampl	ing Date	02/08/2022	02/08/2022
		Sampl	ing Time	1400	1500
Test	Method	LOD	Units		
Fluorene	DETSC 3304	0.01	ug/l	< 0.01	0.02
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Naphthalene	DETSC 3304	0.05	ug/l	0.08	0.12
Phenanthrene	DETSC 3304	0.01	ug/l	0.02	0.02
Pyrene	DETSC 3304	0.01	ug/l	< 0.01	0.01
PAH Total	DETSC 3304	0.2	ug/l	< 0.20	0.26

I DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 22-15290 Client Ref 60678042 Contract Title NZT FEED GI

Lab No S	Sample ID	Material Type	Result	Comment*	Analyst
2043031 F-	-BH120 3.50	SOIL	NAD	none	D Wilkinson
2043032 F-	-BH120 4.50	SOIL	NAD	none	D Wilkinson

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

.....

Information in Support of the Analytical Results

Our Ref 22-15290 *Client Ref* 60678042 *Contract* NZT FEED GI

Containers Received & Deviating Samples

		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2043031	F-BH120 3.50 SOIL	02/08/22	GJ 250ml, GJ 60ml, PT 1L		
2043032	F-BH120 4.50 SOIL	02/08/22	GJ 250ml, GJ 60ml, PT 1L		
2043033	F-BH120 5.50 SOIL	02/08/22	GJ 250ml, GJ 60ml, PT 1L		
2043034	F-BH120 3.50 LEACHATE	02/08/22	GJ 250ml, GJ 60ml, PT 1L		
2043035	F-BH120 5.50 LEACHATE	02/08/22	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

	, ,
Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Acronym

List of HWOL Acronyms and Operators

Det

Aliphatic C5-C6	HS 1D AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC12	EH_2D_AL
Aliphatic >EC12-EC16	EH_2D_AL
Aliphatic >EC16-EC21	EH_2D_AL
Aliphatic >EC21-EC35	EH_2D_AL
Aliphatic >EC35-EC40	EH_2D_AL
Aliphatic C5-C40	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC12	EH_2D_AR
Aromatic >EC12-EC16	EH_2D_AR
Aromatic >EC16-EC21	EH_2D_AR
Aromatic >EC21-EC35	EH_2D_AR
Aromatic >EC35-EC40	EH_2D_AR
Aromatic C5-C40	EH_2D+HS_1D_AR
TPH Ali/Aro C5-C40	EH_2D+HS_1D_Total

End of Report

Issued:

18-Aug-22

Certificate Number 22-15291

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- *Our Reference* 22-15291
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT FEED GI
 - Description 2 Soil samples.
 - Date Received 08-Aug-22
 - Date Started 08-Aug-22
- Date Completed 18-Aug-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logwood

Kirk Bridgewood General Manager

Lab No				2043036	2043037
		.Sa	ample ID	F-BH124	F-BH113
			Depth	18.80	24.66-24.88
			Other ID		
		Sam	ple Type	ES	ES
		Sampl	ing Date	02/08/2022	02/08/2022
		Sampl	ing Time	1000	1200
Test	Method	LOD	Units		
Preparation					
Moisture Content	DETSC 1004	0.1	%	13	8.4
Metals					
Arsenic	DETSC 2301#	0.2	mg/kg	26	8.9
Beryllium	DETSC 2301#	0.2	mg/kg	0.6	0.4
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	2.0	6.2
Cadmium	DETSC 2301#	0.1	mg/kg	0.1	< 0.1
Chromium III	DETSC 2301*	0.15	mg/kg	18	15
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	18	9.9
Lead	DETSC 2301#	0.3	mg/kg	23	9.2
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05
Nickel	DETSC 2301#	1	mg/kg	26	18
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5
Vanadium	DETSC 2301#	0.8	mg/kg	33	26
Zinc	DETSC 2301#	1	mg/kg	120	27
Inorganics		. 1	2. 0		
рН	DETSC 2008#		pН	8.8	8.7
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.3	0.3
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg	< 0.6	0.9
Organic matter	DETSC 2002#	0.1	%	3.1	2.0
Nitrate as NO3	DETSC 2055	1	mg/kg	< 1.0	< 1.0
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	160	250
Sulphide	DETSC 2024*	10	mg/kg	43	64
Sulphur (free)	DETSC 3049#	0.75	mg/kg	< 0.75	< 0.75
Sulphur as S, Total	DETSC 2320	0.01	%	1.3	0.39
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.11	0.05
Petroleum Hydrocarbons					
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic >EC10-EC12: EH_2D_AL	DETSC 3521#	1.5	mg/kg	1.67	< 1.50
Aliphatic >EC12-EC16: EH_2D_AL	DETSC 3521#	1.2	mg/kg	3.44	< 1.20
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg	3.02	< 1.50
Aliphatic >EC21-EC35: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40
Aliphatic >EC35-EC40: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40
Aliphatic C5-C40: EH_2D+HS_1D_AL	DETSC 3521*	10	mg/kg	11.17	12.04
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/kg	< 0.90	< 0.90

	Lab No				
		.Sa	ample ID	F-BH124	F-BH113
			Depth	18.80	24.66-24.88
			Other ID		
		Sam	ple Type	ES	ES
		Sampl	ing Date	02/08/2022	02/08/2022
		Sampl	ing Time	1000	1200
Test	Method	LOD	Units		
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	< 0.50	< 0.50
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	< 0.60	< 0.60
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg	< 1.40	< 1.40
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40
Aromatic C5-C40: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	< 10.00	< 10.00
TPH Ali/Aro C5-C40: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	11.21	17.32
PAHs					
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	< 0.10	< 0.10
Phenols					
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3

Information in Support of the Analytical Results

Our Ref 22-15291 *Client Ref* 60678042 *Contract* NZT FEED GI

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2043036	F-BH124 18.80 SOIL	02/08/22	GJ 250ml, GJ 60ml, PT 1L		
2043037	F-BH113 24.66-24.88 SOIL	02/08/22	GJ 250ml, GJ 60ml, PT 1L		
Key: G-Glas	s P-Plastic J-Jar T-Tub	÷	•		

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Acronym

Det

Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC12	EH_2D_AL
Aliphatic >EC12-EC16	EH_2D_AL
Aliphatic >EC16-EC21	EH_2D_AL
Aliphatic >EC21-EC35	EH_2D_AL
Aliphatic >EC35-EC40	EH_2D_AL
Aliphatic C5-C40	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC12	EH_2D_AR
Aromatic >EC12-EC16	EH_2D_AR
Aromatic >EC16-EC21	EH_2D_AR
Aromatic >EC21-EC35	EH_2D_AR
Aromatic >EC35-EC40	EH_2D_AR
Aromatic C5-C40	EH_2D+HS_1D_AR
TPH Ali/Aro C5-C40	EH_2D+HS_1D_Total

End of Report

Issued:

Certificate Number 22-15294

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- *Our Reference* 22-15294
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT FEED GI
 - Description 2 Soil samples.
 - Date Received 08-Aug-22
 - Date Started 08-Aug-22
- Date Completed 18-Aug-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logwood

Kirk Bridgewood General Manager

18-Aug-22

Lab No				2043042	2043043
	.Sample ID			F-BH120	F-BH120
			Depth	14.80	20.00
			Other ID		
		Sam	ple Type	ES	ES
		Sampl	ing Date	03/08/2022	03/08/2022
		Sampl	ing Time	0900	0930
Test	Method	LOD	Units		
Preparation					
Moisture Content	DETSC 1004	0.1	%	15	9.1
Metals					
Arsenic	DETSC 2301#	0.2	mg/kg	6.5	24
Beryllium	DETSC 2301#	0.2	mg/kg	1.0	0.7
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	3.5	3.4
Cadmium	DETSC 2301#	0.1	mg/kg	0.1	< 0.1
Chromium III	DETSC 2301*	0.15	mg/kg	31	28
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	36	34
Lead	DETSC 2301#	0.3	mg/kg	18	13
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05
Nickel	DETSC 2301#	1	mg/kg	33	30
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	0.6
Vanadium	DETSC 2301#	0.8	mg/kg	40	75
Zinc	DETSC 2301#	1	mg/kg	59	54
Inorganics					
pH	DETSC 2008#		Ha	9.0	9.4
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1
Thiocvanate	DETSC 2130#	0.6	mg/kg	< 0.6	< 0.6
Organic matter	DETSC 2002#	0.1	<u> </u>	1.0	0.8
Nitrate as NO3	DETSC 2055	1	mg/kg	< 1.0	< 1.0
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	190	200
Sulphide	DETSC 2024*	10	mg/kg	28	32
Sulphur (free)	DETSC 3049#	0.75	mg/kg	< 0.75	< 0.75
Sulphur as S. Total	DETSC 2320	0.01	%	0.03	0.62
Sulphate as SO4. Total	DETSC 2321#	0.01	%	0.08	0.02
Petroleum Hydrocarbons	DE100 LOLIN	0.01	70	0.00	0.25
Aliphatic C5-C6: HS_1D_AI	DFTSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AI	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C8-C10: HS 1D Al	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic >EC10-EC12: EH_2D_AI	DETSC 3521#	15	mg/kg	< 1 50	< 1 50
Aliphatic >EC12-EC16: FH_2D_Al	DETSC 3521#	1.5	mø/kø	< 1.00	< 1 20
Aliphatic >EC16-EC21: FH_2D_Al	DETSC 3521#	1 5	mø/kø	< 1 50	< 1 50
Aliphatic >EC21-EC35: FH_2D_Al	DETSC 3521#	3.4	mø/kø	< 3.40	< 3 40
Aliphatic >EC35-FC40: FH_2D_AI	DFTSC 3521#	3.4	mø/kø	< 3.40	< 3 40
Aliphatic C5-C40: FH 2D+HS 1D Al	DFTSC 3521#	10	mø/kø	< 10 00	< 10 00
Aromatic C5-C7: HS_1D_AR	DFTSC 3321*	0.01	mø/kø	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DFTSC 3321*	0.01	mø/kø	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DFTSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic >EC10-EC12 EH 2D ΔR	DETSC 3521#	0.01	mg/kg	< 0.01	< 0.01
	5C13C 3321#	0.5	<u>۳، /۶</u>	- 0.50	- 0.50

			2043042	2043043	
		.Sa	ample ID	F-BH120	F-BH120
			Depth	14.80	20.00
			Other ID		
		Sam	ple Type	ES	ES
		Sampl	ing Date	03/08/2022	03/08/2022
		Sampl	ing Time	0900	0930
Test	Method	LOD	Units		
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	< 0.50	< 0.50
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	< 0.60	< 0.60
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg	< 1.40	< 1.40
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40
Aromatic C5-C40: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	< 10.00	< 10.00
TPH Ali/Aro C5-C40: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	< 10.00	< 10.00
PAHs					
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	< 0.10	< 0.10
Phenols					
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3

Information in Support of the Analytical Results

Our Ref 22-15294 Client Ref 60678042 Contract NZT FEED GI

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2043042	F-BH120 14.80 SOIL	03/08/22	GJ 250ml, GJ 60ml, PT 1L		
2043043	F-BH120 20.00 SOIL	03/08/22	GJ 250ml, GJ 60ml, PT 1L		
Key: G-Glass	P-Plastic J-Jar T-Tub				
DETS cannot	be held responsible for the ir	ntegrity of sar	nples received whereby the laboratory did not undertake the sampling.	In this instance san	nples received may
be deviating	. Deviating Sample criteria are	e based on Bri	itish and International standards and laboratory trials in conjunction wit	th the UKAS note 'G	uidance on
Deviating Sa	mples'. All samples received a	are listed abov	ve. However, those samples that have additional comments in relation t	o hold time, inappr:	opriate containers
etc are devia	ating due to the reasons state	d. This means	that the analysis is accredited where applicable, but results may be con	npromised due to s	ample deviations. If
no sampled	date (soils) or date+time (wat	ers) has been	supplied then samples are deviating. However, if you are able to suppl	y a sampled date (a	nd time for waters)
this will prev	vent samples being reported a	is deviating w	here specific hold times are not exceeded and where the container sup	plied is suitable.	

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Acronym

Det

Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC12	EH_2D_AL
Aliphatic >EC12-EC16	EH_2D_AL
Aliphatic >EC16-EC21	EH_2D_AL
Aliphatic >EC21-EC35	EH_2D_AL
Aliphatic >EC35-EC40	EH_2D_AL
Aliphatic C5-C40	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC12	EH_2D_AR
Aromatic >EC12-EC16	EH_2D_AR
Aromatic >EC16-EC21	EH_2D_AR
Aromatic >EC21-EC35	EH_2D_AR
Aromatic >EC35-EC40	EH_2D_AR
Aromatic C5-C40	EH_2D+HS_1D_AR
TPH Ali/Aro C5-C40	EH_2D+HS_1D_Total

End of Report

Issued: 24-Aug-22

Certificate Number 22-15615 Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- Our Reference 22-15615
- Client Reference 60678042
 - Order No (not supplied)
 - Contract Title NZT FEED GI
 - Description 9 Soil samples, 4 Leachate samples.
 - Date Received 11-Aug-22
 - Date Started 11-Aug-22
- Date Completed 24-Aug-22
- *Test Procedures* Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logwood

Kirk Bridgewood General Manager

i DETS

Summary of Chemical Analysis Soil Samples

			Lab No	2044382	2044383	2044384	2044385	2044386	2044387
			.Sample ID		F-BH125	F-BH125	F-BH125	F-BH125	F-BH130
		Depth		3.80	4.80	5.30	6.30	11.80	4.25
			Other ID						
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sampl	ing Date	04/08/2022	04/08/2022	04/08/2022	04/08/2022	05/08/2022	04/08/2022
_		Sampl	ing Time	1000	1030	1100	1130	1500	1300
Test	Method	LOD	Units						
Preparation		0.4	0/	10	0.1	10	20	24	20
Moisture Content	DETSC 1004	0.1	%	10	9.1	19	26	24	20
ivietais	DETCC 2204 //	0.2		2.5	10	0.0	6.0	20	10
Arsenic	DETSC 2301#	0.2	mg/kg	3.5	19	8.2	0.0	20	19
Berymum Boron, Water Soluble	DETSC 2301#	0.2	mg/kg	5.9	0.3	0.4	0.5	0.5	2.0
Cadmium	DETSC 2311#	0.2	mg/kg	0.0	1.2	0.9	2.7	5.5 < 0.1	1.5
Chromium III	DETSC 2301#	0.1	mg/kg	14	190	< 0.1	0.2	> 0.1	0.5
Chromium Hexavalent	DETSC 2301*	0.13	mg/kg	210	400	9.7 < 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2204	0.2	mg/kg	< 1.0 5 0	25	3 5	12	12	Q1
Lead	DETSC 2301#	0.2	mg/kg	5.0 1 /	1/	20	16	12	61
Mercury	DETSC 2301#	0.5	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	DETSC 2323#	0.05	mg/kg	1 2	25	4 1	16	19	22
Selenium	DETSC 2301#	0.5	mg/kg	1.2	< 0.5	< 0.5	< 0.5	< 0.5	0.9
Vanadium	DETSC 2301#	0.8	mg/kg	43	2200	36	55	36	93
Zinc	DETSC 2301#	1	mg/kg	4.1	46	18	63	46	100
Inorganics			0, 0		_	_		-	
pH	DETSC 2008#		pН	11.4	10.0	10.6	9.2	8.7	8.9
Cvanide. Total	DETSC 2130#	0.1	mg/kg	0.2	< 0.1	< 0.1	0.2	< 0.1	< 0.1
Cvanide. Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Thiocvanate	DETSC 2130#	0.6	mg/kg	< 0.6	< 0.6	0.7	< 0.6	1.0	1.5
Organic matter	DETSC 2002#	0.1	%	1.0	4.0	0.5	2.3	3.1	8.1
Nitrate as NO3	DETSC 2055	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sulphate Aqueous Extract as SOA	DETSC 2035	10	mg/l	610	620	280	110	640	1300
Sulphide	DETSC 2070#	10	ma/ka	3200	/80	190	120	120	560
Sulphur (free)	DETSC 2024	0.75	mg/kg	110	5.8	13	21	26	<u>المح</u>
	DETSC 3049#	0.75	0/	0.27	0.0	1.3	0.10	20	4.5
Sulphoto os CO4. Total	DETSC 2320	0.01	70	0.57	0.20	0.00	0.10	0.45	0.42
Suprate as 504, Total	DETSC 2321#	0.01	70	1.0	0.27	0.16	0.10	0.17	1.2
		0.01	ma/ka	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic CS-C8. HS_1D_AL	DETSC 3321*	0.01	iiig/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Allphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >EC10-EC12: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	< 1.50	2.01	< 1.50	< 1.50	< 1.50
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	< 1.50	3.36	< 1.50	< 1.50	2.32
Aliphatic >EC21-EC35: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40	< 3.40	< 3.40	< 3.40	< 3.40
Aliphatic >EC35-EC40: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40	< 3.40	< 3.40	< 3.40	< 3.40
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/kg	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	1.58	1.33	1.07	1.57	1.10	1.09

i DETS

Summary of Chemical Analysis Soil Samples

					1	i			
		Lab No		2044382	2044383	2044384	2044385	2044386	2044387
		.Sample ID		F-BH125	F-BH125	F-BH125	F-BH125	F-BH125	F-BH130
		Depth		3.80	4.80	5.30	6.30	11.80	4.25
		Com	otner ID		6011	6011	601	601	6011
		Sam	pie Type	SOIL	SOIL	SOIL	SUIL	SOIL	SUIL
		Sampi	ing Date	1000	1020	04/08/2022	04/08/2022	15/08/2022	1200
Test	Method		Inits	1000	1050	1100	1150	1500	1500
Aromatic >EC21-EC35: EH 2D AR	DETSC 3521#	1.4	mg/kg	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40
Aromatic >EC35-EC40: EH 2D AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40
PAHs			0, 0			_	_	_	_
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	0.04	< 0.03	< 0.03	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	0.03	0.04	< 0.03	< 0.03	< 0.03	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	0.04	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	0.13	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
PCBs									
PCB 28 + PCB 31	DETSC 3401#	0.01	mg/kg		< 0.01				< 0.01
PCB 52	DETSC 3401#	0.01	mg/kg		< 0.01				< 0.01
PCB 101	DETSC 3401#	0.01	mg/kg		< 0.01				< 0.01
PCB 118	DETSC 3401#	0.01	mg/kg		< 0.01				< 0.01
PCB 153	DETSC 3401#	0.01	mg/kg		< 0.01				< 0.01
PCB 138	DETSC 3401#	0.01	mg/kg		< 0.01				< 0.01
PCB 180	DETSC 3401#	0.01	mg/kg		< 0.01				< 0.01
РСВ 77	DETSC 3401*	0.01	mg/kg		< 0.01				< 0.01
PCB 81	DETSC 3401*	0.01	mg/kg		< 0.01				< 0.01
PCB 105	DETSC 3401*	0.01	mg/kg		< 0.01				< 0.01
PCB 114	DETSC 3401*	0.01	mg/kg		< 0.01				< 0.01
PCB 118	DETSC 3401*	0.01	mg/kg		< 0.01				< 0.01
PCB 123	DETSC 3401*	0.01	mg/kg		< 0.01				< 0.01
PCB 126	DETSC 3401*	0.01	mg/kg		< 0.01				< 0.01
PCB 156	DETSC 3401*	0.01	mg/kg		< 0.01				< 0.01
PCB 157	DETSC 3401*	0.01	mg/kg		< 0.01				< 0.01
PCB 167	DETSC 3401*	0.01	mg/kg		< 0.01				< 0.01
PCB 169	DETSC 3401*	0.01	mg/kg		< 0.01				< 0.01
PCB 189	DETSC 3401*	0.01	mg/kg		< 0.01				< 0.01
PCB 7 Total	DETSC 3401#	0.01	mg/kg		< 0.01				< 0.01

			Lab No	2044382	2044383	2044384	2044385	2044386	2044387
		.Sample ID		F-BH125	F-BH125	F-BH125	F-BH125	F-BH125	F-BH130
			Depth	3.80	4.80	5.30	6.30	11.80	4.25
			Other ID						
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sampl	ing Date	04/08/2022	04/08/2022	04/08/2022	04/08/2022	05/08/2022	04/08/2022
		Sampl	ing Time	1000	1030	1100	1130	1500	1300
Test	Method	LOD	Units						
Phenols									
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Phenol	DETSC 3451*	0.01	mg/kg						< 0.01
4-Chloro-3-methylphenol	DETSC 3451*	0.01	mg/kg						< 0.01
2,4-Dichlorophenol	DETSC 3451*	0.01	mg/kg						< 0.01
2,4-Dimethylphenol	DETSC 3451*	0.01	mg/kg						< 0.01
p-cresol	DETSC 3451*	0.01	mg/kg						< 0.01
2,6-Dimethylphenol	DETSC 3451*	0.01	mg/kg						< 0.01
2,6-Dichlorophenol	DETSC 3451*	0.01	mg/kg						< 0.01
2,4,6-Trichlorophenol	DETSC 3451*	0.01	mg/kg						< 0.01
Benzene	\$*	<2	ug/kg		8	<2		<2	<2
Toluene	\$*	<5	ug/kg		10	<5		<5	<5
Ethylbenzene	\$*	<2	ug/kg		6	<2		<2	<2
p & m-xylene	\$*	<2	ug/kg		7	<2		<2	<2
o-xylene	\$*	<2	ug/kg		4	<2		<2	<2
МТВЕ	\$*	<5	ug/kg		<5	<5		<5	<5
TAME	\$*	<5	ug/kg		<5	<5		<5	<5

		Lab No			2044389	2044390
		.Sa	ample ID	F-BH130	F-BH130	F-BH130
			Depth	4.95	6.60	9.00
			Other ID			
		Sam	ple Type	SOIL	SOIL	SOIL
		Sampl	ing Date	04/08/2022	04/08/2022	04/08/2022
		Sampl	ing Time	1330	1400	1500
Test	Method	LOD	Units			
Preparation						
Moisture Content	DETSC 1004	0.1	%	17	21	24
Metals						
Arsenic	DETSC 2301#	0.2	mg/kg	8.4	5.9	19
Beryllium	DETSC 2301#	0.2	mg/kg	6.1	< 0.2	0.9
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	1.0	0.7	2.8
Cadmium	DETSC 2301#	0.1	mg/kg	< 0.1	< 0.1	0.1
Chromium III	DETSC 2301*	0.15	mg/kg	11	3.9	15
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	16	4.5	9.2
Lead	DETSC 2301#	0.3	mg/kg	4.8	6.2	9.5
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Nickel	DETSC 2301#	1	mg/kg	5.5	3.6	15
Selenium	DETSC 2301#	0.5	mg/kg	0.7	< 0.5	< 0.5
Vanadium	DETSC 2301#	0.8	mg/kg	40	13	30
Zinc	DETSC 2301#	1	mg/kg	49	16	53
Inorganics	·	. I				
рН	DETSC 2008#		рН	11.2	8.7	9.4
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg	3.3	1.0	0.9
Organic matter	DETSC 2002#	0.1	%	1.4	1.2	2.9
Nitrate as NO3	DETSC 2055	1	mg/kg	< 1.0	< 1.0	< 1.0
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	450	180	340
Sulphide	DETSC 2024*	10	mg/kg	3200	160	190
Sulphur (free)	DETSC 3049#	0.75	mg/kg	5.5	19	1.8
Sulphur as S, Total	DETSC 2320	0.01	%	0.37	0.08	0.38
Sulphate as SO4, Total	DETSC 2321#	0.01	%	1.2	0.17	0.20
Petroleum Hydrocarbons		- 1				
Aliphatic C5-C6: HS 1D AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Alinhatic C6-C8: HS 1D AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS 1D AL	DFTSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aliphatic >FC10-FC12; FH 2D Al	DETSC 3521#	1.5	mø/kg	< 1.50	2.03	< 1.50
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	15	mø/kø	< 1 50	3.08	< 1 50
Aliphatic >EC21_EC25: EH_2D_AL	DETSC 3521	3.4	mg/kg	< 3.40	< 3.40	< 3.40
Aliphatic >EC25 EC40: EH 2D AL	DETCC 2521#	3.1	mg/kg	< 3.40	< 3.40	< 3.40
	DE13C 3321#	0.01	ma/ka	< 0.01	< 0.01	< 0.01
	DEISC 3321	0.01	mg/kg	< 0.01	< 0.01	< 0.01
	DEISC 3321*	0.01	mg/кg	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AK	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/kg	< 0.90	< 0.90	< 0.90
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	< 0.50	< 0.50	< 0.50
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	1.21	0.87	1.06

Sample ID Depth F-BH130 F-B				Lab No	2044388	2044389	2044390
Depth Other ID 4.95 6.60 9.00 Sample Type Sampling Date 5001 5001 5001 5001 Test Method LOD 1330 1400 1500 Aromatic >EC21-EC35: EH_2D_AR DETSC 3521# 1.4 mg/kg <1.40			.Sa	ample ID	F-BH130	F-BH130	F-BH130
Chther ID Sample Type Sonil, Sonil, <th< td=""><td></td><td></td><td></td><td>Depth</td><td>4.95</td><td>6.60</td><td>9.00</td></th<>				Depth	4.95	6.60	9.00
Sample Type Solit Soli				Other ID			
Sampling Time Gu/08/2022 (3008/2022) Gu/08/2022 (3008/2022) Gu/08/2022 (3008/2022) Test Method LOD Units 1300 1400 1500 Aromatic >EC3F-EC40: EH_2D_AR DETSC 3521# 1.4 mg/kg <1.40			Sam	ple Type	SOIL	SOIL	SOIL
Sampling Time 130 1400 1500 Aromatic >EC21-EC35: EH_2D_AR DETSC 3521# 1.4 mg/kg <1.40 <1.40 <1.40 Aromatic >EC35-EC40: EH_2D_AR DETSC 3521* 1.4 mg/kg <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40 <1.40			Samp	ling Date	04/08/2022	04/08/2022	04/08/2022
Test Method LOD Units Aromatic >EC21+EC35: EH_ZD_AR DETSC 3521# 1.4 mg/kg < 1.40	_		Sampl	ing Time	1330	1400	1500
Aromatic >EC21-EC35: EH_2D_AR DETSC 3521# 1.4 mg/kg <1.40	Test	Method	LOD	Units			
Aromatic >EC35-EC40: EH_2D_AR DETSC 3521* 1.4 mg/kg <1.40	Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg	< 1.40	< 1.40	< 1.40
PARS Composition Composition Composition Accenaphthylene DETSC 3303# 0.03 mg/kg <0.03	Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40	< 1.40
Acenaphthene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 <th< td=""><td></td><td>DETCO 2202#</td><td>0.02</td><td></td><td>10.00</td><td>. 0. 0.2</td><td>. 0. 0.2</td></th<>		DETCO 2202#	0.02		10.00	. 0. 0.2	. 0. 0.2
Accenaptifylene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 Anthracene DETSC 3303# 0.03 mg/kg < 0.03	Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Anthracene DETSC 3303 0.03 mg/kg < 0.03 < 0.03 < 0.03 Benzo(a)anthracene DETSC 3303# 0.03 mg/kg < 0.03	Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Benzo(a)anthracene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 Benzo(b)fluoranthene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 Benzo(b)fluoranthene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 Benzo(k)fluoranthene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 Chrysene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 Dibenzo(a,h)anthracene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 Fluoranthene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 Fluoranthene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 Fluoranthene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 Indeno(1,2,3-c,d)pyrene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 Phenanthrene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 Phenanthrene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 Phenanthrene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 Phenanthrene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 Phenanthrene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 Phenanthrene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 Phenanthrene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 Phenanthrene DETSC 3303# 0.01 mg/kg < 0.03 < 0.03 < 0.03 Phenanthrene DETSC 3401# 0.01 mg/kg < DETSC 3401# 0.01 mg/kg	Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Benzo(a)pyrene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 Benzo(b)fluoranthene DETSC 3303# 0.03 mg/kg < 0.03	Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Benzo(b)fluoranthene DETSC 3303# 0.03 mg/kg <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0	Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Benzo(g,h,i)perylene DETSC 3303# 0.03 mg/kg Dispres (a, n) and may may	Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Benzo(k)fluoranthene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 Chrysene DETSC 3303 0.03 mg/kg < 0.03	Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Chrysene DETSC 3303 0.03 mg/kg < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.	Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Dibenzo(a,h)anthracene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03	Chrysene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Fluoranthene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 <th< td=""><td>Dibenzo(a,h)anthracene</td><td>DETSC 3303#</td><td>0.03</td><td>mg/kg</td><td>< 0.03</td><td>< 0.03</td><td>< 0.03</td></th<>	Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Fluorene DETSC 3303 0.03 mg/kg < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.01	Fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Naphthalene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Phenanthrene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.01 mg/kg < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 mg/kg	Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Pyrene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.0	Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
PAH - USEPA 16, Total DETSC 3303 0.1 mg/kg < 0.10 < 0.10 PCBs PCB 28 + PCB 31 DETSC 3401# 0.01 mg/kg PCB 52 DETSC 3401# 0.01 mg/kg PCB 101 DETSC 3401# 0.01 mg/kg PCB 118 DETSC 3401# 0.01 mg/kg PCB 138 DETSC 3401# 0.01 mg/kg PCB 138 DETSC 3401# 0.01 mg/kg PCB 138 DETSC 3401# 0.01 mg/kg PCB 180 DETSC 3401# 0.01 mg/kg PCB 181 DETSC 3401* 0.01 mg/kg PCB 181 DETSC 3401* 0.01 mg/kg PCB 181 DETSC 3401* 0.01 mg/kg PCB 114 DETSC 3	Pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
PCBs DETSC 3401# 0.01 mg/kg Image: Mark text of the state s	PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	< 0.10	< 0.10	< 0.10
PCB 28 + PCB 31 DETSC 3401# 0.01 mg/kg PCB 52 DETSC 3401# 0.01 mg/kg	PCBs	1					
PCB 52 DETSC 3401# 0.01 mg/kg PCB 101 DETSC 3401# 0.01 mg/kg PCB 118 DETSC 3401# 0.01 mg/kg PCB 153 DETSC 3401# 0.01 mg/kg PCB 138 DETSC 3401# 0.01 mg/kg PCB 138 DETSC 3401# 0.01 mg/kg <td>PCB 28 + PCB 31</td> <td>DETSC 3401#</td> <td>0.01</td> <td>mg/kg</td> <td></td> <td></td> <td></td>	PCB 28 + PCB 31	DETSC 3401#	0.01	mg/kg			
PCB 101 DETSC 3401# 0.01 mg/kg PCB 118 DETSC 3401# 0.01 mg/kg PCB 153 DETSC 3401# 0.01 mg/kg PCB 138 DETSC 3401# 0.01 mg/kg PCB 138 DETSC 3401# 0.01 mg/kg PCB 180 DETSC 3401# 0.01 mg/kg PCB 77 DETSC 3401* 0.01 mg/kg PCB 81 DETSC 3401* 0.01 mg/kg PCB 105 DETSC 3401* 0.01 mg/kg PCB 114 DETSC 3401* 0.01 mg/kg PCB 118 DETSC 3401* 0.01 mg/kg PCB 118 DETSC 3401* 0.01 mg/kg PCB 123 DETSC 3401* 0.01 mg/kg PCB 126 DETSC 3401* 0.01 mg/kg PCB 156 DETSC 3401* 0.01 mg/kg PCB 157 DETSC 3401* 0.01 mg/kg PCB 167 DETSC 3401* 0.01 mg/kg PCB 167 DETSC 3401* 0.01 mg/kg PCB 169 DETSC 3401* <td>PCB 52</td> <td>DETSC 3401#</td> <td>0.01</td> <td>mg/kg</td> <td></td> <td></td> <td></td>	PCB 52	DETSC 3401#	0.01	mg/kg			
PCB 118 DETSC 3401# 0.01 mg/kg PCB 153 DETSC 3401# 0.01 mg/kg PCB 138 DETSC 3401# 0.01 mg/kg PCB 130 DETSC 3401# 0.01 mg/kg PCB 180 DETSC 3401# 0.01 mg/kg PCB 180 DETSC 3401* 0.01 mg/kg PCB 177 DETSC 3401* 0.01 mg/kg PCB 81 DETSC 3401* 0.01 mg/kg PCB 105 DETSC 3401* 0.01 mg/kg PCB 114 DETSC 3401* 0.01 mg/kg PCB 118 DETSC 3401* 0.01 mg/kg PCB 123 DETSC 3401* 0.01 mg/kg PCB 126 DETSC 3401* 0.01 mg/kg PCB 156 DETSC 3401* 0.01 mg/kg PCB 157 DETSC 3401* 0.01 mg/kg PCB 167 DETSC 3401* 0.01 mg/kg PCB 167 DETSC 3401* 0.01 mg/kg PCB 169 DETSC 3401* 0.01 mg/kg PCB 189 DETSC 3401* </td <td>PCB 101</td> <td>DETSC 3401#</td> <td>0.01</td> <td>mg/kg</td> <td></td> <td></td> <td></td>	PCB 101	DETSC 3401#	0.01	mg/kg			
PCB 153 DETSC 3401# 0.01 mg/kg PCB 138 DETSC 3401# 0.01 mg/kg PCB 180 DETSC 3401# 0.01 mg/kg PCB 77 DETSC 3401* 0.01 mg/kg PCB 81 DETSC 3401* 0.01 mg/kg PCB 105 DETSC 3401* 0.01 mg/kg PCB 114 DETSC 3401* 0.01 mg/kg PCB 118 DETSC 3401* 0.01 mg/kg PCB 123 DETSC 3401* 0.01 mg/kg PCB 126 DETSC 3401* 0.01 mg/kg PCB 156 DETSC 3401* 0.01 mg/kg PCB 157 DETSC 3401* 0.01 mg/kg PCB 167 DETSC 3401* 0.01 mg/kg PCB 167 DETSC 3401* 0.01 mg/kg PCB 169 DETSC 3401* 0.01 mg/kg PCB 189 DETSC 3401* 0.01 mg/kg PCB 189 DETSC 3401* 0.01 mg/kg	PCB 118	DETSC 3401#	0.01	mg/kg			
PCB 138 DETSC 3401# 0.01 mg/kg PCB 180 DETSC 3401# 0.01 mg/kg PCB 77 DETSC 3401* 0.01 mg/kg PCB 81 DETSC 3401* 0.01 mg/kg PCB 105 DETSC 3401* 0.01 mg/kg PCB 105 DETSC 3401* 0.01 mg/kg PCB 114 DETSC 3401* 0.01 mg/kg PCB 118 DETSC 3401* 0.01 mg/kg PCB 123 DETSC 3401* 0.01 mg/kg PCB 126 DETSC 3401* 0.01 mg/kg PCB 126 DETSC 3401* 0.01 mg/kg PCB 156 DETSC 3401* 0.01 mg/kg PCB 157 DETSC 3401* 0.01 mg/kg PCB 167 DETSC 3401* 0.01 mg/kg PCB 169 DETSC 3401* 0.01 mg/kg PCB 189 DETSC 3401* 0.01 mg/kg PCB 189 DETSC 3401* 0.01 mg/kg PCB 17 Total DETSC 3401# 0.01 mg/kg	PCB 153	DETSC 3401#	0.01	mg/kg			
PCB 180 DETSC 3401# 0.01 mg/kg Image: Mark and the state of the state	PCB 138	DETSC 3401#	0.01	mg/kg			
PCB 77 DETSC 3401* 0.01 mg/kg PCB 81 DETSC 3401* 0.01 mg/kg PCB 105 DETSC 3401* 0.01 mg/kg PCB 114 DETSC 3401* 0.01 mg/kg PCB 118 DETSC 3401* 0.01 mg/kg PCB 123 DETSC 3401* 0.01 mg/kg PCB 126 DETSC 3401* 0.01 mg/kg PCB 156 DETSC 3401* 0.01 mg/kg PCB 157 DETSC 3401* 0.01 mg/kg PCB 167 DETSC 3401* 0.01 mg/kg PCB 169 DETSC 3401* 0.01 mg/kg PCB 189 DETSC 3401* 0.01 mg/kg	PCB 180	DETSC 3401#	0.01	mg/kg			
PCB 81 DETSC 3401* 0.01 mg/kg PCB 105 DETSC 3401* 0.01 mg/kg PCB 114 DETSC 3401* 0.01 mg/kg PCB 118 DETSC 3401* 0.01 mg/kg PCB 123 DETSC 3401* 0.01 mg/kg PCB 126 DETSC 3401* 0.01 mg/kg PCB 126 DETSC 3401* 0.01 mg/kg PCB 156 DETSC 3401* 0.01 mg/kg PCB 157 DETSC 3401* 0.01 mg/kg PCB 167 DETSC 3401* 0.01 mg/kg PCB 169 DETSC 3401* 0.01 mg/kg PCB 189 DETSC 3401* 0.01 mg/kg PCB 17 DETSC 3401* 0.01 mg/kg	РСВ 77	DETSC 3401*	0.01	mg/kg			
PCB 105 DETSC 3401* 0.01 mg/kg PCB 114 DETSC 3401* 0.01 mg/kg PCB 118 DETSC 3401* 0.01 mg/kg PCB 123 DETSC 3401* 0.01 mg/kg PCB 126 DETSC 3401* 0.01 mg/kg PCB 126 DETSC 3401* 0.01 mg/kg PCB 156 DETSC 3401* 0.01 mg/kg PCB 157 DETSC 3401* 0.01 mg/kg PCB 167 DETSC 3401* 0.01 mg/kg PCB 169 DETSC 3401* 0.01 mg/kg PCB 189 DETSC 3401* 0.01 mg/kg PCB 7 Total DETSC 3401# 0.01 mg/kg	PCB 81	DETSC 3401*	0.01	mg/kg			
PCB 114 DETSC 3401* 0.01 mg/kg PCB 118 DETSC 3401* 0.01 mg/kg PCB 123 DETSC 3401* 0.01 mg/kg PCB 126 DETSC 3401* 0.01 mg/kg PCB 156 DETSC 3401* 0.01 mg/kg PCB 157 DETSC 3401* 0.01 mg/kg PCB 167 DETSC 3401* 0.01 mg/kg PCB 169 DETSC 3401* 0.01 mg/kg PCB 189 DETSC 3401* 0.01 mg/kg PCB 7 Total DETSC 3401# 0.01 mg/kg	PCB 105	DETSC 3401*	0.01	mg/kg			
PCB 118 DETSC 3401* 0.01 mg/kg PCB 123 DETSC 3401* 0.01 mg/kg PCB 126 DETSC 3401* 0.01 mg/kg PCB 156 DETSC 3401* 0.01 mg/kg PCB 157 DETSC 3401* 0.01 mg/kg PCB 167 DETSC 3401* 0.01 mg/kg PCB 169 DETSC 3401* 0.01 mg/kg PCB 189 DETSC 3401* 0.01 mg/kg PCB 7 Total DETSC 3401# 0.01 mg/kg	PCB 114	DETSC 3401*	0.01	mg/kg			
PCB 123 DETSC 3401* 0.01 mg/kg PCB 126 DETSC 3401* 0.01 mg/kg PCB 156 DETSC 3401* 0.01 mg/kg PCB 157 DETSC 3401* 0.01 mg/kg PCB 167 DETSC 3401* 0.01 mg/kg PCB 169 DETSC 3401* 0.01 mg/kg PCB 189 DETSC 3401* 0.01 mg/kg PCB 7 Total DETSC 3401# 0.01 mg/kg	PCB 118	DETSC 3401*	0.01	mg/kg			
PCB 126 DETSC 3401* 0.01 mg/kg	PCB 123	DETSC 3401*	0.01	mg/kg			
PCB 156 DETSC 3401* 0.01 mg/kg PCB 157 DETSC 3401* 0.01 mg/kg PCB 167 DETSC 3401* 0.01 mg/kg PCB 169 DETSC 3401* 0.01 mg/kg PCB 189 DETSC 3401* 0.01 mg/kg PCB 7 Total DETSC 3401# 0.01 mg/kg	PCB 126	DETSC 3401*	0.01	mg/kg			
PCB 157 DETSC 3401* 0.01 mg/kg PCB 167 DETSC 3401* 0.01 mg/kg PCB 169 DETSC 3401* 0.01 mg/kg PCB 189 DETSC 3401* 0.01 mg/kg PCB 7 Total DETSC 3401# 0.01 mg/kg	PCB 156	DETSC 3401*	0.01	mg/kg			
PCB 167 DETSC 3401* 0.01 mg/kg PCB 169 DETSC 3401* 0.01 mg/kg PCB 189 DETSC 3401* 0.01 mg/kg PCB 7 Total DETSC 3401# 0.01 mg/kg	PCB 157	DETSC 3401*	0.01	mg/kg			
PCB 169 DETSC 3401* 0.01 mg/kg PCB 189 DETSC 3401* 0.01 mg/kg PCB 7 Total DETSC 3401# 0.01 mg/kg	PCB 167	DETSC 3401*	0.01	mg/kg			
PCB 189 DETSC 3401* 0.01 mg/kg PCB 7 Total DETSC 3401# 0.01 mg/kg	PCB 169	DETSC 3401*	0.01	mg/kg			
PCB 7 Total DETSC 3401# 0.01 mg/kg	PCB 189	DETSC 3401*	0.01	mg/kg			
	PCB 7 Total	DETSC 3401#	0.01	mg/kg			

		Lab No	2044388	2044389	2044390	
		.Sa	ample ID	F-BH130	F-BH130	F-BH130
			Depth	4.95	6.60	9.00
			Other ID			
		Sam	ple Type	SOIL	SOIL	SOIL
		Sampl	ing Date	04/08/2022	04/08/2022	04/08/2022
		Sampl	ing Time	1330	1400	1500
Test	Method	LOD	Units			
Phenols						
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3
Phenol	DETSC 3451*	0.01	mg/kg			
4-Chloro-3-methylphenol	DETSC 3451*	0.01	mg/kg			
2,4-Dichlorophenol	DETSC 3451*	0.01	mg/kg			
2,4-Dimethylphenol	DETSC 3451*	0.01	mg/kg			
p-cresol	DETSC 3451*	0.01	mg/kg			
2,6-Dimethylphenol	DETSC 3451*	0.01	mg/kg			
2,6-Dichlorophenol	DETSC 3451*	0.01	mg/kg			
2,4,6-Trichlorophenol	DETSC 3451*	0.01	mg/kg			
Benzene	\$*	<2	ug/kg	<2	<2	
Toluene	\$*	<5	ug/kg	<5	<5	
Ethylbenzene	\$*	<2	ug/kg	<2	<2	
p & m-xylene	\$*	<2	ug/kg	<2	<2	
o-xylene	\$*	<2	ug/kg	<2	<2	
МТВЕ	\$*	<5	ug/kg	<5	<5	
TAME	\$*	<5	ug/kg	<5	<5	

Summary of Chemical Analysis Soil VOC/SVOC Samples

				2044202	2044207
		-	2044383	2044387	
		.Si	F-BH125	F-BH130	
			Depth	4.80	4.25
			Other ID		
		Sam	ple Type	SOIL	SOIL
		Samp	ing Date	04/08/2022	04/08/2022
		Sampl	ing Time	1030	1300
Test	Method	LOD	Units		
VOCs					
Vinyl Chloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1 Dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Trans-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Cis-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
2,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Bromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Chloroform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1,1-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Carbon tetrachloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Benzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Trichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Dibromomethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Bromodichloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
cis-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Toluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
trans-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1,2-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Tetrachloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,3-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Dibromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dibromoethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Chlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1,1,2-tetrachloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Ethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
m+p-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
o-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Styrene	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01
Bromoform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Isopropylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Bromobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1 2 3-trichloropropane	DFTSC 3431	0.01	mg/kg	< 0.01	< 0.01
n-propylbenzene	DETSC 3/131	0.01	mg/kg	< 0.01	< 0.01
2 chlorotoluono	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
	DET3C 3431	0.01	IIIg/Kg	< 0.01	< 0.01
1,3,5-trimetnyibenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
4-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Tert-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2,4-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
sec-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01

Summary of Chemical Analysis Soil VOC/SVOC Samples

			Lab No	2044383	2044387
		.Sa	ample ID	F-BH125	F-BH130
			Depth	4.80	4.25
			Other ID		
		Sam	ple Type	SOIL	SOIL
		Sampl	ing Date	04/08/2022	04/08/2022
		Sampl	ing Time	1030	1300
Test	Method	LOD	Units		
p-isopropyltoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,3-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,4-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
n-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dibromo-3-chloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2,4-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Hexachlorobutadiene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2,3-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
МТВЕ	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01
SVOCs					
Phenol	DETSC 3433	0.1	mg/kg	< 0.1	
Aniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2-Chlorophenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Benzyl Alcohol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2-Methylphenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Bis(2-chloroisopropyl)ether	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
3&4-Methylphenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2,4-Dimethylphenol	DETSC 3433	0.1	mg/kg	< 0.1	
Bis-(dichloroethoxy)methane	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2,4-Dichlorophenol	DETSC 3433	0.1	mg/kg	< 0.1	
1,2,4-Trichlorobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
4-Chloro-3-methylphenol	DETSC 3433	0.1	mg/kg	< 0.1	
2-Methylnaphthalene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Hexachlorocyclopentadiene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2,4,6-Trichlorophenol	DETSC 3433	0.1	mg/kg	< 0.1	
2.4.5-Trichlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2-Chloronaphthalene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2,4-Dinitrotoluene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
3-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
4-Nitrophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Dibenzofuran	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2.6-Dinitrotoluene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2.3.4.6-Tetrachlorophenol	DFTSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Diethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
4-Chlorophenylphenylether	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
4-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2-Methyl-4.6-Dinitrophenol	DFTSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Diphenylamine	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
4-Bromophenylphenylether	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1

Summary of Chemical Analysis Soil VOC/SVOC Samples

			Lab No	2044383	2044387
		.Sa	ample ID	F-BH125	F-BH130
			Depth	4.80	4.25
			Other ID		
		Sam	ple Type	SOIL	SOIL
		Sampl	ing Date	04/08/2022	04/08/2022
		Sampl	ing Time	1030	1300
Test	Method	LOD	Units		
Hexachlorobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Pentachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Di-n-butylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Butylbenzylphthalate	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Bis(2-ethylhexyl)phthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Di-n-octylphthalate	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
1,4-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Dimethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
1,3-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
1,2-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2,3,5,6-Tetrachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Azobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Carbazole	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1

i DETS

Summary of Chemical Analysis

Leachate Samples

			Lab No	2044391	2044392	2044393	2044394
		.S	ample ID	F-BH125	F-BH125	F-BH130	F-BH130
			Depth	4.80	5.30	4.25	6.60
			Other ID				
		Sam	ple Type	LEACHATE	LEACHATE	LEACHATE	LEACHATE
		Samp	ling Date	04/08/2022	04/08/2022	04/08/2022	04/08/2022
		Sampl	ing Time	1030	1100	1300	1400
Test	Method	LOD	Units				
Preparation							
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y	Y	Y	Y
Metals							
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	53	11	1.8	0.92
Boron, Dissolved	DETSC 2306*	12	ug/l	34	< 12	18	14
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03	< 0.03	< 0.03
Chromium III, Dissolved	DETSC 2306*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0
Chromium, Hexavalent	DETSC 2203	0.007	mg/l	< 0.007	< 0.007	< 0.007	< 0.007
Copper, Dissolved	DETSC 2306	0.4	ug/l	5.0	2.1	1.4	1.2
Iron, Dissolved	DETSC 2306	5.5	ug/l	8.8	7.5	< 5.5	< 5.5
Lead, Dissolved	DETSC 2306	0.09	ug/l	4.6	1.6	2.1	2.2
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.22	0.07	< 0.01	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	2.5	1.4	< 0.5	< 0.5
Selenium, Dissolved	DETSC 2306	0.25	ug/l	8.9	7.7	2.1	0.34
Zinc, Dissolved	DETSC 2306	1.3	ug/l	2.2	< 1.3	5.9	2.8
Inorganics							
рН	DETSC 2008		pН	7.8	8.5	7.6	7.6
Cyanide, Total Low Level	DETSC 2131	0.1	ug/l	2.4	1.3	0.1	0.1
Cyanide, Free Low Level	DETSC 2131	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Thiocyanate	DETSC 2130	20	ug/l	160	35	34	33
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	17.9	72.8	503	136
Ammoniacal Nitrogen as NH4	DETSC 2207	0.015	mg/l	0.14	0.23	0.29	14
Ammoniacal Nitrogen as NH3	DETSC 2207	0.015	mg/l	0.13	0.22	0.27	13
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	0.13	0.22	0.27	11
	DETSC 2055	0.013	mg/l	< 0.11	< 0.10	< 0.10	0.50
Nitrite as NO2	DETSC 2055	0.1	mg/l	< 0.10	0.10	< 0.10	0.50
Sulphoto os SO4	DETSC 2055	0.1	mg/l	< 0.10	0.11	< 0.10	0.11
Sulphate as 304	DETSC 2055	0.1	mg/l	20	40	< 0.10	1.0
Paula	DETSC 2085	1	mg/i	3.2	2.2	1.1	1.8
		0.01		0.01	0.02	10.01	40.01
Acenaphtheles	DETSC 3304	0.01	ug/i	0.01	0.02	< 0.01	< 0.01
Acenaphthylene	DETSC 3304	0.01	ug/i	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	DETSC 3304	0.01	ug/I	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	0.02	0.02	0.02	0.02
Fluorene	DETSC 3304	0.01	ug/l	0.01	0.02	0.01	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01

Summary of Chemical Analysis

Leachate Samples

			Lab No	2044391	2044392	2044393	2044394
		.Sa	ample ID	F-BH125	F-BH125	F-BH130	F-BH130
			Depth	4.80	5.30	4.25	6.60
			Other ID				
		Sam	ple Type	LEACHATE	LEACHATE	LEACHATE	LEACHATE
		Samp	ing Date	04/08/2022	04/08/2022	04/08/2022	04/08/2022
		Sampl	ing Time	1030	1100	1300	1400
Test	Method	LOD	Units				
Naphthalene	DETSC 3304	0.05	ug/l	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	DETSC 3304	0.01	ug/l	0.02	0.03	0.02	0.02
Pyrene	DETSC 3304	0.01	ug/l	0.02	0.01	0.02	0.01
PAH Total	DETSC 3304	0.2	ug/l	< 0.20	< 0.20	< 0.20	< 0.20

i DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 22-15615 Client Ref 60678042 Contract Title NZT FEED GI

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2044382	F-BH125 3.80	SOIL	NAD	none	D Wilkinson
2044383	F-BH125 4.80	SOIL	NAD	none	D Wilkinson
2044387	F-BH130 4.25	SOIL	NAD	none	D Wilkinson
2044388	F-BH130 4.95	SOIL	NAD	none	D Wilkinson

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Holdingtimo

Inappropriate

Information in Support of the Analytical Results

Our Ref 22-15615 Client Ref 60678042 Contract NZT FEED GI

Containers Received & Deviating Samples

					mappropriate
		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2044382	F-BH125 3.80 SOIL	04/08/22	GJ 250ml, GJ 60ml, PT 1L		
2044383	F-BH125 4.80 SOIL	04/08/22	GJ 250ml, GJ 60ml, PT 1L		
2044384	F-BH125 5.30 SOIL	04/08/22	GJ 250ml, GJ 60ml, PT 1L		
2044385	F-BH125 6.30 SOIL	04/08/22	GJ 250ml, GJ 60ml, PT 1L		
2044386	F-BH125 11.80 SOIL	05/08/22	GJ 250ml, GJ 60ml, PT 1L		
2044387	F-BH130 4.25 SOIL	04/08/22	GJ 250ml, GJ 60ml, PT 1L		
2044388	F-BH130 4.95 SOIL	04/08/22	GJ 250ml, GJ 60ml, PT 1L		
2044389	F-BH130 6.60 SOIL	04/08/22	GJ 250ml, GJ 60ml, PT 1L		
2044390	F-BH130 9.00 SOIL	04/08/22	GJ 250ml, GJ 60ml, PT 1L		
2044391	F-BH125 4.80 LEACHATE	04/08/22	GJ 250ml, GJ 60ml, PT 1L		
2044392	F-BH125 5.30 LEACHATE	04/08/22	GJ 250ml, GJ 60ml, PT 1L		
2044393	F-BH130 4.25 LEACHATE	04/08/22	GJ 250ml, GJ 60ml, PT 1L		
2044394	F-BH130 6.60 LEACHATE	04/08/22	GJ 250ml, GJ 60ml, PT 1L		
Kev: G-Glass	P-Plastic I-lar T-Tub				

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det

Det	Acronym
Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC12	EH_2D_AL
Aliphatic >EC16-EC21	EH_2D_AL
Aliphatic >EC21-EC35	EH_2D_AL
Aliphatic >EC35-EC40	EH_2D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC12	EH_2D_AR
Aromatic >EC12-EC16	EH_2D_AR
Aromatic >EC16-EC21	EH_2D_AR
Aromatic >EC21-EC35	EH_2D_AR
Aromatic >EC35-EC40	EH 2D AR

End of Report

Issued: 23-Aug-22

Certificate Number 22-15617 Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- Our Reference 22-15617
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT FEED GI
 - Description 2 Soil samples.
 - Date Received 11-Aug-22
 - Date Started 11-Aug-22
- Date Completed 23-Aug-22
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

emood

Kirk Bridgewood General Manager

Summary of Chemical Analysis Soil Samples

			Lab No	2044407	2044408
		.Sa	ample ID	F-BH125	F-BH130
			Depth	14.80	22.00
			Other ID		
		Sam	ple Type	SOIL	SOIL
		Sampl	ing Date	05/08/2022	05/08/2022
		Sampl	ing Time	1600	1500
Test	Method	LOD	Units		
Preparation					
Moisture Content	DETSC 1004	0.1	%	18	21
Metals					
Arsenic	DETSC 2301#	0.2	mg/kg	9.0	10
Beryllium	DETSC 2301#	0.2	mg/kg	1.3	0.7
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	3.5	3.6
Cadmium	DETSC 2301#	0.1	mg/kg	< 0.1	< 0.1
Chromium III	DETSC 2301*	0.15	mg/kg	39	25
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	27	19
Lead	DETSC 2301#	0.3	mg/kg	17	12
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05
Nickel	DETSC 2301#	1	mg/kg	43	25
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5
Vanadium	DETSC 2301#	0.8	mg/kg	48	41
Zinc	DETSC 2301#	1	mg/kg	61	52
Inorganics					
рН	DETSC 2008#		рН	8.2	8.3
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg	< 0.6	< 0.6
Organic matter	DETSC 2002#	0.1	%	2.5	2.1
Nitrate as NO3	DETSC 2055	1	mg/kg	< 1.0	< 1.0
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	150	410
Sulphide	DETSC 2024*	10	mg/kg	59	75
Sulphur (free)	DETSC 3049#	0.75	mg/kg	< 0.75	1.5
Sulphur as S, Total	DETSC 2320	0.01	%	0.04	0.23
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.09	0.14
Petroleum Hydrocarbons		1			
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic >EC10-EC12: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	2.22
Aliphatic >EC12-EC16: EH_2D_AL	DETSC 3521#	1.2	mg/kg	< 1.20	3.88
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	3.57
Aliphatic >EC21-EC35: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40
Aliphatic >EC35-EC40: EH 2D AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40
Aliphatic C5-C40: EH 2D+HS 1D AL	DETSC 3521*	10	mg/kg	13.48	18.33
Aromatic C5-C7: HS_1D_AR	DFTSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic C7-C8: HS 1D AR	DFTSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AP	DETSC 2221*	0.01	۳۵/۱۰۵ ma/ka	< 0.01	< 0.01
		0.01	mg/kg	< 0.01	< 0.01
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/Kg	< 0.90	< 0.90
Aromatic >EC12-EC16: EH_2D_AR	DEISC 3521#	0.5	mg/kg	< 0.50	< 0.50

Summary of Chemical Analysis Soil Samples

			Lab No	2044407	2044408
		.Sa	ample ID	F-BH125	F-BH130
			Depth	14.80	22.00
			Other ID		
		Sam	ple Type	SOIL	SOIL
		Sampl	ing Date	05/08/2022	05/08/2022
		Sampl	ing Time	1600	1500
Test	Method	LOD	Units		
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	1.16	0.81
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg	< 1.40	< 1.40
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40
Aromatic C5-C40: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	< 10.00	< 10.00
TPH Ali/Aro C5-C40: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	19.80	24.50
PAHs					
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	< 0.10	< 0.10
Phenols					
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3

inannronriate

Information in Support of the Analytical Results

Our Ref 22-15617 *Client Ref* 60678042 Contract NZT FEED GI

Containers Received & Deviating Samples

				••		mappropriate
		Date		e	ceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	te	ests	tests
2044407	F-BH125 14.80 SOIL	05/08/22	GJ 250ml, GJ 60ml, PT 1L			
2044408	F-BH130 22.00 SOIL	05/08/22	GJ 250ml, GJ 60ml, PT 1L			
Key: G-Glas	s P-Plastic I-lar T-Tub					

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Acronym

Det

Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC1	2 EH_2D_AL
Aliphatic >EC12-EC1	6 EH_2D_AL
Aliphatic >EC16-EC2	1 EH_2D_AL
Aliphatic >EC21-EC3	5 EH_2D_AL
Aliphatic >EC35-EC4	0 EH_2D_AL
Aliphatic C5-C40	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC1	2 EH_2D_AR
Aromatic >EC12-EC1	6 EH_2D_AR
Aromatic >EC16-EC2	1 EH_2D_AR
Aromatic >EC21-EC3	5 EH_2D_AR
Aromatic >EC35-EC4	0 EH_2D_AR
Aromatic C5-C40	EH_2D+HS_1D_AR
TPH Ali/Aro C5-C40	EH_2D+HS_1D_Total

End of Report

Issued:

24-Aug-22

Certificate Number 22-16049

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- Our Reference 22-16049
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT FEED GI
 - Description 5 Soil samples, 2 Leachate samples.
 - Date Received 17-Aug-22
- Date Started 17-Aug-22
- Date Completed 24-Aug-22
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lemood

Kirk Bridgewood General Manager

Derwentside Environmental Testing Services Limited Unit 2, Park Road Industrial Estate South, Consett, Co Durham, DH8 5PY Tel: 01207 582333 • email: info@dets.co.uk • www.dets.co.uk

Page 1 of 8

Summary of Chemical Analysis Soil Samples

			Lab No	2046862	2046863	2046864	2046865	2046866
		.Sample ID		F-BH119	F-BH119	F-BH133	F-BH133	F-BH133
			Depth	2.90	4.30	0.70	2.70	5.00
			Other ID					
		Sam	ple Type	ES	ES	ES	ES	ES
		Sampl	ing Date	09/08/2022	09/08/2022	09/08/2022	09/08/2022	09/08/2022
		Sampl	ing Time	1000	1200	1400	1430	0930
Test	Method	LOD	Units					
Preparation								
Moisture Content	DETSC 1004	0.1	%	4.6	16	12	11	17
Metals		I						
Arsenic	DETSC 2301#	0.2	mg/kg	8.4	9.5	27	13	7.0
Beryllium	DETSC 2301#	0.2	mg/kg	0.5	< 0.2	0.7	2.8	< 0.2
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	1.2	< 0.2	2.2	1.7	0.2
Cadmium	DETSC 2301#	0.1	mg/kg	0.3	< 0.1	1.0	< 0.1	< 0.1
Chromium III	DETSC 2301*	0.15	mg/kg	720	4.7	430	89	6.5
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	63	4.0	110	15	4.7
Lead	DETSC 2301#	0.3	mg/kg	26	21	79	7.6	15
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05	0.22	< 0.05	< 0.05
Nickel	DETSC 2301#	1	mg/kg	14	2.9	26	13	2.9
Selenium	DETSC 2301#	0.5	mg/kg	5.9	< 0.5	3.0	0.9	0.6
Vanadium	DETSC 2301#	0.8	mg/kg	1800	14	680	280	19
Zinc	DETSC 2301#	1	mg/kg	54	31	240	18	22
Inorganics								
pH	DETSC 2008#		рН	11.5	9.0	10.1	9.7	9.5
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.2	< 0.1	4.4	< 0.1	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
Organic matter	DETSC 2002#	0.1	%	0.7	0.2	1.5	0.6	0.5
Nitrate as NO3	DETSC 2055	1	mg/kg	9.1	4.6	1.4	1.6	< 1.0
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	58	36	310	1200	21
Sulphide	DETSC 2024*	10	mg/kg	340	16	180	1300	140
Sulphur (free)	DETSC 3049#	0.75	mg/kg	1.1	< 0.75	4.3	34	< 0.75
Sulphur as S, Total	DETSC 2320	0.01	%	0.15	0.02	0.13	0.18	0.02
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.15	0.04	0.45	0.50	0.05
Petroleum Hydrocarbons								
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >EC10-EC12: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	< 1.50	< 1.50	< 1.50	< 1.50
Aliphatic >EC12-EC16: EH_2D_AL	DETSC 3521#	1.2	mg/kg	< 1.20	< 1.20	< 1.20	< 1.20	< 1.20
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	< 1.50	< 1.50	< 1.50	< 1.50
Aliphatic >EC21-EC35: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40	< 3.40	< 3.40	< 3.40
Aliphatic >EC35-EC40: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40	< 3.40	< 3.40	< 3.40
Aliphatic C5-C40: EH_2D+HS_1D_AL	DETSC 3521*	10	mg/kg	11.56	13.10	12.53	12.40	13.24
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Summary of Chemical Analysis Soil Samples

Lab No		2046862	2046863	2046864	2046865	2046866		
.Sample ID		F-BH119	F-BH119	F-BH133	F-BH133	F-BH133		
			Depth	2.90	4.30	0.70	2.70	5.00
		(Other ID					
		Sam	ple Type	ES	ES	ES	ES	ES
		Sampl	ing Date	09/08/2022	09/08/2022	09/08/2022	09/08/2022	09/08/2022
		Sampli	ing Time	1000	1200	1400	1430	0930
Test	Method	LOD	Units					
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/kg	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	3.59	3.96	4.93	4.70	3.95
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg	< 1.40	< 1.40	4.80	< 1.40	5.18
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40
Aromatic C5-C40: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	< 10.00	< 10.00	12.94	< 10.00	12.53
TPH Ali/Aro C5-C40: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	19.59	22.08	25.47	21.85	25.77
PAHs								
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	0.04	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	0.07	0.12	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	0.04	< 0.03	0.37	0.22	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	0.03	< 0.03	0.28	0.08	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	0.06	< 0.03	0.52	0.15	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	0.17	0.04	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	0.21	0.07	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	0.07	< 0.03	0.55	0.24	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	0.04	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	0.15	< 0.03	1.1	1.0	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	0.13	0.04	< 0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	0.03	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	0.06	< 0.03	0.64	0.77	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	0.11	< 0.03	1.1	0.66	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	0.50	< 0.10	5.2	3.4	< 0.10
Phenols								
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Subcontracted Analysis		÷						
Benzene	\$*	<2	ug/kg			<2		<2
Toluene	\$*	<5	ug/kg			<5		<5
Ethylbenzene	\$*	<2	ug/kg			<2		<2
p & m-xylene	\$*	<2	ug/kg			<2		<2
o-xylene	\$*	<2	ug/kg			<2		<2
МТВЕ	\$*	<5	ug/kg			<5		<5
ТАМЕ	\$*	< 5	ug/kg			< 5		< 5

Summary of Chemical Analysis

Leachate Samples

		Lab No		2046867	2046868
		.Sample ID		F-BH119	F-BH133
			Depth	2.90	0.70
			Other ID		
		Sam	ple Type	ES	ES
		Sampl	ing Date	09/08/2022	09/08/2022
		Sampl	ing Time	1000	1400
Test	Method	LOD	Units		
Preparation					
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y	Y
Metals					
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.65	2.7
Boron, Dissolved	DETSC 2306*	12	ug/l	< 12	27
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	0.06	< 0.03
Chromium III, Dissolved	DETSC 2306*	1	ug/l	6.6	1.8
Chromium, Hexavalent	DETSC 2203	0.007	mg/l	< 0.007	< 0.007
Copper, Dissolved	DETSC 2306	0.4	ug/l	15	4.2
Iron, Dissolved	DETSC 2306	5.5	ug/l	< 5.5	18
Lead, Dissolved	DETSC 2306	0.09	ug/l	15	1.9
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.04	0.07
Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5	< 0.5
Selenium, Dissolved	DETSC 2306	0.25	ug/l	0.92	0.50
Zinc, Dissolved	DETSC 2306	1.3	ug/l	7.3	1.7
Inorganics					
рН	DETSC 2008		рН	11.8	9.4
Cyanide, Total Low Level	DETSC 2131	0.1	ug/l	0.6	< 0.1
Cyanide, Free Low Level	DETSC 2131	0.1	ug/l	0.8	0.2
Thiocyanate	DETSC 2130	20	ug/l	26	39
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	288	73.4
Ammoniacal Nitrogen as NH4	DETSC 2207	0.015	mg/l	0.03	0.02
Ammoniacal Nitrogen as NH3	DETSC 2207	0.015	mg/l	0.030	0.017
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	0.025	< 0.015
Nitrate as NO3	DETSC 2055	0.1	mg/l	1.3	< 0.10
Nitrite as NO2	DETSC 2055	0.1	mg/l	0.37	0.11
Sulphate as SO4	DETSC 2055	0.1	mg/l	2.8	27
Total Organic Carbon	DETSC 2085	1	mg/l	5.6	3.8
PAHs		11			
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01	0.03
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Anthracene	DETSC 3304	0.01	ug/l	0.02	0.06
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	0.02	0.09
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	0.08
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	0.12
Benzo(g,h,i)pervlene	DETSC 3304	0.01	ug/l	< 0.01	0.07
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	0.07
Chrysene	DETSC 3304	0.01	ug/l	0.03	0.13
Dibenzo(a.h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	0.05	0.31

Summary of Chemical Analysis

Leachate Samples

			Lab No	2046867	2046868
		.Sa	ample ID	F-BH119	F-BH133
			Depth	2.90	0.70
			Other ID		
		Sam	ple Type	ES	ES
		Sampl	ing Date	09/08/2022	09/08/2022
		Sampl	ing Time	1000	1400
Test	Method	LOD	Units		
Fluorene	DETSC 3304	0.01	ug/l	< 0.01	0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01	0.05
Naphthalene	DETSC 3304	0.05	ug/l	< 0.05	< 0.05
Phenanthrene	DETSC 3304	0.01	ug/l	0.04	0.20
Pyrene	DETSC 3304	0.01	ug/l	0.05	0.28
PAH Total	DETSC 3304	0.2	ug/l	0.21	1.5

I DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 22-16049 Client Ref 60678042 Contract Title NZT FEED GI

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2046862	F-BH119 2.90	SOIL	NAD	none	Michael Kay
2046864	F-BH133 0.70	SOIL	NAD	none	Michael Kay
2046865	F-BH133 2.70	SOIL	NAD	none	Michael Kay

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Inappropriate

Information in Support of the Analytical Results

Our Ref 22-16049 *Client Ref* 60678042 *Contract* NZT FEED GI

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2046862	F-BH119 2.90 SOIL	09/08/22	GJ 250ml, GJ 60ml, PT 1L	Sulphur (free) (7 days), Total Sulphur ICP (7 days), pH	
				+ Conductivity (7 days)	
2046863	F-BH119 4.30 SOIL	09/08/22	GJ 250ml, GJ 60ml, PT 1L	Sulphur (free) (7 days), Total Sulphur ICP (7 days), pH	
				+ Conductivity (7 days)	
2046864	F-BH133 0.70 SOIL	09/08/22	GJ 250ml, GJ 60ml, PT 1L	Sulphur (free) (7 days), Total Sulphur ICP (7 days), pH	
				+ Conductivity (7 days)	
2046865	F-BH133 2.70 SOIL	09/08/22	GJ 250ml, GJ 60ml, PT 1L	Sulphur (free) (7 days), Total Sulphur ICP (7 days), pH	
				+ Conductivity (7 days)	
2046866	F-BH133 5.00 SOIL	09/08/22	GJ 250ml, GJ 60ml, PT 1L	Sulphur (free) (7 days), Total Sulphur ICP (7 days), pH	
				+ Conductivity (7 days)	
2046867	F-BH119 2.90 LEACHATE	09/08/22	GJ 250ml, GJ 60ml, PT 1L		
2046868	F-BH133 0.70 LEACHATE	09/08/22	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

	, ,
Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Acronym

List of HWOL Acronyms and Operators

Det

Aliphatic C5-C6	HS 1D AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC12	EH_2D_AL
Aliphatic >EC12-EC16	EH_2D_AL
Aliphatic >EC16-EC21	EH_2D_AL
Aliphatic >EC21-EC35	EH_2D_AL
Aliphatic >EC35-EC40	EH_2D_AL
Aliphatic C5-C40	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC12	EH_2D_AR
Aromatic >EC12-EC16	EH_2D_AR
Aromatic >EC16-EC21	EH_2D_AR
Aromatic >EC21-EC35	EH_2D_AR
Aromatic >EC35-EC40	EH_2D_AR
Aromatic C5-C40	EH_2D+HS_1D_AR
TPH Ali/Aro C5-C40	EH_2D+HS_1D_Total

End of Report

Issued:

24-Aug-22

Certificate Number 22-16051

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- *Our Reference* 22-16051
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT FEED GI
 - Description 3 Soil samples, 1 Leachate sample.
 - Date Received 17-Aug-22
- Date Started 17-Aug-22
- Date Completed 24-Aug-22
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

legenood

Kirk Bridgewood General Manager

Derwentside Environmental Testing Services Limited Unit 2, Park Road Industrial Estate South, Consett, Co Durham, DH8 5PY Tel: 01207 582333 • email: info@dets.co.uk • www.dets.co.uk

Summary of Chemical Analysis Soil Samples

			Lab No	2046870	2046871	2046872
		.Sa	ample ID	F-BH119	F-BH133	F-BH133
			Depth	12.90	14.00	19.50
			Other ID			
		Sam	ple Type	ES	ES	ES
		Sampl	ing Date	10/08/2022	10/08/2022	10/08/2022
		Sampl	ing Time	1530	1615	0910
Test	Method	LOD	Units	P		
Preparation						
Moisture Content	DETSC 1004	0.1	%	19	23	11
Metals						
Arsenic	DETSC 2301#	0.2	mg/kg	6.0	13	13
Beryllium	DETSC 2301#	0.2	mg/kg	1.3	0.6	1.0
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	6.3	5.0	5.2
Cadmium	DETSC 2301#	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Chromium III	DETSC 2301*	0.15	mg/kg	35	24	30
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	21	17	43
Lead	DETSC 2301#	0.3	mg/kg	18	14	11
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Nickel	DETSC 2301#	1	mg/kg	35	23	45
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Vanadium	DETSC 2301#	0.8	mg/kg	44	38	50
Zinc	DETSC 2301#	1	mg/kg	63	60	60
Inorganics	1	1 1			1	
pH	DETSC 2008#		pН	7.9	7.9	8.0
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg	0.7	< 0.6	< 0.6
Organic matter	DETSC 2002#	0.1	%	2.2	2.7	2.3
Nitrate as NO3	DETSC 2055	1	mg/kg	< 1.0	< 1.0	< 1.0
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	480	640	500
Sulphide	DETSC 2024*	10	mg/kg	270	150	160
Sulphur (free)	DFTSC 3049#	0.75	mg/kg	< 0.75	< 0.75	< 0.75
Sulphur as S. Total	DETSC 2320	0.01	<u>%</u>	0.05	0.45	0.93
Sulphate as SO4 Total	DETSC 2321#	0.01	%	0.03	0.18	0.55
Petroleum Hydrocarbons	021002021	0.01	,,,	0.10	0.10	0.10
Aliphatic C5-C6: HS_1D_AI	DFTSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AI	DETSC 3321*	0.01		< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AI	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aliphatic >EC10-EC12: EH_2D_AL	DETSC 3521#	1 5	mø/kø	< 1 50	< 1.50	< 1.50
Aliphatic $>EC12-EC16$; EH 2D Al	DETSC 3521#	1.0	mg/kg	< 1.20	< 1.20	< 1.20
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.2	mg/kg	< 1.20	< 1.20	< 1.20
Aliphatic $\Sigma EC21 = EC21: ET1_2D_1/E$	DETSC 3521#	3.4	ma/ka	< 3.40	< 3.40	< 3.40
Aliphatic > $EC21 EC33 ET_2D_AL$	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40	< 3.40
Aliphatic (5-(40: EH 20+HS 10 Al	DETSC 2521*	10	<u>6/ /6/ 8</u> ma/ka	12 5/	1/ 22	12 /6
Aromatic C5-C7: HS 1D AR	DETSC 2221*	0.01	<u>8^י /8ייי</u> ma/ka	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS 1D AR	DETSC 2221*	0.01	<u>ma/ka</u>	< 0.01	< 0.01	< 0.01
		0.01	1116/15	< 0.01	< 0.01	< 0.01

Summary of Chemical Analysis Soil Samples

		Lab No		2046870	2046871	2046872
		.Sample ID		F-BH119	F-BH133	F-BH133
			Depth	12.90	14.00	19.50
			Other ID			
		Sam	ple Type	ES	ES	ES
		Samp	ling Date	10/08/2022	10/08/2022	10/08/2022
		Sampl	ing Time	1530	1615	0910
Test	Method	LOD	Units		1	
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/kg	< 0.90	< 0.90	< 0.90
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	< 0.50	< 0.50	< 0.50
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	4.04	4.23	3.71
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg	< 1.40	< 1.40	< 1.40
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40	< 1.40
Aromatic C5-C40: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	< 10.00	< 10.00	< 10.00
TPH Ali/Aro C5-C40: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	22.78	24.04	20.95
PAHs	1					
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	< 0.10	< 0.10	< 0.10
Phenols	1					
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3
Subcontracted Analysis	1.					
Benzene	\$*	<2	ug/kg		<2	
Toluene	\$*	<5	ug/kg		<5	
Ethylbenzene	\$*	<2	ug/kg		<2	
p & m-xylene	\$*	<2	ug/kg		<2	
o-xylene	\$*	<2	ug/kg		<2	
МТВЕ	\$*	<5	ug/kg		<5	
TAME	\$*	< 5	ug/kg		< 5	

Summary of Chemical Analysis

Leachate Samples

			Lab No	2046873
		.Sa	mple ID	F-BH133
			Depth	19.50
		(Other ID	
		Sam	ple Type	ES
		Sampli	ing Date	10/08/2022
		Sampli	ng Time	0910
Test	Method	LOD	Units	
Preparation				
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y
Metals				
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.41
Boron, Dissolved	DETSC 2306*	12	ug/l	71
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03
Chromium III, Dissolved	DETSC 2306*	1	ug/l	< 1.0
Chromium, Hexavalent	DETSC 2203	0.007	mg/l	< 0.007
Copper, Dissolved	DETSC 2306	0.4	ug/l	2.2
Iron, Dissolved	DETSC 2306	5.5	ug/l	31
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.51
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5
Selenium, Dissolved	DETSC 2306	0.25	ug/l	3.9
Zinc, Dissolved	DETSC 2306	1.3	ug/l	1.4
Inorganics				
рН	DETSC 2008		рН	7.6
Cyanide, Total Low Level	DETSC 2131	0.1	ug/l	0.6
Cyanide, Free Low Level	DETSC 2131	0.1	ug/l	3.8
Thiocyanate	DETSC 2130	20	ug/l	< 20
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	45.6
Ammoniacal Nitrogen as NH4	DETSC 2207	0.015	mg/l	0.04
Ammoniacal Nitrogen as NH3	DETSC 2207	0.015	mg/l	0.040
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	0.033
Nitrate as NO3	DETSC 2055	0.1	mg/l	0.12
Nitrite as NO2	DETSC 2055	0.1	mg/l	2.6
Sulphate as SO4	DETSC 2055	0.1	mg/l	93
Total Organic Carbon	DETSC 2085	1	mg/l	1.9
PAHs		r		
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01
Anthracene	DETSC 3304	0.01	ug/l	< 0.01
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	< 0.01

Summary of Chemical Analysis

Leachate Samples

Our Ref 22-16051 *Client Ref* 60678042 *Contract Title* NZT FEED GI

			Lab No	2046873
		.Sa	ample ID	F-BH133
			Depth	19.50
			Other ID	
		Sam	ple Type	ES
		Samp	ling Date	10/08/2022
		Sampl	ing Time	0910
Test	Method	LOD	Units	
Fluorene	DETSC 3304	0.01	ug/l	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01
Naphthalene	DETSC 3304	0.05	ug/l	< 0.05
Phenanthrene	DETSC 3304	0.01	ug/l	< 0.01
Pyrene	DETSC 3304	0.01	ug/l	< 0.01
PAH Total	DETSC 3304	0.2	ug/l	< 0.20

r

I falalta a Maria - Jacobia a Maria I

Information in Support of the Analytical Results

Our Ref 22-16051 *Client Ref* 60678042 *Contract* NZT FEED GI

Containers Received & Deviating Samples

		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2046870	F-BH119 12.90 SOIL	10/08/22	GJ 250ml, GJ 60ml, PT 1L		
2046871	F-BH133 14.00 SOIL	10/08/22	GJ 250ml, GJ 60ml, PT 1L		
2046872	F-BH133 19.50 SOIL	10/08/22	GJ 250ml, GJ 60ml, PT 1L		
2046873	F-BH133 19.50 LEACHATE	10/08/22	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

	<i>i i</i>
Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Acronym

List of HWOL Acronyms and Operators

Det

Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC12	EH_2D_AL
Aliphatic >EC12-EC16	EH_2D_AL
Aliphatic >EC16-EC21	EH_2D_AL
Aliphatic >EC21-EC35	EH_2D_AL
Aliphatic >EC35-EC40	EH_2D_AL
Aliphatic C5-C40	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC12	EH_2D_AR
Aromatic >EC12-EC16	EH_2D_AR
Aromatic >EC16-EC21	EH_2D_AR
Aromatic >EC21-EC35	EH_2D_AR
Aromatic >EC35-EC40	EH_2D_AR
Aromatic C5-C40	EH_2D+HS_1D_AR
TPH Ali/Aro C5-C40	EH_2D+HS_1D_Total

End of Report

Issued: 08-Sep-22

Certificate Number 22-17018 Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- *Our Reference* 22-17018
- Client Reference 60678042
 - Order No (not supplied)
 - Contract Title NZT FEED GI
 - Description 4 Soil samples, 1 Leachate sample.
 - Date Received 30-Aug-22
 - Date Started 30-Aug-22
- Date Completed 08-Sep-22
- *Test Procedures* Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lymood

Kirk Bridgewood General Manager

i DETS

Summary of Chemical Analysis Soil Samples

			Lab No	2051747	2051748	2051749	2051750
		.Sa	ample ID	F-BH109	F-BH109	F-BH109	F-BH104
			Depth	2.20	3.20	5.20	21.80
			Other ID				
		Sam	ple Type	ES	ES	ES	ES
		Sampl	ing Date	18/08/2022	19/08/2022	19/08/2022	18/08/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Preparation			0/		10	20	
Moisture Content	DETSC 1004	0.1	%	6.0	10	20	11
Metais	DETCC 2201#	0.2		ГС		гэ	40
Arsenic	DETSC 2301#	0.2	mg/kg	5.0	5.5	5.2	42
Beryillum	DETSC 2201#	0.2	mg/kg	2.0	5.5 1 Q	< U.Z	U.3
Boron, water soluble	DEISC 2311#	0.2	mg/kg	3. 5	4.0	0.7	5.2
	DEISC 2301#	0.1	mg/kg	× U. ۲ 6 ۹	∇.⊥7.3	< U.1 2 2	1.0
Chromium Hovavalent	DE13C 2301	0.15	mg/kg	- 1 0	/.5	5.z	-10
Conner	DE13C 2204	<u> </u>	mg/kg	× 1.0	× 1.0	× 1.0 2 1	22
Lood	DE13C 2301#	0.2	mg/kg	4.0 0 8	4.0	25	26
Marcury	DETSC 2301#	0.5	mg/kg	< 0.05	< 0.05	< 0.05	0.07
Nickol	DETSC 2325#	0.05	mg/kg	2 3	1.6	3 1	33
Calanium	DETSC 2301#	0.5	mg/kg	1 4	1.0	0.5	< 0.5
Vanadium	DETSC 2301#	0.3	mø/kg	31	31	10	18
Zinc	DETSC 2301#	1	mg/kg	3.7	13	21	46
Inorganics	DE100 2002		0. /0				
nH	DFTSC 2008#		рН	9.8	9.6	9.1	9.1
Cvanide Total	DFTSC 2130#	0.1	mg/kg	0.3	0.2	< 0.1	< 0.1
Cvanide Free	DFTSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Thioryanate	DETSC 2130#	0.6	mø/kø	2.0	0.8	< 0.6	< 0.6
Organic matter	DETSC 2002#	0.0	<u>פיי ופייי</u> %	0.6	0.3	0.0	2 1
Nitrate as NO3	DETSC 2055	1	ma/ka	< 1.0	2.4	< 1.0	< 1.0
Sulphate Aqueous Extract as SOA	DETSC 2035	- 10	ة (1 11) ma/l	1900	1800	200	970
Sulphide Aqueous Extract as 304		10		2700	2200	110	67
	DE13C 2024	0.75	111g/ Ng	3700	2 0 7E	2.1	1.4
	DETSC 3049#	0.75	mg/ kg	210	< 0.75	3.1	1.4
Sulphur as S, Total	DEISC 2320	0.01	70 0/	0.95	0.71	0.05	2.1
Sulphate as SO4, Total	DETSC 2321#	0.01	%	2.5	3.0	0.11	0.27
		2.01	- /1	: 0.01	: 0.01	: 0.04	: 0.01
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >EC10-EC12: EH_2D_AL	DETSC 3521#	1.5	mg/kg	5.84	5.95	6.21	4.69
Aliphatic >EC12-EC16: EH_2D_AL	DETSC 3521#	1.2	mg/kg	1.61	2.25	4.13	1.61
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	< 1.50	2.17	< 1.50
Aliphatic >EC21-EC35: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40	< 3.40	< 3.40
Aliphatic >EC35-EC40: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40	< 3.40	< 3.40
Aliphatic C5-C40: EH_2D+HS_1D_AL	DETSC 3521*	10	mg/kg	16.37	17.46	21.00	15.66
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >EC10-EC12: EH 2D AR	DETSC 3521#	0.9	mg/kg	< 0.90	< 0.90	< 0.90	< 0.90

i DETS

Summary of Chemical Analysis Soil Samples

			Lab No	2051747	2051748	2051749	2051750
		.Sa	ample ID	F-BH109	F-BH109	F-BH109	F-BH104
			Depth	2.20	3.20	5.20	21.80
			Other ID				
		Sam	ple Type	ES	ES	ES	ES
		Sampl	ing Date	18/08/2022	19/08/2022	19/08/2022	18/08/2022
Tost	Mathad	Sampi	ing Lime	n/s	n/s	n/s	n/s
Aromatic >EC12_EC16; EH 2D AR		0.5	ma/ka	< 0.50	< 0.50	< 0.50	< 0.50
Aromatic >EC12 EC10: EII_2D_AR	DETSC 2521#	0.5	mg/kg	1 21	1 79	< 0.30 E 0E	1 52
Aromatic >EC21 EC25: EH_2D_AR	DETSC 2521#	0.0	mg/kg	4.31	4.70	2.05	4.55
Aromatic >EC35_EC40: EH_2D_AR	DETSC 2521#	1.4	mg/kg	< 1.40	< 1.40	< 1.40	< 1.40
Aromatic (5-C40: EH 2D+HS 1D AR	DETSC 2521*	1.4	mg/kg	< 10.00	< 10.00	10.21	< 10.00
TPH Ali/Aro CE C40: EH 2D+HS 1D Total	DETSC 2521*	10	mg/kg	25.21	26.05	21 21	21 0.00
PAHs	DLISC 3321	10	116/16	23.21	20.55	51.51	24.34
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	0.05	< 0.03	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	0.03	< 0.03	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	0.07	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	0.03	< 0.03	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03	0.08	< 0.03	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	0.14	< 0.03	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03	0.05	< 0.03	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	0.12	< 0.03	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	< 0.10	0.50	< 0.10	< 0.10
Phenols							
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	0.4	0.4	< 0.3	0.6
Subcontracted Analysis							
Benzene	\$*	<2	ug/kg	<2		<2	
Toluene	\$*	<5	ug/kg	<5		<5	
Ethylbenzene	\$*	<2	ug/kg	<2		<2	
p & m-xylene	\$*	<2	ug/kg	<2		<2	
o-xylene	\$*	<2	ug/kg	<2		<2	
МТВЕ	\$*	<5	ug/kg	<5		<5	
ТАМЕ	\$*	< 5	ug/kg	< 5		< 5	

Summary of Chemical Analysis Leachate Samples

			Lab No	2051751
		.Sa	mple ID	F-BH109
			Depth	2.20
		C	Other ID	
		Sam	ole Type	ES
		Sampli	ng Date	18/08/2022
		Sampli	ng Time	n/s
Test	Method	LOD	Units	
Preparation				
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y
Metals				
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	< 0.16
Boron, Dissolved	DETSC 2306*	12	ug/l	< 12
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03
Chromium III, Dissolved	DETSC 2306*	1	ug/l	< 1.0
Chromium, Hexavalent	DETSC 2203	0.007	mg/l	< 0.007
Copper, Dissolved	DETSC 2306	0.4	ug/l	< 0.4
Iron, Dissolved	DETSC 2306	5.5	ug/l	< 5.5
Lead, Dissolved	DETSC 2306	0.09	ug/l	< 0.09
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5
Selenium, Dissolved	DETSC 2306	0.25	ug/l	< 0.25
Zinc, Dissolved	DETSC 2306	1.3	ug/l	< 1.3
Inorganics				
рН	DETSC 2008		рН	9.5
Cyanide, Total Low Level	DETSC 2131	0.1	ug/l	< 0.1
Cyanide, Free Low Level	DETSC 2131	0.1	ug/l	0.4
Thiocyanate	DETSC 2130	20	ug/l	270
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	< 0.10
Ammoniacal Nitrogen as NH4	DETSC 2207	0.015	mg/l	< 0.02
Ammoniacal Nitrogen as NH3	DETSC 2207	0.015	mg/l	< 0.015
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	< 0.015
Nitrate as NO3	DETSC 2055	0.1	mg/l	0.66
Nitrite as NO2	DETSC 2055	0.1	mg/l	< 0.10
Sulphate as SO4	DETSC 2055	0.1	mg/l	730
Total Organic Carbon	DETSC 2085	1	mg/l	3.8
PAHs	21.001000	_		
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01
Anthracene	DETSC 3304	0.01	ug/l	< 0.01
Benzo(a)anthracene	DETSC 3304*	0.01	رون ارون	< 0.01
Benzo(a)pyrepe	DETSC 3304	0.01	ug/l	< 0.01
Benzo(b)fluoranthene	DETSC 2204	0.01	ug/1	< 0.01
	DETSC 3304	0.01	ug/1	< 0.01
Benzo(k)fluoranthana	DETSC 3304	0.01	ug/i	< 0.01
Benzo(k)nuorantnene	DETSC 3304	0.01	ug/i	< 0.01
Chrysene	DEISC 3304	0.01	ug/l	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	0.01
Fluorene	DETSC 3304	0.01	ug/l	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01

Summary of Chemical Analysis

Leachate Samples

			Lab No	2051751
		.Sa	ample ID	F-BH109
			Depth	2.20
			Other ID	
		Sam	ple Type	ES
		Samp	ing Date	18/08/2022
		Sampl	ing Time	n/s
Test	Method	LOD	Units	
Naphthalene	DETSC 3304	0.05	ug/l	< 0.05
Phenanthrene	DETSC 3304	0.01	ug/l	< 0.01
Pyrene	DETSC 3304	0.01	ug/l	< 0.01
PAH Total	DETSC 3304	0.2	ug/l	< 0.20

i DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 22-17018 Client Ref 60678042 Contract Title NZT FEED GI

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2051747	F-BH109 2.20	SOIL	NAD	none	Darryl Fletcher
2051748	F-BH109 3.20	SOIL	NAD	none	Darryl Fletcher

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

inannronriate

Information in Support of the Analytical Results

Our Ref 22-17018 Client Ref 60678042 Contract NZT FEED GI

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2051747	F-BH109 2.20 SOIL	18/08/22	GJ 250ml, GJ 60ml, PT 1L	Sulphur (free) (7 days), Total Sulphur ICP (7 days), pH	l
2051748	F-BH109 3.20 SOIL	19/08/22	GJ 250ml, GJ 60ml, PT 1L	Sulphur (free) (7 days), Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2051749	F-BH109 5.20 SOIL	19/08/22	GJ 250ml, GJ 60ml, PT 1L	Sulphur (free) (7 days), Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2051750	F-BH104 21.80 SOIL	18/08/22	GJ 250ml, GJ 60ml, PT 1L	Sulphur (free) (7 days), Total Sulphur ICP (7 days), pH + Conductivity (7 days)	1
2051751	F-BH109 2.20 LEACHATE	18/08/22	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Acronym

Det

Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC12	EH_2D_AL
Aliphatic >EC12-EC16	EH_2D_AL
Aliphatic >EC16-EC21	EH_2D_AL
Aliphatic >EC21-EC35	EH_2D_AL
Aliphatic >EC35-EC40	EH_2D_AL
Aliphatic C5-C40	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC12	EH_2D_AR
Aromatic >EC12-EC16	EH_2D_AR
Aromatic >EC16-EC21	EH_2D_AR
Aromatic >EC21-EC35	EH_2D_AR
Aromatic >EC35-EC40	EH_2D_AR
Aromatic C5-C40	EH_2D+HS_1D_AR
TPH Ali/Aro C5-C40	EH_2D+HS_1D_Total

End of Report

Issued: 09-Sep-22

Certificate Number 22-17019 Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- Our Reference 22-17019
- Client Reference 60678042
 - Order No (not supplied)
 - Contract Title NZT FEED GI
 - *Description* 5 Soil samples, 1 Leachate sample.
 - Date Received 30-Aug-22
 - Date Started 30-Aug-22
- Date Completed 09-Sep-22
- *Test Procedures* Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lymood

Kirk Bridgewood General Manager

Summary of Chemical Analysis Soil Samples

			Lab No	2051752	2051753	2051755	2051756
		.Sa	ample ID	F-BH104	F-BH104	F-BH104	F-BH104
			Depth	3.00	4.00	6.00	15.75
		(Other ID				
		Sam	ple Type	ES	ES	ES	ES
		Sampl	ing Date	17/08/2022	17/08/2022	17/08/2022	18/08/2022
		Sampli	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Preparation							
Moisture Content	DETSC 1004	0.1	%	8.5	6.1	21	19
Metals	T	<u> </u>	0				
Arsenic	DETSC 2301#	0.2	mg/kg	7.5	29	6.3	8.4
Beryllium	DETSC 2301#	0.2	mg/kg	0.3	0.9	< 0.2	1.3
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	1.3	0.7	0.3	b.4
	DETSC 2301#	0.1	mg/kg	< 0.1	0.2	< U.1	< U.1
Chromium III	DETSC 2301*	0.15	mg/kg	35	300	5. 4	45
Chromium, Hexavaient	DETSC 2204*	1	mg/kg	< 1.0	< 1.U	< 1.U	< 1.U
Copper	DETSC 2301#	0.2	mg/kg	20	34	3.ō	27 10
Lead	DEISC 2301#	0.3	mg/kg	13	Z1	0.2	10 - 0 05
Mercury	DEISC 2325#	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
NICKEI	DEISC 2301#		mg/kg	10	12	2.J	40
Vanadium	DETSC 2301#	0.5	mg/kg	130	1/00	1/	< 0.5 7/
	DETSC 2301#	0.0	mg/kg	20	78	12	/+
	DE13C 2301#	Т	IIIg/ Ng	23	70	12	
	DETCC 2008#		nH	10.3	10.6	10.0	9.1
pri Guanida, Tatal	DETSC 2120#	0.1	ma/ka	10.5	- 0.0	< 0.1	201
Cyanida, Froo	DETSC 2120#	0.1	mg/kg	< 0.2	< 0.1	< 0.1	< 0.1
	DEISC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
	DETSC 2130#	0.0	тіg/кg	< 0.0	< 0.0	< 0.0	< U.U
Organic matter	DEISC 2002#	0.1	70 	0.7	0.0	0.2	1.5
Nitrate as NU3	DEISC 2055	1	mg/кg	2.7	b.2	< 1.0	5.5
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/I	150	160	82	350
Sulphide	DETSC 2024*	10	mg/kg	70	650	51	110
Sulphur (free)	DETSC 3049#	0.75	mg/kg	< 0.75	1.5	< 0.75	1.7
Sulphur as S, Total	DETSC 2320	0.01	%	0.13	0.21	0.03	0.08
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.28	0.24	0.09	0.15
Petroleum Hydrocarbons							
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >EC10-EC12: EH_2D_AL	DETSC 3521#	1.5	mg/kg	5.01	4.88	5.37	5.26
Aliphatic >EC12-EC16: EH_2D_AL	DETSC 3521#	1.2	mg/kg	1.99	2.29	3.26	3.25
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	< 1.50	1.95	< 1.50
Aliphatic >EC21-EC35: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40	< 3.40	< 3.40
Aliphatic >EC35-EC40: EH 2D AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40	< 3.40	< 3.40
Aliphatic C5-C40: EH 2D+HS 1D AL	DETSC 3521*	10	mg/kg	16.11	16.04	19.24	18.85
Aromatic C5-C7: HS 1D AR	DFTSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic SEC10-EC12: EH 2D AR	DETSC 3521#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
		0.5	1116/16	< 0.50	< 0.50	< 0.50	< 0.50

Summary of Chemical Analysis Soil Samples

			Lah Na	2054752	2054752	2054755	2054750
				2051752	2051/53	2051755	2051756
		.58		F-BH104	F-BH104	F-BH104	F-BH104
			Other ID	3.00	4.00	6.00	15.75
		Sam		EC	EC	EC	EC
		Samn	ing Date	E3	L2	L3	E3
		Sampl	ing Time	17/00/2022 n/s	17/00/2022 n/s	17/00/2022 n/s	10/00/2022 n/s
Test	Method		Units	175	175	175	175
Aromatic >EC12-EC16: EH_2D_AR	DFTSC 3521#	0.5	mg/kg	0.97	< 0.50	< 0.50	< 0.50
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	52.62	4.56	4.93	4.85
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1 4	mg/kg	414 5	3 63	< 1.40	< 1.40
Aromatic > $EC22 = EC03 = EH_2D_AR$	DETSC 3521*	1 4	mg/kg	124.3	< 1.40	< 1.40	< 1.40
Aromatic C5-C40: EH 2D+HS 1D AR	DETSC 3521*	10	mg/kg	593.4	11 20	10.29	10.09
TPH Ali/Aro C5-C40: EH 2D+HS 1D Total	DETSC 3521*	10	mg/kg	609 5	27.24	29.52	28.94
PAHs	DE13C 3321	10	0''\8'''	005.5	27.24	23.52	20.34
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	0.03	0.07	< 0.03	< 0.03
Benzo(a)pyrepe	DETSC 3303#	0.03	mg/kg	0.03	0.07	< 0.03	< 0.03
Benzo(h)fluoranthene	DETSC 3303#	0.03	mg/kg	0.04	0.05	< 0.03	< 0.03
Benzo(g h i)pervlene	DETSC 2202#	0.03	mg/kg	< 0.03	0.11	< 0.03	< 0.03
Benzo(k)fluoranthene	DETSC 2202#	0.03	mg/kg	< 0.03	0.05	< 0.03	< 0.03
Chrysene	DETSC 2202	0.03	mg/kg	0.03	0.05	< 0.03	< 0.03
Dibonzo(a h)anthracono	DETSC 3303	0.03	mg/kg	< 0.02	< 0.02	< 0.03	< 0.03
Eluoranthono	DETSC 3303#	0.03	mg/kg	0.05	0.05	< 0.03	< 0.03
Eluoropo	DETSC 3303#	0.03	mg/kg	0.00	< 0.02	< 0.03	< 0.03
Indono(1,2,2,c,d)pyropo	DETSC 3303	0.03	mg/kg	< 0.03	0.03	< 0.03	< 0.03
Nanhthalana	DETSC 3303#	0.03	mg/kg	< 0.03	0.04	< 0.03	< 0.03
Department	DETSC 3303#	0.05	mg/kg	< 0.05	0.04	< 0.03	< 0.03
Prienancinene	DETSC 3303#	0.05	mg/kg	0.05	0.15	< 0.03	< 0.03
	DETSC 3303#	0.03	mg/kg	0.12	0.17	< 0.03	< 0.03
PAR - USEPA 18, TOTAL	DETSC 3303	0.1	iiig/kg	0.51	1.0	< 0.10	< 0.10
	DETSC 2401#	0.01	ma/ka	< 0.01		< 0.01	
	DETSC 3401#	0.01	mg/kg	< 0.01		< 0.01	
PCB 32	DETSC 3401#	0.01	mg/kg	< 0.01		< 0.01	
PCB 101	DETSC 3401#	0.01	mg/kg	< 0.01		< 0.01	
	DETSC 3401#	0.01	mg/kg	< 0.01		< 0.01	
	DETSC 3401#	0.01	mg/kg	< 0.01		< 0.01	
PCB 138	DETSC 3401#	0.01	mg/kg	< 0.01		< 0.01	
	DETSC 3401#	0.01	mg/kg	< 0.01		< 0.01	
	DETSC 3401*	0.01	mg/kg	< 0.01		< 0.01	
	DETSC 3401*	0.01	mg/kg	< 0.01		< 0.01	
PCB 105	DETSC 3401*	0.01	mg/kg	< 0.01		< 0.01	
PCB 114	DETSC 3401*	0.01	mg/kg	< 0.01		< 0.01	
	DEISC 3401*	0.01	mg/Kg	< 0.01		< 0.01	
PCB 123	DETSC 3401*	0.01	mg/kg	< 0.01		< 0.01	
	DEISC 3401*	0.01	mg/kg	< 0.01		< 0.01	
PCB 150	DEISC 3401*	0.01	mg/kg	< 0.01		< 0.01	
PCB 157	DEISC 3401*	0.01	mg/kg	< 0.01		< 0.01	

Summary of Chemical Analysis Soil Samples

	Lab No			2051752	2051753	2051755	2051756
		.Sa	mple ID	F-BH104	F-BH104	F-BH104	F-BH104
			Depth	3.00	4.00	6.00	15.75
		(Other ID				
		Sam	ple Type	ES	ES	ES	ES
		Sampl	ing Date	17/08/2022	17/08/2022	17/08/2022	18/08/2022
		Sampli	ng Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
PCB 167	DETSC 3401*	0.01	mg/kg	< 0.01		< 0.01	
PCB 169	DETSC 3401*	0.01	mg/kg	< 0.01		< 0.01	
PCB 189	DETSC 3401*	0.01	mg/kg	< 0.01		< 0.01	
PCB 7 Total	DETSC 3401#	0.01	mg/kg	< 0.01		< 0.01	
Phenols							
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
Phenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	
4-Chloro-3-methylphenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	
2,4-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	
2,4-Dimethylphenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	
p-cresol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	
2,6-Dimethylphenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	
2,6-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	
2,4,6-Trichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	
Subcontracted Analysis							
Benzene	\$*	<2	ug/kg	<2		<2	<2
Toluene	\$*	<5	ug/kg	<5		<5	<5
Ethylbenzene	\$*	<2	ug/kg	<2		<2	<2
p & m-xylene	\$*	<2	ug/kg	<2		<2	<2
o-xylene	\$*	<2	ug/kg	<2		<2	<2
МТВЕ	\$*	<5	ug/kg	<5		<5	<5
TAME	\$*	< 5	ug/kg	< 5		< 5	< 5

Summary of Chemical Analysis Soil VOC/SVOC Samples

			Lab No	2051753
		.Sa	ample ID	F-BH104
			Depth	4.00
			Other ID	
		Sam	ple Type	ES
		Samp	ing Date	17/08/2022
		Sampl	ing Time	n/s
Test	Method	LOD	Units	
VOCs				
Vinyl Chloride	DETSC 3431	0.01	mg/kg	< 0.01
1.1 Dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01
Trans-1.2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01
1.1-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01
Cis-1.2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01
2.2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01
Bromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01
Chloroform	DETSC 3431	0.01	mg/kg	< 0.01
1,1,1-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01
1.1-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01
Carbon tetrachloride	DETSC 3431	0.01	mg/kg	< 0.01
Benzene	DETSC 3431	0.01	mg/kg	< 0.01
1.2-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01
Trichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01
1.2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01
Dibromomethane	DETSC 3431	0.01	mg/kg	< 0.01
Bromodichloromethane	DETSC 3431	0.01	mg/kg	< 0.01
cis-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01
Toluene	DETSC 3431	0.01	mg/kg	< 0.01
trans-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01
1,1,2-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01
Tetrachloroethylene	DETSC 3431	0.01	mg/kg	< 0.01
1,3-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01
Dibromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01
1,2-dibromoethane	DETSC 3431	0.01	mg/kg	< 0.01
Chlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01
1,1,1,2-tetrachloroethane	DETSC 3431	0.01	mg/kg	< 0.01
Ethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01
m+p-Xylene	DETSC 3431	0.01	mg/kg	< 0.01
o-Xylene	DETSC 3431	0.01	mg/kg	< 0.01
Styrene	DETSC 3431*	0.01	mg/kg	< 0.01
Bromoform	DETSC 3431	0.01	mg/kg	< 0.01
Isopropylbenzene	DETSC 3431	0.01	mg/kg	< 0.01
Bromobenzene	DETSC 3431	0.01	mg/kg	< 0.01
1,2,3-trichloropropane	DETSC 3431	0.01	mg/kg	< 0.01
n-propylbenzene	DETSC 3431	0.01	mg/kg	< 0.01
2-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01
1,3,5-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01
4-chlorotoluene	DFTSC 3431	0.01	mø/kø	< 0.01
Tert-hutvlbenzene	DETSC 3/31	0.01	8~ /8···· ma/ka	< 0.01
1.2.4_trimethylbonzono	DETSC 3431	0.01	ma/ka	< 0.01
	DE13C 3431	0.01	me /li=	< 0.01
sec-butyibenzene	DEISC 3431	0.01	ттg/кg	< 0.01

Summary of Chemical Analysis Soil VOC/SVOC Samples

			Lab No	2051753
		.S	ample ID	F-BH104
			Depth	4.00
			Other ID	
		Sam	ple Type	ES
		Samp	ling Date	17/08/2022
		Sampl	ing Time	n/s
Test	Method	LOD	Units	
p-isopropyltoluene	DETSC 3431	0.01	mg/kg	< 0.01
1,3-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01
1,4-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01
n-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01
1,2-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01
1,2-dibromo-3-chloropropane	DETSC 3431	0.01	mg/kg	< 0.01
1,2,4-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01
Hexachlorobutadiene	DETSC 3431	0.01	mg/kg	< 0.01
1,2,3-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01
MTBE	DETSC 3431*	0.01	mg/kg	< 0.01
SVOCs				
Aniline	DETSC 3433*	0.1	mg/kg	< 0.1
2-Chlorophenol	DETSC 3433	0.1	mg/kg	< 0.1
Benzyl Alcohol	DETSC 3433	0.1	mg/kg	< 0.1
2-Methylphenol	DETSC 3433	0.1	mg/kg	< 0.1
Bis(2-chloroisopropyl)ether	DETSC 3433	0.1	mg/kg	< 0.1
3&4-Methylphenol	DETSC 3433	0.1	mg/kg	< 0.1
Bis-(dichloroethoxy)methane	DETSC 3433	0.1	mg/kg	< 0.1
1,2,4-Trichlorobenzene	DETSC 3433	0.1	mg/kg	< 0.1
2-Methylnaphthalene	DETSC 3433	0.1	mg/kg	< 0.1
Hexachlorocyclopentadiene	DETSC 3433*	0.1	mg/kg	< 0.1
2,4,5-Trichlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1
2-Chloronaphthalene	DETSC 3433	0.1	mg/kg	< 0.1
2-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1
2,4-Dinitrotoluene	DETSC 3433*	0.1	mg/kg	< 0.1
3-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1
4-Nitrophenol	DETSC 3433*	0.1	mg/kg	< 0.1
Dibenzofuran	DETSC 3433	0.1	mg/kg	< 0.1
2,6-Dinitrotoluene	DETSC 3433	0.1	mg/kg	< 0.1
2,3,4,6-Tetrachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1
Diethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1
4-Chlorophenylphenylether	DETSC 3433*	0.1	mg/kg	< 0.1
4-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1
2-Methyl-4,6-Dinitrophenol	DETSC 3433*	0.1	mg/kg	< 0.1
Diphenylamine	DETSC 3433	0.1	mg/kg	< 0.1
4-Bromophenylphenylether	DETSC 3433	0.1	mg/kg	< 0.1
Hexachlorobenzene	DETSC 3433	0.1	mg/kg	< 0.1
Pentachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1
Di-n-butylphthalate	DETSC 3433	0.1	mg/kg	< 0.1
Butylbenzylphthalate	DETSC 3433*	0.1	mg/kg	< 0.1
Bis(2-ethylhexyl)phthalate	DETSC 3433	0.1	mg/kg	< 0.1

Summary of Chemical Analysis Soil VOC/SVOC Samples

			Lab No	2051753
		.Sa	ample ID	F-BH104
			Depth	4.00
			Other ID	
		Sam	ple Type	ES
		Samp	ling Date	17/08/2022
		Sampl	ing Time	n/s
Test	Method	LOD	Units	
Di-n-octylphthalate	DETSC 3433*	0.1	mg/kg	< 0.1
1,4-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1
Dimethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1
1,3-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1
1,2-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1
2,3,5,6-Tetrachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1
Azobenzene	DETSC 3433	0.1	mg/kg	< 0.1
Carbazole	DETSC 3433*	0.1	mg/kg	< 0.1

Summary of Chemical Analysis Leachate Samples

			Lab No	2051757
		.Sa	mple ID	F-BH104
			Depth	4.00
		C	Other ID	
		Samp	le Type	ES
		Sampli	ng Date	17/08/2022
		Samplii	ng Time	n/s
Test	Method	LOD	Units	
Preparation	DETCC 4000*			V
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y
Ivietais Arconia Dissolved		0.16		< 0.16
Arsenic, Dissolved	DETSC 2306*	0.10	ug/i	< 0.10
Boron, Dissolved	DETSC 2306*	12	ug/i	< 12
Caumium, Dissolved	DETSC 2306	0.03	ug/i	< 0.03
Chromium III, Dissolved	DETSC 2306*	1	ug/i	< 1.0
Conpor Dissolved		0.007	111g/1	< U.UU/
Licopper, Dissolved		0.4	ug/I	< 0.4
Lood Dissolved		5.5	ug/I	< 5.5
Mercury Dissolved		0.09	ug/I	< 0.09
Nickol Dissolved		0.01	ug/I	< U.UI
Nickel, Dissolved	DETSC 2306	0.5	ug/i	< 0.5
Selenium, Dissolved	DETSC 2306	0.25	ug/i	< 0.25
Zinc, Dissolved	DETSC 2306	1.3	ug/I	< 1.3
	D 5700 2000			10.0
	DETSC 2008	0.4	рн	10.9
Cyanide, Total Low Level	DETSC 2131	0.1	ug/l	< 0.1
Cyanide, Free Low Level	DETSC 2131	0.1	ug/l	2.1
Thiocyanate	DETSC 2130	20	ug/l	< 20
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	< 0.10
Ammoniacal Nitrogen as NH4	DETSC 2207	0.015	mg/l	0.03
Ammoniacal Nitrogen as NH3	DETSC 2207	0.015	mg/l	0.029
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	0.024
Nitrate as NO3	DETSC 2055	0.1	mg/l	1.2
Nitrite as NO2	DETSC 2055	0.1	mg/l	< 0.10
Sulphate as SO4	DETSC 2055	0.1	mg/l	21
Total Organic Carbon	DETSC 2085	1	mg/l	6.8
PAHs			0.	
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01
Anthracene	DETSC 3304	0.01	ug/l	< 0.01
Benzo(a)anthracene	DETSC 3304*	0.01	, رو ا/ مرز	< 0.01
Benzo(a)pyrene	DFTSC 3304	0.01	, روی ا/تر	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ر روین ار میں	< 0.01
Benzo(g h i)nervlene	DETSC 3304	0.01	ν _{6/1} μσ/Ι	< 0.01
Renzo(k)fluoranthana	DETSC 2204	0.01	ug/1	< 0.01
Chrusene		0.01	ug/I	< 0.01
Chrysene	DEISC 3304	0.01	ug/l	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	0.02
Fluorene	DETSC 3304	0.01	ug/l	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01

Summary of Chemical Analysis

Leachate Samples

			Lab No	2051757
		.S	ample ID	F-BH104
			Depth	4.00
			Other ID	
		Sam	ple Type	ES
		Samp	ing Date	17/08/2022
		Sampl	ing Time	n/s
Test	Method	LOD	Units	
Naphthalene	DETSC 3304	0.05	ug/l	0.05
Phenanthrene	DETSC 3304	0.01	ug/l	0.01
Pyrene	DETSC 3304	0.01	ug/l	0.01
PAH Total	DETSC 3304	0.2	ug/l	< 0.20

Summary of Asbestos Analysis Soil Samples

Our Ref 22-17019 Client Ref 60678042 Contract Title NZT FEED GI

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2051752	F-BH104 3.00	SOIL	NAD	none	Darryl Fletcher
2051753	F-BH104 4.00	SOIL	NAD	none	Darryl Fletcher
2051754	F-BH104 5.00	SOIL	NAD	none	Darryl Fletcher

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

inannronriate

Information in Support of the Analytical Results

Our Ref 22-17019 Client Ref 60678042 Contract NZT FEED GI

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2051752	F-BH104 3.00 SOIL	17/08/22	GJ 250ml, GJ 60ml, PT 1L	Sulphur (free) (7 days), Total Sulphur ICP (7 days), p⊦	I
				+ Conductivity (7 days)	
2051753	F-BH104 4.00 SOIL	17/08/22	GJ 250ml, GJ 60ml, PT 1L	Sulphur (free) (7 days), Total Sulphur ICP (7 days), pH	1
				+ Conductivity (7 days). VOC (7 days)	
2051754	F-BH104 5.00 SOIL	17/08/22	GJ 250ml, GJ 60ml, PT 1L		
2051755	F-BH104 6.00 SOIL	17/08/22	GJ 250ml, GJ 60ml, PT 1L	Sulphur (free) (7 days), Total Sulphur ICP (7 days), pH	I
				+ Conductivity (7 days)	
2051756	F-BH104 15.75 SOIL	18/08/22	GJ 250ml, GJ 60ml, PT 1L	Sulphur (free) (7 days), Total Sulphur ICP (7 days), pH	I
				+ Conductivity (7 days)	
2051757	F-BH104 4.00 LEACHATE	17/08/22	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Acronym

Det

Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC12	EH_2D_AL
Aliphatic >EC12-EC16	EH_2D_AL
Aliphatic >EC16-EC21	EH_2D_AL
Aliphatic >EC21-EC35	EH_2D_AL
Aliphatic >EC35-EC40	EH_2D_AL
Aliphatic C5-C40	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC12	EH_2D_AR
Aromatic >EC12-EC16	EH_2D_AR
Aromatic >EC16-EC21	EH_2D_AR
Aromatic >EC21-EC35	EH_2D_AR
Aromatic >EC35-EC40	EH_2D_AR
Aromatic C5-C40	EH_2D+HS_1D_AR
TPH Ali/Aro C5-C40	EH_2D+HS_1D_Total

End of Report

Issued: 29-Sep-22

Certificate Number 22-17084,22-18502 Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

Our Reference	22-17084,22-18502
Client Reference	60678042
Order No	(not supplied)
Contract Title	NZT FEED GI
Description	10 Soil samples, 4 Leachate samples.

Date Received 31-Aug-22

Date Started	31-Aug-22
--------------	-----------

Date Completed 29-Sep-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Gemood.

Kirk Bridgewood General Manager

			Lab No	2052023	2052024	2052025	2052027	2052028	2052029	2052030
		.Sa	mple ID	F-BH103	F-BH103	F-BH103	F-BH103	F-BH103	F-BH103	F-BH115
			Depth	0.20	2.20	3.20	6.20	7.50	15.70	4.30
		(Other ID							
		Sam	ple Type	ES	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	25/08/2022	25/08/2022	25/08/2022	25/08/2022	25/08/2022	26/08/2022	25/08/2022
		Sampli	ing Time	n/s	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units							
Asbestos Quantification	DETSC 1102	0.001	%		0.002	< 0.001				
QTSSubcon Prep	\$	0			Y		Y	Y		
Subcon to QTS	\$	0			Y		Y	Y		
Preparation	1									
Moisture Content	DETSC 1004	0.1	%	9.8	12		17	18	22	13
Metals	1									
Aluminium	DETSC 2301*	1	mg/kg							
Arsenic	DETSC 2301#	0.2	mg/kg	8.0	13		14	6.3	10	51
Beryllium	DETSC 2301#	0.2	mg/kg	< 0.2	0.4		0.5	< 0.2	0.6	2.5
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	5.2	3.2		3.3	1.0	6.1	1.1
Cadmium	DETSC 2301#	0.1	mg/kg	1.2	1.9		0.8	< 0.1	0.2	8.2
Chromium III	DETSC 2301*	0.15	mg/kg	570	700		57	31	23	180
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	71	120		18	5.9	15	100
Iron	DETSC 2301	25	mg/kg							
Lead	DETSC 2301#	0.3	mg/kg	74	110		220	36	16	1200
Manganese	DETSC 2301#	20	mg/kg							
Mercury	DETSC 2325#	0.05	mg/kg	0.14	0.24		2.7	< 0.05	< 0.05	< 0.05
Molybdenum	DETSC 2301#	0.4	mg/kg							
Nickel	DETSC 2301#	1	mg/kg	19	30		11	3.6	22	37
Phosphorus	DETSC 2301*	1	mg/kg							
Selenium	DETSC 2301#	0.5	mg/kg	7.0	3.6		1.0	< 0.5	< 0.5	2.5
Tin	DETSC 2301	1	mg/kg							
Vanadium	DETSC 2301#	0.8	mg/kg	1500	1300		120	62	42	1300
Zinc	DETSC 2301#	1	mg/kg	330	370		560	82	64	8400
Inorganics										
рН	DETSC 2008#		рН	11.2	11.0		10.9	10.8	8.7	11.5
Cyanide, Total	DETSC 2130#	0.1	mg/kg	2.1	3.3		27	3.8	0.6	1.4
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg	< 0.6	< 0.6		< 0.6	< 0.6	< 0.6	< 0.6
Organic matter	DETSC 2002#	0.1	%	0.9	1.4		0.8	0.6	1.7	2.2
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg							
Chloride	DETSC 2055	1	mg/kg							
Fluoride	DETSC 2055	1	mg/kg							
Nitrate as NO3	DETSC 2055	1	mg/kg	14	3.2		3.0	< 1.0	< 1.0	6.1
Ortho Phosphate as P	DETSC 2205*	0.1	mg/kg							
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	180	190		340	100	780	180
Sulphide	DETSC 2024*	10	mg/kg	190	170		430	140	110	230
Sulphur (free)	DETSC 3049#	0.75	mg/kg	2.7	1.5		1.3	< 0.75	3.9	< 0.75
Sulphur as S, Total	DETSC 2320	0.01	%	0.52	0.14		0.09	0.03	0.33	0.35
Sulphate as SO4, Total	DETSC 2321#	0.01	%	1.8	0.46		0.37	0.10	0.17	0.27

			Lab No	2052023	2052024	2052025	2052027	2052028	2052029	2052030
		.Sa	mple ID	F-BH103	F-BH103	F-BH103	F-BH103	F-BH103	F-BH103	F-BH115
			Depth	0.20	2.20	3.20	6.20	7.50	15.70	4.30
		C	Other ID							
		Samp	ole Type	ES	ES	ES	ES	ES	ES	ES
		Sampli	ng Date	25/08/2022	25/08/2022	25/08/2022	25/08/2022	25/08/2022	26/08/2022	25/08/2022
		Sampli	ng Time	n/s						
Test	Method	LOD	Units							
Petroleum Hydrocarbons										
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >EC10-EC12: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	< 1.50		< 1.50	< 1.50	< 1.50	< 1.50
Aliphatic >EC12-EC16: EH_2D_AL	DETSC 3521#	1.2	mg/kg	2.86	3.58		< 1.20	< 1.20	4.71	< 1.20
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg	3.26	5.52		< 1.50	< 1.50	4.44	2.66
Aliphatic >EC21-EC35: EH_2D_AL	DETSC 3521#	3.4	mg/kg	8.80	32.44		5.45	< 3.40	< 3.40	184.6
Aliphatic >EC35-EC40: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	4.63		< 3.40	< 3.40	< 3.40	< 3.40
Aliphatic C5-C40: EH_2D+HS_1D_AL	DETSC 3521*	10	mg/kg	20.38	47.91		14.64	13.41	19.77	193.3
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/kg	< 0.90	< 0.90		< 0.90	< 0.90	< 0.90	< 0.90
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	< 0.50	< 0.50		< 0.50	< 0.50	< 0.50	< 0.50
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	1.29	0.69		< 0.60	< 0.60	< 0.60	0.61
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg	4.56	2.41		< 1.40	< 1.40	< 1.40	< 1.40
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40		< 1.40	< 1.40	< 1.40	< 1.40
Aromatic C5-C40: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	< 10.00	< 10.00		< 10.00	< 10.00	< 10.00	< 10.00
TPH Ali/Aro C5-C40: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	29.37	54.22		20.46	19.28	25.93	198.2
PAHs										
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03		< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03		< 0.03	< 0.03	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	0.03	0.04		0.05	< 0.03	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	0.24	0.16		0.07	0.08	< 0.03	0.14
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	0.15	0.08		< 0.03	< 0.03	< 0.03	0.18
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	0.44	0.22		0.07	< 0.03	< 0.03	0.35
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	0.15	0.07		< 0.03	< 0.03	< 0.03	0.14
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	0.19	0.10		0.03	< 0.03	< 0.03	0.15
Chrysene	DETSC 3303	0.03	mg/kg	0.42	0.26		0.11	0.04	< 0.03	0.24
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	0.04	< 0.03		< 0.03	< 0.03	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	0.48	0.55		0.29	0.05	< 0.03	0.58
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03		< 0.03	< 0.03	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	0.14	0.07		< 0.03	< 0.03	< 0.03	0.13
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03		< 0.03	< 0.03	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	0.18	0.21		0.27	0.04	< 0.03	0.11
Pyrene	DETSC 3303#	0.03	mg/kg	0.67	0.42		0.27	0.05	< 0.03	0.42
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	3.1	2.2		1.1	0.26	< 0.10	2.4

			Lab No	2052023	2052024	2052025	2052027	2052028	2052029	2052030
		.Sa	mple ID	F-BH103	F-BH103	F-BH103	F-BH103	F-BH103	F-BH103	F-BH115
			Depth	0.20	2.20	3.20	6.20	7.50	15.70	4.30
		(Other ID							
		Sam	ple Type	ES	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	25/08/2022	25/08/2022	25/08/2022	25/08/2022	25/08/2022	26/08/2022	25/08/2022
		Sampli	ing Time	n/s	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units							
PCBs										
PCB 28 + PCB 31	DETSC 3401#	0.01	mg/kg		< 0.01			< 0.01		
PCB 52	DETSC 3401#	0.01	mg/kg		< 0.01			< 0.01		
PCB 101	DETSC 3401#	0.01	mg/kg		< 0.01			< 0.01		
PCB 118	DETSC 3401#	0.01	mg/kg		< 0.01			< 0.01		
PCB 153	DETSC 3401#	0.01	mg/kg		< 0.01			< 0.01		
PCB 138	DETSC 3401#	0.01	mg/kg		< 0.01			< 0.01		
PCB 180	DETSC 3401#	0.01	mg/kg		< 0.01			< 0.01		
PCB 77	DETSC 3401*	0.01	mg/kg		< 0.01			< 0.01		
PCB 81	DETSC 3401*	0.01	mg/kg		< 0.01			< 0.01		
PCB 105	DETSC 3401*	0.01	mg/kg		< 0.01			< 0.01		
PCB 114	DETSC 3401*	0.01	mg/kg		< 0.01			< 0.01		
PCB 118	DETSC 3401*	0.01	mg/kg		< 0.01			< 0.01		
PCB 123	DETSC 3401*	0.01	mg/kg		< 0.01			< 0.01		
PCB 126	DETSC 3401*	0.01	mg/kg		< 0.01			< 0.01		
PCB 156	DETSC 3401*	0.01	mg/kg		< 0.01			< 0.01		
PCB 157	DETSC 3401*	0.01	mg/kg		< 0.01			< 0.01		
PCB 167	DETSC 3401*	0.01	mg/kg		< 0.01			< 0.01		
PCB 169	DETSC 3401*	0.01	mg/kg		< 0.01			< 0.01		
PCB 189	DETSC 3401*	0.01	mg/kg		< 0.01			< 0.01		
PCB 7 Total	DETSC 3401#	0.01	mg/kg		< 0.01			< 0.01		
Phenols										
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3		< 0.3	< 0.3	< 0.3	< 0.3
Phenol	DETSC 3451*	0.01	mg/kg		< 0.01			< 0.01		
4-Chloro-3-methylphenol	DETSC 3451*	0.01	mg/kg		< 0.01			< 0.01		
2,4-Dichlorophenol	DETSC 3451*	0.01	mg/kg		< 0.01			< 0.01		
2,4-Dimethylphenol	DETSC 3451*	0.01	mg/kg		< 0.01			< 0.01		
p-cresol	DETSC 3451*	0.01	mg/kg		< 0.01			< 0.01		
2,6-Dimethylphenol	DETSC 3451*	0.01	mg/kg		< 0.01			< 0.01		
2,6-Dichlorophenol	DETSC 3451*	0.01	mg/kg		< 0.01			< 0.01		
2,4,6-Trichlorophenol	DETSC 3451*	0.01	mg/kg		< 0.01			< 0.01		
Subcontracted Analysis										
Benzene	\$*	<2	ug/kg		<2		<2	<2		
Toluene	\$*	<5	ug/kg		<5		<5	<5		
Ethylbenzene	\$*	<2	ug/kg		<2		<2	<2		
p & m-xylene	\$*	<2	ug/kg		<2		<2	<2		
o-xylene	\$*	<2	ug/kg		<2		<2	<2		
МТВЕ	\$*	<5	ug/kg		<5		<5	<5		
TAME	\$*	< 5	ug/kg		< 5		< 5	< 5		

			Lab No	2052031	2059563
		.Sa	ample ID	F-BH115	F-BH103
			Depth	5.00	0.20
			Other ID		
		Sam	ple Type	ES	ES
		Sampl	ing Date	25/08/2022	25/08/2022
		Sampl	ing Time	n/s	n/s
Test	Method	LOD	Units		
Asbestos Quantification	DETSC 1102	0.001	%		
QTSSubcon Prep	\$	0		Y	
Subcon to QTS	\$	0		Y	
Preparation					
Moisture Content	DETSC 1004	0.1	%	19	
Metals					
Aluminium	DETSC 2301*	1	mg/kg		12000
Arsenic	DETSC 2301#	0.2	mg/kg	7.3	
Beryllium	DETSC 2301#	0.2	mg/kg	< 0.2	
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	0.2	
Cadmium	DETSC 2301#	0.1	mg/kg	< 0.1	
Chromium III	DETSC 2301*	0.15	mg/kg	2.2	
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	
Copper	DETSC 2301#	0.2	mg/kg	1.5	
Iron	DETSC 2301	25	mg/kg		150000
Lead	DETSC 2301#	0.3	mg/kg	14	
Manganese	DETSC 2301#	20	mg/kg		32000
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	
Molybdenum	DETSC 2301#	0.4	mg/kg		11
Nickel	DETSC 2301#	1	mg/kg	1.7	
Phosphorus	DETSC 2301*	1	mg/kg		3000
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	
Tin	DETSC 2301	1	mg/kg		10
Vanadium	DETSC 2301#	0.8	mg/kg	11	
Zinc	DETSC 2301#	1	mg/kg	17	
Inorganics					
рН	DETSC 2008#		рН	9.6	
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.8	
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	
Thiocyanate	DETSC 2130#	0.6	mg/kg	< 0.6	
Organic matter	DETSC 2002#	0.1	%	0.1	
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg		1.2
Chloride	DETSC 2055	1	mg/kg		49.1
Fluoride	DETSC 2055	1	mg/kg		7.4
Nitrate as NO3	DETSC 2055	1	mg/kg	< 1.0	
Ortho Phosphate as P	DETSC 2205*	0.1	mg/kg		0.20
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	40	
Sulphide	DETSC 2024*	10	mg/kg	32	
Sulphur (free)	DETSC 3049#	0.75	mg/kg	< 0.75	
Sulphur as S, Total	DETSC 2320	0.01	%	0.02	
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.06	

			Lab No	2052031	2059563
		.Sa	ample ID	F-BH115	F-BH103
			Depth	5.00	0.20
			Other ID		
		Sam	ple Type	ES	ES
		Sampl	ing Date	25/08/2022	25/08/2022
		Sampl	ing Time	n/s	n/s
Test	Method	LOD	Units		
Petroleum Hydrocarbons					
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	
Aliphatic >EC10-EC12: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	
Aliphatic >EC12-EC16: EH_2D_AL	DETSC 3521#	1.2	mg/kg	3.15	
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg	2.97	
Aliphatic >EC21-EC35: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	
Aliphatic >EC35-EC40: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	
Aliphatic C5-C40: EH_2D+HS_1D_AL	DETSC 3521*	10	mg/kg	16.44	
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/kg	< 0.90	
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	< 0.50	
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	< 0.60	
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg	< 1.40	
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	
Aromatic C5-C40: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	< 10.00	
TPH Ali/Aro C5-C40: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	22.43	
PAHs					
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03	
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	
Fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	
Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03	
Pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	< 0.10	

			Lab No	2052031	2059563
		.Sa	ample ID	F-BH115	F-BH103
			Depth	5.00	0.20
			Other ID		
		Sam	ple Type	ES	ES
		Samp	ling Date	25/08/2022	25/08/2022
		Sampl	ing Time	n/s	n/s
Test	Method	LOD	Units		
PCBs					
PCB 28 + PCB 31	DETSC 3401#	0.01	mg/kg		
PCB 52	DETSC 3401#	0.01	mg/kg		
PCB 101	DETSC 3401#	0.01	mg/kg		
PCB 118	DETSC 3401#	0.01	mg/kg		
PCB 153	DETSC 3401#	0.01	mg/kg		
PCB 138	DETSC 3401#	0.01	mg/kg		
PCB 180	DETSC 3401#	0.01	mg/kg		
РСВ 77	DETSC 3401*	0.01	mg/kg		
PCB 81	DETSC 3401*	0.01	mg/kg		
PCB 105	DETSC 3401*	0.01	mg/kg		
PCB 114	DETSC 3401*	0.01	mg/kg		
PCB 118	DETSC 3401*	0.01	mg/kg		
PCB 123	DETSC 3401*	0.01	mg/kg		
PCB 126	DETSC 3401*	0.01	mg/kg		
PCB 156	DETSC 3401*	0.01	mg/kg		
PCB 157	DETSC 3401*	0.01	mg/kg		
PCB 167	DETSC 3401*	0.01	mg/kg		
PCB 169	DETSC 3401*	0.01	mg/kg		
PCB 189	DETSC 3401*	0.01	mg/kg		
PCB 7 Total	DETSC 3401#	0.01	mg/kg		
Phenols					
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	
Phenol	DETSC 3451*	0.01	mg/kg		
4-Chloro-3-methylphenol	DETSC 3451*	0.01	mg/kg		
2,4-Dichlorophenol	DETSC 3451*	0.01	mg/kg		
2,4-Dimethylphenol	DETSC 3451*	0.01	mg/kg		
p-cresol	DETSC 3451*	0.01	mg/kg		
2,6-Dimethylphenol	DETSC 3451*	0.01	mg/kg		
2,6-Dichlorophenol	DETSC 3451*	0.01	mg/kg		
2,4,6-Trichlorophenol	DETSC 3451*	0.01	mg/kg		
Subcontracted Analysis					
Benzene	\$*	<2	ug/kg	<2	
Toluene	\$*	<5	ug/kg	<5	
Ethylbenzene	\$*	<2	ug/kg	<2	
p & m-xylene	\$*	<2	ug/kg	<2	
o-xylene	\$*	<2	ug/kg	<2	
МТВЕ	\$*	<5	ug/kg	<5	
ТАМЕ	\$*	< 5	ug/kg	< 5	

Summary of Chemical Analysis

Leachate Samples

	Lab No		2052032	2052033	2055153	2059564	
		.S	ample ID	F-BH103	F-BH103	F-BH115	F-BH103
			Depth	0.20	2.20	4.30	0.20
			Other ID				
		Sam	ple Type	ES	ES	LEACHATE	ES
		Samp	ing Date	25/08/2022	25/08/2022	25/08/2022	25/08/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Preparation							
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y	Y	Y	Y
Metals							
Aluminium, Dissolved	DETSC 2306	10	ug/l				420
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	1.5	0.50	4.9	
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l				< 0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	17	< 12	46	
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03	< 0.03	
Chromium III, Dissolved	DETSC 2306*	1	ug/l	1.9	1.5	< 1.0	
Chromium, Hexavalent	DETSC 2203	0.007	mg/l	< 0.007	0.107	< 0.007	
Copper, Dissolved	DETSC 2306	0.4	ug/l	6.7	5.9	2.9	
Iron, Dissolved	DETSC 2306	5.5	ug/l	7.6	< 5.5	6.8	
Lead, Dissolved	DETSC 2306	0.09	ug/l	2.4	2.2	1.9	
Manganese, Dissolved	DETSC 2306	0.22	ug/l				0.41
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.04	0.04	0.01	
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l				7.4
Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5	< 0.5	< 0.5	
Phosphorus as P, Dissolved	DETSC 2306	18	ug/l				< 18
Selenium, Dissolved	DETSC 2306	0.25	ug/l	1.6	0.72	2.3	
Tin, Dissolved	DETSC 2306*	0.4	ug/l				< 0.4
Vanadium, Dissolved	DETSC 2306	0.6	ug/l				52
Zinc, Dissolved	DETSC 2306	1.3	ug/l	5.6	2.3	2.1	
Inorganics							
рН	DETSC 2008		рН	11.5	11.5	8.0	
Cyanide, Total Low Level	DETSC 2131	0.1	ug/l	0.5	< 0.1	5.9	
Cyanide, Free Low Level	DETSC 2131	0.1	ug/l	< 0.1	< 0.1	0.3	
Thiocyanate	DETSC 2130	20	ug/l	< 20	< 20	< 20	
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	143	140	44.9	
Ammoniacal Nitrogen as NH4	DETSC 2207	0.015	mg/l	0.06	0.06	0.03	
Ammoniacal Nitrogen as NH3	DETSC 2207	0.015	mg/l	0.056	0.058	0.027	
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	0.046	0.047	0.022	
Chloride	DETSC 2055	0.1	mg/l				4.5
Fluoride	DETSC 2055*	0.1	mg/l				0.66
Nitrate as NO3	DETSC 2055	0.1	mg/l	0.85	0.37	1.0	
Nitrite as NO2	DETSC 2055	0.1	mg/l	< 0.10	0.13	0.53	
Ortho Phosphate as P	DETSC 2205	0.01	mg/l				< 0.01
Sulphate as SO4	DETSC 2055	0.1	mg/l	21	11	55	
Total Organic Carbon	DETSC 2085	1	mg/l	4.4	4.8	2.4	
PAHs	1	,					
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	
Anthracene	DETSC 3304	0.01	ug/l	0.01	0.02	< 0.01	

Summary of Chemical Analysis Leachate Samples

	Lab No		2052032	2052033	2055153	2059564	
		.Sa	mple ID	F-BH103	F-BH103	F-BH115	F-BH103
			Depth	0.20	2.20	4.30	0.20
		(Other ID				
		Sam	ole Type	ES	ES	LEACHATE	ES
		Sampl	ing Date	25/08/2022	25/08/2022	25/08/2022	25/08/2022
		Sampli	ng Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01	< 0.01	0.03	
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	0.02	
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	0.05	
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	0.02	
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	0.02	
Chrysene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	0.03	
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	
Fluoranthene	DETSC 3304	0.01	ug/l	0.02	< 0.01	0.06	
Fluorene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	0.01	
Naphthalene	DETSC 3304	0.05	ug/l	< 0.05	< 0.05	< 0.05	
Phenanthrene	DETSC 3304	0.01	ug/l	0.02	0.01	0.01	
Pyrene	DETSC 3304	0.01	ug/l	0.02	< 0.01	0.03	
PAH Total	DETSC 3304	0.2	ug/l	< 0.20	< 0.20	0.28	

Summary of Asbestos Analysis Soil Samples

Our Ref 22-17084,22-18502 Client Ref 60678042 Contract Title NZT FEED GI

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2052023	F-BH103 0.20	SOIL	NAD	none	Michael Kay
2052024	F-BH103 2.20	SOIL	Chrysotile Amosite	amosite and chrysotile in microscopic loose fibrous asbestos insulation	Michael Kay
2052025	F-BH103 3.20	SOIL	Chrysotile	bundles of chrysotile	Michael Kay
2052026	F-BH103 4.20	SOIL	NAD	none	Michael Kay
2052027	F-BH103 6.20	SOIL	NAD	none	Michael Kay
2052030	F-BH115 4.30	SOIL	NAD	none	Michael Kay

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * -not included in laboratory scope of accreditation.

Summary of Asbestos Quantification Analysis Soil Samples

Our Ref 22-17084,22-18502 *Client Ref* 60678042 *Contract Title* NZT FEED GI

		Lab No	2052024	2052025
	-	Sample ID	F-BH103	F-BH103
		Depth	2.20	3.20
		Other ID		
	Sai	nple Type	ES	ES
	Sam	pling Date	25/08/2022	25/08/2022
	Samj	oling Time		
Test	Method	Units		
Total Mass% Asbestos (a+b+c)	DETSC 1102	Mass %	0.002	< 0.001
Gravimetric Quantification (a)	DETSC 1102	Mass %	0.002	na
Detailed Gravimetric Quantification (b)	DETSC 1102	Mass %	na	<0.001
Quantification by PCOM (c)	DETSC 1102	Mass %	na	na
Potentially Respirable Fibres (d)	DETSC 1102	Fibres/g	na	na
Breakdown of Gravimetric Analysis (a)				
Mass of Sample		g	27.88	66.15
ACMs present*		type	LFAD	
Mass of ACM in sample		g	0.00	
% ACM by mass		%	0.00	
% asbestos in ACM		%	85.00	
% asbestos in sample		%	0.002	
Breakdown of Detailed Gravimetric Analysis (b)				
% Amphibole bundles in sample		Mass %	na	na
% Chrysotile bundles in sample		Mass %	na	<0.001
Breakdown of PCOM Analysis (c)				
% Amphibole fibres in sample		Mass %	na	na
% Chrysotile fibres in sample		Mass %	na	na
Breakdown of Potentially Respirable Fibre Analysis (d)				
Amphibole fibres		Fibres/g	na	na
Chrysotile fibres		Fibres/g	na	na

* Denotes test or material description outside of UKAS accreditation. % asbestos in Asbestos Containing Materials (ACMs) is determined by by reference to HSG 264. Recommended sample size for quantification is approximately 1kg

denotes deviating sample

Information in Support of the Analytical Results

Our Ref 22-17084,22-18502 Client Ref 60678042 Contract NZT FEED GI

Containers Received & Deviating Samples

				Holding time	Inappropriate
		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2052023	F-BH103 0.20 SOIL	25/08/22	GJ 250ml, GJ 60ml, PT 1L		
2052024	F-BH103 2.20 SOIL	25/08/22	GJ 250ml, GJ 60ml, PT 1L		
2052025	F-BH103 3.20 SOIL	25/08/22	GJ 250ml, GJ 60ml, PT 1L		
2052026	F-BH103 4.20 SOIL	25/08/22	GJ 250ml, GJ 60ml, PT 1L		
2052027	F-BH103 6.20 SOIL	25/08/22	GJ 250ml, GJ 60ml, PT 1L		
2052028	F-BH103 7.50 SOIL	25/08/22	GJ 250ml, GJ 60ml, PT 1L		
2052029	F-BH103 15.70 SOIL	26/08/22	GJ 250ml, GJ 60ml, PT 1L		
2052030	F-BH115 4.30 SOIL	25/08/22	GJ 250ml, GJ 60ml, PT 1L		
2052031	F-BH115 5.00 SOIL	25/08/22	GJ 250ml, GJ 60ml, PT 1L		
2052032	F-BH103 0.20 LEACHATE	25/08/22	GJ 250ml, GJ 60ml, PT 1L		
2052033	F-BH103 2.20 LEACHATE	25/08/22	GJ 250ml, GJ 60ml, PT 1L		
2055153	F-BH115 4.30 LEACHATE	25/08/22	GJ 250ml, GJ 60ml, PT 1L		
Key: G-Glass	P-Plastic J-Jar T-Tub				

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Acronym

Det

Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC12	EH_2D_AL
Aliphatic >EC12-EC16	EH_2D_AL
Aliphatic >EC16-EC21	EH_2D_AL
Aliphatic >EC21-EC35	EH_2D_AL
Aliphatic >EC35-EC40	EH_2D_AL
Aliphatic C5-C40	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC12	EH_2D_AR
Aromatic >EC12-EC16	EH_2D_AR
Aromatic >EC16-EC21	EH_2D_AR
Aromatic >EC21-EC35	EH_2D_AR
Aromatic >EC35-EC40	EH_2D_AR
Aromatic C5-C40	EH_2D+HS_1D_AR
TPH Ali/Aro C5-C40	EH_2D+HS_1D_Total

End of Report

Issued: 16-Sep-22

Certificate Number 22-17093,22-17940 Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

Our Reference 22-17093,22-17940

- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description 9 Soil samples.
 - Date Received 31-Aug-22
 - Date Started 31-Aug-22
- Date Completed 16-Sep-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

emood

Kirk Bridgewood General Manager

Summary of Chemical Analysis

Soil Samples

Our Ref 22-17093,22-17940 *Client Ref* 60678042 *Contract Title* NZT Feed GI

			Lab No	2052084	2052085	2052086	2052087	2052088	2052089	2052090	2052091	2056581
		.Sa	ample ID	F-BH124	F-BH124	F-BH124	F-BH124	F-BH124	F-BH124	F-BH124	F-BH124	F-BH124
			Depth	3.79-3.90	5.50-6.00	6.70-6.80	7.50-7.60	9.90-10.50	11.10-11.20	12.00-12.10	14.30-14.90	26.20-26.30
		(Other ID									
		Sam	ple Type	D	В	D	D	В	D	D	В	SOIL
		Sampl	ing Date	01/08/2022	11/08/2022	11/08/2022	02/08/2022	02/08/2022	02/08/2022	02/08/2022	02/08/2022	04/08/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units									
Inorganics												
рН	DETSC 2008#		рН	11.9	9.1	9.2		9.1		8.2	8.4	8.8
Organic matter	DETSC 2002#	0.1	%						0.8			
Carbonate (as CO2)	DETSC 2005	1	%				4.2	4.4				
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	99	120	200		140		380	190	420
Sulphur as S, Total	DETSC 2320	0.01	%	0.22	0.03	0.65		0.04		0.37	0.04	1.1
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.47	0.06	0.16		0.07		0.19	0.07	0.16

inappropriate

Information in Support of the Analytical Results

Our Ref 22-17093,22-17940 *Client Ref* 60678042 *Contract* NZT Feed GI

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2052084	F-BH124 3.79-3.90 SOIL	01/08/22	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2052085	F-BH124 5.50-6.00 SOIL	11/08/22	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2052086	F-BH124 6.70-6.80 SOIL	11/08/22	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2052087	F-BH124 7.50-7.60 SOIL	02/08/22	PT 1L	Carbonate (28 days)	
2052088	F-BH124 9.90-10.50 SOIL	02/08/22	PT 1L	Carbonate (28 days), Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2052089	F-BH124 11.10-11.20 SOIL	02/08/22	PT 1L	Organic Matter (Manual) (28 days)	
2052090	F-BH124 12.00-12.10 SOIL	02/08/22	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2052091	F-BH124 14.30-14.90 SOIL	02/08/22	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Issued:

Certificate Number 22-17096

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- *Our Reference* 22-17096
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description 9 Soil samples.
 - Date Received 31-Aug-22
 - Date Started 31-Aug-22
- Date Completed 06-Sep-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lyemood

Kirk Bridgewood General Manager

06-Sep-22

Summary of Chemical Analysis

Soil Samples

			Lab No	2052094	2052095	2052096	2052097	2052098	2052099	2052100	2052101	2052102
		.Sa	ample ID	F-BH120	F-BH120	F-BH120	F-BH120	F-BH120	F-BH120	F-BH120	F-BH120	F-BH120
			Depth	4.10-4.50	4.83-5.20	6.80-6.90	7.50-7.60	9.60-9.70	12.40-12.50	13.50-13.60	14.00-15.00	30.00-31.50
			Other ID									
		Sam	ple Type	В	В	D	D	D	D	D	В	C
		Samp	ling Date	02/08/2022	02/08/2022	03/08/2022	03/08/2022	03/08/2022	03/08/2022	04/08/2022	04/08/2022	04/08/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units									
Inorganics												
рН	DETSC 2008#		рН	10.4			8.9		8.4		8.2	8.9
Organic matter	DETSC 2002#	0.1	%			2.8				2.0		
Carbonate (as CO2)	DETSC 2005	1	%		2.5			4.9				
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	820			290		430		230	370
Sulphur as S, Total	DETSC 2320	0.01	%	0.29			0.09		0.15		0.10	0.69
Sulphate as SO4, Total	DETSC 2321#	0.01	%	2.6			0.10		0.12		0.09	0.15

Information in Support of the Analytical Results

Our Ref 22-17096 *Client Ref* 60678042 *Contract* NZT Feed GI

Containers Received & Deviating Samples

		Date			Inappropriate
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2052094	F-BH120 4.10-4.50 SOIL	02/08/22	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2052095	F-BH120 4.83-5.20 SOIL	02/08/22	PT 1L	Carbonate (28 days)	
2052096	F-BH120 6.80-6.90 SOIL	03/08/22	PT 1L		
2052097	F-BH120 7.50-7.60 SOIL	03/08/22	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2052098	F-BH120 9.60-9.70 SOIL	03/08/22	PT 1L		
2052099	F-BH120 12.40-12.50 SOIL	03/08/22	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2052100	F-BH120 13.50-13.60 SOIL	04/08/22	PT 1L		
2052101	F-BH120 14.00-15.00 SOIL	04/08/22	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2052102	F-BH120 30.00-31.50 SOIL	04/08/22	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Issued:

Certificate Number 22-17096

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- *Our Reference* 22-17096
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description 9 Soil samples.
 - Date Received 31-Aug-22
 - Date Started 31-Aug-22
- Date Completed 06-Sep-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lyemood

Kirk Bridgewood General Manager

06-Sep-22

Summary of Chemical Analysis

Soil Samples

			Lab No	2052094	2052095	2052096	2052097	2052098	2052099	2052100	2052101	2052102
		.Sa	ample ID	F-BH120	F-BH120	F-BH120	F-BH120	F-BH120	F-BH120	F-BH120	F-BH120	F-BH120
			Depth	4.10-4.50	4.83-5.20	6.80-6.90	7.50-7.60	9.60-9.70	12.40-12.50	13.50-13.60	14.00-15.00	30.00-31.50
			Other ID									
		Sam	ple Type	В	В	D	D	D	D	D	В	C
		Samp	ling Date	02/08/2022	02/08/2022	03/08/2022	03/08/2022	03/08/2022	03/08/2022	04/08/2022	04/08/2022	04/08/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units									
Inorganics												
рН	DETSC 2008#		рН	10.4			8.9		8.4		8.2	8.9
Organic matter	DETSC 2002#	0.1	%			2.8				2.0		
Carbonate (as CO2)	DETSC 2005	1	%		2.5			4.9				
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	820			290		430		230	370
Sulphur as S, Total	DETSC 2320	0.01	%	0.29			0.09		0.15		0.10	0.69
Sulphate as SO4, Total	DETSC 2321#	0.01	%	2.6			0.10		0.12		0.09	0.15

Information in Support of the Analytical Results

Our Ref 22-17096 *Client Ref* 60678042 *Contract* NZT Feed GI

Containers Received & Deviating Samples

		Date			Inappropriate
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2052094	F-BH120 4.10-4.50 SOIL	02/08/22	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2052095	F-BH120 4.83-5.20 SOIL	02/08/22	PT 1L	Carbonate (28 days)	
2052096	F-BH120 6.80-6.90 SOIL	03/08/22	PT 1L		
2052097	F-BH120 7.50-7.60 SOIL	03/08/22	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2052098	F-BH120 9.60-9.70 SOIL	03/08/22	PT 1L		
2052099	F-BH120 12.40-12.50 SOIL	03/08/22	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2052100	F-BH120 13.50-13.60 SOIL	04/08/22	PT 1L		
2052101	F-BH120 14.00-15.00 SOIL	04/08/22	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2052102	F-BH120 30.00-31.50 SOIL	04/08/22	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Issued:

06-Oct-22

Certificate Number 22-17176,22-18149

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- Our Reference 22-17176,22-18149
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description 9 Soil samples.
 - Date Received 01-Sep-22
 - Date Started 01-Sep-22
- Date Completed 06-Oct-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lemood

Kirk Bridgewood General Manager

Summary of Chemical Analysis

Soil Samples

 Our Ref
 22-17176,22-18149

 Client Ref
 60678042

 Contract Title
 NZT Feed GI

			Lab No	2052473	2052474	2052475	2052476	2052477	2052478	2052479	2052882	2057766
		.Sa	ample ID	F-BH125	F-BH125	F-BH125	F-BH125	F-BH125	F-BH125	F-BH125	F-BH125	F-BH125
			Depth	4.50-4.80	6.50-6.90	7.50-7.60	9.00-9.10	10.50-10.60	11.46-11.90	13.40-13.50	14.90-15.00	22.50-24.00
			Other ID									
		Sam	ple Type	D	В	D	D	D	В	D	D	C
		Samp	ing Date	04/08/2022	04/08/2022	04/08/2022	05/08/2022	05/08/2022	05/08/2022	05/08/2022	05/08/2022	12/09/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units									
Inorganics												
рН	DETSC 2008#		pН	8.7			7.6		8.1		8.2	8.7
Organic matter	DETSC 2002#	0.1	%		2.6					4.4		
Carbonate (as CO2)	DETSC 2005	1	%			5.2		7.9				
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	420			1200		560		300	610
Sulphur as S, Total	DETSC 2320	0.01	%	0.40			2.6		0.38		0.03	0.69
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.34			0.52		0.19		0.06	2.8

Information in Support of the Analytical Results

Our Ref 22-17176,22-18149 *Client Ref* 60678042 *Contract* NZT Feed GI

Containers Received & Deviating Samples

		Date			Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2052473	F-BH125 4.50-4.80 SOIL	04/08/22	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2052474	F-BH125 6.50-6.90 SOIL	04/08/22	PT 1L		
2052475	F-BH125 7.50-7.60 SOIL	04/08/22	PT 1L		
2052476	F-BH125 9.00-9.10 SOIL	05/08/22	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2052477	F-BH125 10.50-10.60 SOIL	05/08/22	PT 1L		-
2052478	F-BH125 11.46-11.90 SOIL	05/08/22	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2052479	F-BH125 13.40-13.50 SOIL	05/08/22	PT 1L		
2052882	F-BH125 14.90-15.00 SOIL	05/08/22	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Issued: 08-Sep-22

Certificate Number 22-17283 Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- Our Reference 22-17283
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description 6 Soil samples.
 - Date Received 02-Sep-22
 - Date Started 02-Sep-22
- Date Completed 08-Sep-22
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

emood

Kirk Bridgewood General Manager

Issued:

Certificate Number 22-17734

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- *Our Reference* 22-17734
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description 5 Soil samples.
 - Date Received 08-Sep-22
 - Date Started 08-Sep-22
- Date Completed 14-Sep-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

hurod

Kirk Bridgewood General Manager

Derwentside Environmental Testing Services Limited Unit 2, Park Road Industrial Estate South, Consett, Co Durham, DH8 5PY Tel: 01207 582333 • email: info@dets.co.uk • www.dets.co.uk 14-Sep-22

			Lab No	2055408	2055409	2055410	2055411	2055412
		.Sa	ample ID	F-BH128	F-BH128	F-BH128	F-BH128	F-BH128
			Depth	3.76-4.01	5.20-5.30	6.36-7.27	8.20-8.30	9.80-10.40
			Other ID					
		Sam	ple Type	D	D	В	D	В
		Samp	ling Date	01/09/2022	01/09/2022	01/09/2022	01/09/2022	01/09/2022
		Sampl	ing Time	1200	1200	1200	1200	1200
Test	Method	LOD	Units					
Inorganics								
рН	DETSC 2008#		pН	9.9				
Organic matter	DETSC 2002#	0.1	%			4.3	3.6	
Carbonate (as CO2)	DETSC 2005	1	%		3.7			2.9
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	15				
Sulphur as S, Total	DETSC 2320	0.01	%	0.18				
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.16				

.....

Information in Support of the Analytical Results

Our Ref 22-17734 *Client Ref* 60678042 *Contract* NZT Feed GI

Containers Received & Deviating Samples

		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2055408	F-BH128 3.76-4.01 SOIL	01/09/22	PT 1L		
2055409	F-BH128 5.20-5.30 SOIL	01/09/22	PT 1L		
2055410	F-BH128 6.36-7.27 SOIL	01/09/22	PT 1L		
2055411	F-BH128 8.20-8.30 SOIL	01/09/22	PT 1L		
2055412	F-BH128 9.80-10.40 SOIL	01/09/22	PT 1L		

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Issued:

20-Sep-22

Certificate Number 22-17882

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- *Our Reference* 22-17882
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description 2 Soil samples, 1 Leachate sample.
 - Date Received 09-Sep-22
- Date Started 09-Sep-22
- Date Completed 20-Sep-22
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logmood

Kirk Bridgewood General Manager

Derwentside Environmental Testing Services Limited Unit 2, Park Road Industrial Estate South, Consett, Co Durham, DH8 5PY Tel: 01207 582333 • email: info@dets.co.uk • www.dets.co.uk

Lab No 2056242 .Sample ID F-BH116 F- Depth 4.90 0 Other ID Sample Type Es Sampling Date 02/09/2022 02/ Sampling Time 1100 1 Test Method LOD Units Preparation 20 Metals 4400 Aluminium DETSC 2301* 1 mg/kg 1400 Arsenic DETSC 2301# 0.2 mg/kg 6.9 Bervillium DETSC 2301# 0.2 mg/kg 0.2	2056243 •BH116 5.90
.Sample ID F-BH116 F- Depth 4.90 0 Other ID 0 0 Sample Type ES 02/09/2022 02/ Sampling Date 02/09/2022 02/ Sampling Time 1100 1 100 Test Method LOD Units Preparation 0.1 % 20 Metals 0.1 % 20 Aluminium DETSC 2301* 1 mg/kg 1400 Arsenic DETSC 2301# 0.2 mg/kg 6.9 Bervillium DETSC 2301# 0.2 mg/kg <0.2	BH116 5.90
Depth 4.90 Other ID 0 Sample Type ES Sampling Date 02/09/2022 Sampling Time 1100 Test Method LOD Preparation 01 % Moisture Content DETSC 1004 0.1 % Aluminium DETSC 2301* 1 mg/kg 1400 Arsenic DETSC 2301# 0.2 mg/kg 6.9 Bervillium DETSC 2301# 0.2 mg/kg 6.9	5.90
Other ID Other ID Sample Type ES Sampling Date 02/09/2022 Sampling Time 1100 Test Method LOD Preparation 02/09/2022 02/09/2022 Moisture Content DETSC 1004 0.1 % 20 Metals 400 400 400 Arsenic DETSC 2301* 1 mg/kg 1400 Arsenic DETSC 2301# 0.2 mg/kg 6.9	
Sample Type Es Sampling Date 02/09/2022 02/ Sampling Time 1100 1100 Test Method LOD Units Preparation Units 20 Metals DETSC 1004 0.1 % 20 Aluminium DETSC 2301* 1 mg/kg 1400 Arsenic DETSC 2301# 0.2 mg/kg 6.9 Bervilium DETSC 2301# 0.2 mg/kg 6.9	
Sampling Date 02/09/2022 02/ Sampling Time 02/09/2022 02/ Test Method LOD Units Preparation Moisture Content DETSC 1004 0.1 % 20 Metals Aluminium DETSC 2301* 1 mg/kg 1400 Arsenic DETSC 2301# 0.2 mg/kg 6.9 BervIlium	ES
Sampling Time1100TestMethodLODUnitsPreparationUnitsOperationOperationMoisture ContentDETSC 10040.1%20MetalsOperation0.1%20AluminiumDETSC 2301*1mg/kg1400ArsenicDETSC 2301#0.2mg/kg6.9BervilliumDETSC 2301#0.2mg/kg< 0.2	09/2022
TestMethodLODUnitsPreparationMoisture ContentDETSC 10040.1%20MetalsAluminiumDETSC 2301*1mg/kg1400ArsenicDETSC 2301#0.2mg/kg6.9BervlliumDETSC 2301#0.2mg/kg< 0.2	1100
Preparation Moisture Content DETSC 1004 0.1 % 20 Metals Aluminium DETSC 2301* 1 mg/kg 1400 Arsenic DETSC 2301# 0.2 mg/kg 6.9 Bervllium DETSC 2301# 0.2 mg/kg 6.9	
Moisture Content DETSC 1004 0.1 % 20 Metals Aluminium DETSC 2301* 1 mg/kg 1400 Arsenic DETSC 2301# 0.2 mg/kg 6.9 9 Bervllium DETSC 2301# 0.2 mg/kg 6.9 1400	
Metals Aluminium DETSC 2301* 1 mg/kg 1400 Arsenic DETSC 2301# 0.2 mg/kg 6.9 Bervllium DETSC 2301# 0.2 mg/kg 6.9	14
Aluminium DETSC 2301* 1 mg/kg 1400 Arsenic DETSC 2301# 0.2 mg/kg 6.9 Beryllium DETSC 2301# 0.2 mg/kg 6.9	
ArsenicDETSC 2301#0.2mg/kg6.9BerylliumDETSC 2301#0.2mg/kg< 0.2	14000
Beryllium DFTSC 2301# 0.2 mg/kg < 0.2	23
	1.0
Boron, Water Soluble DETSC 2311# 0.2 mg/kg 0.4	1.5
Cadmium DETSC 2301# 0.1 mg/kg < 0.1	0.7
Chromium III DETSC 2301* 0.15 mg/kg 6.1	230
Chromium, Hexavalent DETSC 2204* 1 mg/kg < 1.0	< 1.0
Copper DETSC 2301# 0.2 mg/kg 3.2	62
Iron DETSC 2301 25 mg/kg 7000 1	110000
Lead DETSC 2301# 0.3 mg/kg 22	23
Manganese DETSC 2301# 20 mg/kg 140	7600
Mercury DETSC 2325# 0.05 mg/kg < 0.05	< 0.05
Molybdenum DETSC 2301# 0.4 mg/kg < 0.4	4.0
Nickel DETSC 2301# 1 mg/kg 2.8	28
Phosphorus DETSC 2301* 1 mg/kg 140	9000
Selenium DETSC 2301# 0.5 mg/kg < 0.5	2.3
Tin DETSC 2301 1 mg/kg < 1.0	3.1
Vanadium DETSC 2301# 0.8 mg/kg 10	1200
Zinc DETSC 2301# 1 mg/kg 17	120
Inorganics	
pH DETSC 2008# pH 9.2	11.7
Cyanide, Total DETSC 2130# 0.1 mg/kg < 0.1	0.1
Cyanide, Free DETSC 2130# 0.1 mg/kg < 0.1	< 0.1
Thiocyanate DETSC 2130# 0.6 mg/kg < 0.6	1.1
Organic matter DETSC 2002# 0.1 % 0.2	0.5
Ammoniacal Nitrogen as N DETSC 2119# 0.5 mg/kg 1.9	1.5
Chloride DETSC 2055 1 mg/kg 32.9	251
Fluoride DETSC 2055 1 mg/kg < 1.0	49
Nitrate as NO3 DETSC 2055 1 mg/kg < 1.0	< 1.0
Ortho Phosphate as P DETSC 2205* 0.1 mg/kg < 0.10	< 0.10
Sulphate Aqueous Extract as SO4 DETSC 2076# 10 mg/l 28	83
Sulphide DETSC 2024* 10 mg/kg 20	360
Sulphur (free) DETSC 3049# 0.75 mg/kg < 0.75	18
Sulphur as S. Total DETSC 2320 0.01 % 0.02	0.37
Sulphate as \$04. Total DETSC 2321# 0.01 % 0.02	0.25
Petroleum Hydrocarbons	5.25
Aliphatic C5-C6: HS 1D AL DETSC 3321* 0.01 mg/kg < 0.01	< 0.01

	Lab No	2056242	2056243		
.Sample ID					F-BH116
			Depth	4.90	5.90
			Other ID		
		Sam	ple Type	ES	ES
		Sampl	ing Date	02/09/2022	02/09/2022
		Sampl	ing Time	1100	1100
Test	Method	LOD	Units		
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic >EC10-EC12: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	< 1.50
Aliphatic >EC12-EC16: EH_2D_AL	DETSC 3521#	1.2	mg/kg	< 1.20	< 1.20
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50	< 1.50
Aliphatic >EC21-EC35: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	28.79
Aliphatic >EC35-EC40: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40	< 3.40
Aliphatic C5-C35: EH_2D+HS_1D_AL	DETSC 3521*	10	mg/kg	< 10.00	
Aliphatic C5-C40: EH_2D+HS_1D_AL	DETSC 3521*	10	mg/kg	13.78	37.72
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/kg	< 0.90	< 0.90
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	< 0.50	< 0.50
Aromatic >EC16-EC21: EH 2D AR	DETSC 3521#	0.6	mg/kg	1.40	< 0.60
Aromatic >EC21-EC35: EH 2D AR	DETSC 3521#	1.4	mg/kg	< 1.40	< 1.40
Aromatic >EC35-EC40: EH 2D AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40
Aromatic C5-C35: EH 2D+HS 1D AR	DETSC 3521*	10	mg/kg	< 10.00	
Aromatic C5-C40: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	< 10.00	< 10.00
			2. 0		
TPH Ali/Aro Total C5-C35: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	14.47	
TPH Ali/Aro C5-C40: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	20.47	43.36
PAHs					
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	0.14
Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03	0.08
Pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	< 0.10	0.22

Lab No					2056243
		.Sa	ample ID	F-BH116	F-BH116
			Depth	4.90	5.90
			Other ID		
		Sam	ple Type	ES	ES
		Sampl	ing Date	02/09/2022	02/09/2022
		Sampl	ing Time	1100	1100
Test	Method	LOD	Units		
PCBs					
PCB 28 + PCB 31	DETSC 3401#	0.01	mg/kg	< 0.01	
PCB 52	DETSC 3401#	0.01	mg/kg	< 0.01	
PCB 101	DETSC 3401#	0.01	mg/kg	< 0.01	
PCB 118	DETSC 3401#	0.01	mg/kg	< 0.01	
PCB 153	DETSC 3401#	0.01	mg/kg	< 0.01	
PCB 138	DETSC 3401#	0.01	mg/kg	< 0.01	
PCB 180	DETSC 3401#	0.01	mg/kg	< 0.01	
РСВ 77	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 81	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 105	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 114	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 118	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 123	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 126	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 156	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 157	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 167	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 169	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 189	DETSC 3401*	0.01	mg/kg	< 0.01	
PCB 7 Total	DETSC 3401#	0.01	mg/kg	< 0.01	
Phenols					
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3
Subcontracted Analysis					
Benzene	\$*	<2	ug/kg	<2	<2
Toluene	\$*	<5	ug/kg	<5	31
Ethylbenzene	\$*	<2	ug/kg	<2	<2
p & m-xylene	\$*	<2	ug/kg	<2	19
o-xylene	\$*	<2	ug/kg	<2	<2
MTBE	\$*	<5	ug/kg	<5	<5
ТАМЕ	\$*	< 5	ug/kg	< 5	<5

Leachate Samples

	Lab No			2056244	
	.Sample ID				
	4.90				
		(Other ID		
		Sam	ple Type	ES	
		Sampl	ing Date	02/09/2022	
		Sampli	ing Time	1100	
Test	Method	LOD	Units		
Preparation					
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y	
Metals					
Aluminium, Dissolved	DETSC 2306	10	ug/l	130	
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	7.8	
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1	
Boron, Dissolved	DETSC 2306*	12	ug/l	21	
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	0.05	
Chromium III, Dissolved	DETSC 2306*	1	ug/l	< 1.0	
Chromium, Hexavalent	DETSC 2203	0.007	mg/l	< 0.007	
Copper, Dissolved	DETSC 2306	0.4	ug/l	3.5	
Iron, Dissolved	DETSC 2306	5.5	ug/l	350	
Lead. Dissolved	DETSC 2306	0.09	ug/l	5.7	
Manganese. Dissolved	DETSC 2306	0.22	ug/l	6.3	
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.01	
Molybdenum. Dissolved	DETSC 2306	1.1	ug/l	3.7	
Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5	
Phosphorus as P. Dissolved	DETSC 2306	18	ug/l	150	
Selenium, Dissolved	DETSC 2306	0.25	ug/l	1.2	
Tin Dissolved	DFTSC 2306*	0.4	. (ع.د ا/عرا	< 0.4	
Vanadium Dissolved	DETSC 2306	0.6		4.6	
Zinc Dissolved	DETSC 2306	13	رونی ارونا	4 7	
	22130 2300	1.0	46/ ·	,	
nH	DFTSC 2008		nH	73	
Cvanide Total Low Level	DETSC 2000	0.1	بر ا/ت	< 0.1	
Cvanide, Free Low Level	DETSC 2131	0.1	110/l	< 0.1	
Thiocyanate	DETSC 2131	20	ر <u>هم</u> ارهم	280	
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	200	
Ammoniacal Nitrogen as NH4	DETSC 2303	0.015	mg/l	1 4	
Ammoniacal Nitrogen as NH3	DETSC 2207	0.015	mg/l	1.4	
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	1.4	
Chloride	DETSC 2207	0.013	mg/l	<u> </u>	
Eluoride	DETSC 2055*	0.1	mg/l	0.16	
Nitrate as NO3	DETSC 2055	0.1	mg/l	0.10	
Nitrite as NO3	DETSC 2055	0.1	mg/l	< 0.10	
Ortho Phosphate as P		0.1	ma/l	0.10	
Sulphate as SOA		0.01	ma/l	11	
Total Organic Carbon	DETSC 2005	0.1	ma/l	14 1 0	
	DE13C 2085	L T	ilig/1	4.0	
Aliphatic (5-C6. HS 1D Al	DETCC 2222	0.1		< 0.1	
		0.1	ug/1	\ ∪, ⊥	

Leachate Samples

		Lab No		
		.Sa	ample ID	F-BH116
			Depth	4.90
			Other ID	
		Sam	ple Type	ES
		Sampl	ing Date	02/09/2022
		Sampl	ing Time	1100
Test	Method	LOD	Units	
Aliphatic C6-C8: HS_1D_AL	DETSC 3322	0.1	ug/l	20
Aliphatic C8-C10: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0
Aliphatic C5-C35: EH_CU+HS_1D_AL	DETSC 3072*	10	ug/l	20
Aromatic C5-C7: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1
Aromatic C7-C8: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1
Aromatic C8-C10: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0
Aromatic C5-C35: EH_CU+HS_1D_AR	DETSC 3072*	10	ug/l	< 10
TPH Ali/Aro Total C5-C35: EH_CU+HS_1D_Total	DETSC 3072*	10	ug/l	21
Benzene	DETSC 3322	1	ug/l	< 1.0
Toluene	DETSC 3322	1	ug/l	< 1.0
Ethylbenzene	DETSC 3322	1	ug/I	< 1.0
Xylene	DETSC 3322	1	ug/I	< 1.0
PAHs		0.01	/1	. 0. 01
Acenaphthene	DETSC 3304	0.01	ug/i	< 0.01
Acenaphthylene	DETSC 3304	0.01	ug/I	< 0.01
Anthracene	DETSC 3304	0.01	ug/i	< 0.01
Benzo(a)anthracene	DETSC 3304*	0.01	ug/I	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/I	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/I	< 0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/I	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/I	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	0.01
Fluorene	DETSC 3304	0.01	ug/l	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01
Naphthalene	DETSC 3304	0.05	ug/l	< 0.05
Phenanthrene	DETSC 3304	0.01	ug/l	0.02
Pyrene	DETSC 3304	0.01	ug/l	< 0.01
PAH Total	DETSC 3304	0.2	ug/l	< 0.20

Leachate Samples

Lab No				
		.Sa	mple ID	F-BH116
			Depth	4.90
		(Other ID	
		Sam	ple Type	ES
		Sampl	ing Date	02/09/2022
		Sampli	ing Time	1100
Test	Method	LOD	Units	
PCBs				
PCB 28 + PCB 31	DETSC 3402	0.3	ug/l	< 0.3
PCB 52	DETSC 3402	0.2	ug/l	< 0.2
PCB 77	DETSC 3402	0.3	ug/l	< 0.3
PCB 81	DETSC 3402	0.2	ug/l	< 0.2
PCB 101	DETSC 3402	0.3	ug/l	< 0.3
PCB 105	DETSC 3402	0.2	ug/l	< 0.2
PCB 114	DETSC 3402	0.3	ug/l	< 0.3
PCB 118 + PCB 123	DETSC 3402	0.6	ug/l	< 0.6
PCB 126	DETSC 3402	0.5	ug/l	< 0.5
PCB 138	DETSC 3402	0.2	ug/l	< 0.2
PCB 153	DETSC 3402	0.2	ug/l	< 0.2
PCB 156	DETSC 3402	0.3	ug/l	< 0.3
PCB 157	DETSC 3402	0.2	ug/l	< 0.2
PCB 167	DETSC 3402	0.3	ug/l	< 0.3
PCB 169	DETSC 3402	0.2	ug/l	< 0.2
PCB 180	DETSC 3402	0.2	ug/l	< 0.2
PCB 189	DETSC 3402	0.3	ug/l	< 0.3
PCB 12	DETSC 3402	1	ug/l	< 1.0
PCB 7 Total	DETSC 3402	1	ug/l	< 1.0
Phenols				
Phenol	DETSC 3451*	0.1	ug/l	< 0.10
4-Chloro-3-methylphenol	DETSC 3451*	0.1	ug/l	< 0.10
2,4-Dichlorophenol	DETSC 3451*	0.1	ug/l	< 0.10
2,4-Dimethylphenol	DETSC 3451*	0.1	ug/l	< 0.10
p-cresol	DETSC 3451*	0.1	ug/l	< 0.10
2,6-Dimethylphenol	DETSC 3451*	0.1	ug/l	< 0.10
2,6-Dichlorophenol	DETSC 3451*	0.1	ug/l	< 0.10
2,4,6-Trichlorophenol	DETSC 3451*	0.1	ug/l	< 0.10

I DETS

Summary of Asbestos Analysis Soil Samples

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2056242	F-BH116 4.90	SOIL	NAD	none	Pierce Booth
Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.					

Inappropriate

Information in Support of the Analytical Results

Our Ref 22-17882 Client Ref 60678042 Contract NZT Feed GI

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2056242	F-BH116 4.90 SOIL	02/09/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2056243	F-BH116 5.90 SOIL	02/09/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2056244	F-BH116 4.90 LEACHATE	02/09/22	GJ 250ml, GJ 60ml, PT 1L		
Key: G-Glas	s P-Plastic J-Jar T-Tub				

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

	<i>,</i> .
cronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

List of HWOL Acronyms and Operators

Det

Det	Acronym
Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC12	EH_2D_AL
Aliphatic >EC12-EC16	EH_2D_AL
Aliphatic >EC16-EC21	EH_2D_AL
Aliphatic >EC21-EC35	EH_2D_AL
Aliphatic >EC35-EC40	EH_2D_AL
Aliphatic C5-C35	EH_2D+HS_1D_AL
Aliphatic C5-C40	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC12	EH_2D_AR
Aromatic >EC12-EC16	EH_2D_AR
Aromatic >EC16-EC21	EH_2D_AR
Aromatic >EC21-EC35	EH_2D_AR
Aromatic >EC35-EC40	EH_2D_AR
Aromatic C5-C35	EH_2D+HS_1D_AR
Aromatic C5-C40	EH_2D+HS_1D_AR
TPH Ali/Aro Total C5-C35	EH_2D+HS_1D_Total
TPH Ali/Aro C5-C40	EH_2D+HS_1D_Total
Aliphatic C10-C12	EH_CU_1D_AL
Aliphatic C12-C16	EH_CU_1D_AL
Aliphatic C16-C21	EH_CU_1D_AL
Aliphatic C21-C35	EH_CU_1D_AL

Issued: 16-Sep-22

Certificate Number 22-17885 Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- Our Reference 22-17885
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description One Soil sample.
 - Date Received 09-Sep-22
 - Date Started 09-Sep-22
- Date Completed 16-Sep-22
- *Test Procedures* Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

emood

Kirk Bridgewood General Manager

			Lab No	2056247
		.Sa	ample ID	F-BH116
			Depth	14.00
		(Other ID	
		Sam	ple Type	ES
		Sampl	ing Date	05/09/2022
		Sampli	ing Time	1600
Test	Method	LOD	Units	
Preparation				
Moisture Content	DETSC 1004	0.1	%	22
Metals				
Aluminium	DETSC 2301*	1	mg/kg	10000
Arsenic	DETSC 2301#	0.2	mg/kg	14
Bervllium	DETSC 2301#	0.2	mg/kg	0.6
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	6.9
Cadmium	DETSC 2301#	0.1	mg/kg	0.1
Chromium III	DETSC 2301*	0.15	mg/kg	23
Chromium. Hexavalent	DFTSC 2204*	1	mg/kg	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	16
Iron	DETSC 2301	25	mg/kg	32000
Lead	DFTSC 2301#	0.3	mg/kg	14
Manganese	DETSC 2301#	20	mg/kg	390
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05
Molybdenum	DFTSC 2301#	0.4	mg/kg	1.9
Nickel	DETSC 2301#	1	mg/kg	22
Phosphorus	DETSC 2301*	- 1	mg/kg	380
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5
Tin	DETSC 2301	1	mg/kg	< 1.0
Vanadium	DETSC 2301#	0.8	mg/kg	40
Zinc	DETSC 2301#	1	mg/kg	53
Inorganics			0, 0	
На	DETSC 2008#		Ha	8.3
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg	< 0.6
Organic matter	DETSC 2002#	0.1	%	3.3
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg	3.1
Chloride	DETSC 2055	1	mg/kg	683
Fluoride	DETSC 2055	1	mg/kg	< 1.0
Nitrate as NO3	DETSC 2055	1	mg/kg	4.0
Ortho Phosphate as P	DETSC 2205*	0.1	mg/kg	< 0.10
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	570
Sulphide	DETSC 2024*	10	mg/kg	110
Sulphur (free)	DETSC 3049#	0.75	mg/kg	< 0.75
Sulphur as S, Total	DETSC 2320	0.01	%	0.69
Sulphate as SO4. Total	DETSC 2321#	0.01	%	0.21
Petroleum Hydrocarbons		0.01	, 0	0.21
Aliphatic C5-C6: HS_1D_AI	DFTSC 3321*	0.01	mg/kg	< 0.01
Aliphatic C6-C8: HS 1D Al	DFTSC 3321*	0.01	8 ² /8 mg/kg	< 0.01
Aliphatic $(8, C10; HS, 10; A)$	DETSC 3321	0.01	mg/kg	< 0.01
Aliphatic Co-CIO, FO_ID_AL		0.01	mg/Kg	< 1.FC
Aliphatic >EC10-EC12: EH_2D_AL	DEISC 3521#	1.5	mg/kg	< 1.50

			2056247	
		.Sa	mple ID	F-BH116
			Depth	14.00
		(Other ID	
		Sam	ole Type	ES
		Sampli	ing Date	05/09/2022
		Sampli	ng Time	1600
Test	Method	LOD	Units	
Aliphatic >EC12-EC16: EH_2D_AL	DETSC 3521#	1.2	mg/kg	< 1.20
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50
Aliphatic >EC21-EC35: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40
Aliphatic >EC35-EC40: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40
Aliphatic C5-C40: EH_2D+HS_1D_AL	DETSC 3521*	10	mg/kg	14.15
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/kg	< 0.90
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	< 0.50
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	< 0.60
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg	< 1.40
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40
Aromatic C5-C40: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	< 10.00
TPH Ali/Aro C5-C40: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	20.34
PAHs				
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	< 0.10
Phenols				
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3

inannronriate

Information in Support of the Analytical Results

Our Ref 22-17885 Client Ref 60678042 Contract NZT Feed GI

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2056247	F-BH116 14.00 SOIL	05/09/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
Kaun C. Class	- D. Dia etta I. Jan T. Tula				

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Acronym

Det

Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC1	2 EH_2D_AL
Aliphatic >EC12-EC1	6 EH_2D_AL
Aliphatic >EC16-EC2	1 EH_2D_AL
Aliphatic >EC21-EC3	5 EH_2D_AL
Aliphatic >EC35-EC4	0 EH_2D_AL
Aliphatic C5-C40	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC1	2 EH_2D_AR
Aromatic >EC12-EC1	6 EH_2D_AR
Aromatic >EC16-EC2	1 EH_2D_AR
Aromatic >EC21-EC3	5 EH_2D_AR
Aromatic >EC35-EC4	0 EH_2D_AR
Aromatic C5-C40	EH_2D+HS_1D_AR
TPH Ali/Aro C5-C40	EH_2D+HS_1D_Total

End of Report

Issued:

23-Sep-22

Certificate Number 22-17948

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- Our Reference 22-17948
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description One Soil sample.
 - Date Received 12-Sep-22
 - Date Started 12-Sep-22
- Date Completed 23-Sep-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logmood

Kirk Bridgewood General Manager

Sample ID Depth F-BH116 Depth CH Depth 20.55 CH CH CH CH Sample Type ES Sampling Time 0.609/2022 Sampling Time 0.609/2022 (nd/02/202) Test Method LDD Units Preparation				2056602	
Depth 20.55 Other ID 5ampling Date Sampling Time 66/09/2022 Sampling Time n/s Test Method LOD Units Preparation 0.1 % 10 Metsure Content DETSC 2301# 0.2 mg/kg 7.1 Beryllium DETSC 2301# 0.2 mg/kg 7.4 Boron, Water Soluble DETSC 2301# 0.2 mg/kg 7.4 Cadmium DETSC 2301# 0.1 mg/kg 7.4 Copper DETSC 2301# 0.1 mg/kg 0.1 Copper DETSC 2301# 0.2 mg/kg 0.1 Mercury DETSC 2301# 0.2 mg/kg 0.1 Mercury DETSC 2301# 0.3 mg/kg 0.2 Vanadium DETSC 2301# 0.3 mg/kg 0.5 Vanadium DETSC 2301# 0.8 mg/kg 0.5 Vanadium DETSC 2301# 0.8 mg/kg 0.1 <			.Sa	F-BH116	
Test Method LOD Units Preparation 05/09/2022 Sampling Tate 06/09/2022 Test Method LOD Units Preparation 0.1 % 10 Motsture Content DETSC 1004 0.1 % 10 Metals 2 mg/kg 7.1 Beryllium DETSC 2301# 0.2 mg/kg 7.4 Cadmium DETSC 2301# 0.1 mg/kg 0.1 Chromium, Hexavalent DETSC 2301# 0.1 mg/kg 31 Chromium, Hexavalent DETSC 2301# 0.2 mg/kg 31 Mercury DETSC 2301# 0.3 mg/kg 33 Selenium DETSC 2301# 1 mg/kg 33 Zinc DETSC 2301# 0.5 mg/kg 39 Zinc DETSC 2301# 0.1 mg/kg 42 Inorganics 1 mg/kg 40.1				Depth	20.55
Sample Type Sampling Date Sampling Time Sampling Time (n) Ess (6) Test Method LOD Units Preparation Image: Content DETSC 1004 0.1 % 100 Metals Image: Content DETSC 2301# 0.2 mg/kg 7.1 Beryllium DETSC 2301# 0.2 mg/kg 7.1 Boron, Water Soluble DETSC 2301# 0.2 mg/kg 7.4 Cadmium DETSC 2301# 0.1 mg/kg 0.1 Ohronium III DETSC 2301# 0.1 mg/kg 31 Chromium, Hexavalent DETSC 2301# 0.3 mg/kg 41.00 Mercury DETSC 2301# 0.3 mg/kg 40.00 Nickel DETSC 2301# 0.5 mg/kg 40.00 Jand DETSC 2301# 0.5 mg/kg 40.00 Grandium DETSC 2301# 0.8 mg/kg 40.00 Jand DETSC 2301# 0.1 mg/kg 40.00 Grandium DETSC 2301#<			(Other ID	
Sampling Time 06/09/2022 Sampling Time Test Method LOD Units Preparation DETSC 1004 0.1 % 10 Metals			Sam	ple Type	ES
Test Method LOD Units Preparation Moisture Content DETSC 1004 0.1 % 10 Metals Arsenic DETSC 2301# 0.2 mg/kg 7.1 Beryllium DETSC 2301# 0.2 mg/kg 7.1 Beryllium DETSC 2301# 0.1 mg/kg 7.4 Cadmium DETSC 2301# 0.1 mg/kg 0.1 Chromium, Hexavalent DETSC 2301# 0.1 mg/kg 31 Chromium, Hexavalent DETSC 2301# 0.2 mg/kg 4.0 Copper DETSC 2301# 0.3 mg/kg 4.0 Mercury DETSC 2301# 0.5 mg/kg 4.0 Vanadium DETSC 2301# 1 mg/kg 3.3 Selenium DETSC 2301# 0.1 mg/kg 4.0 Inorganics pH DETSC 2301# 0.1 mg/kg 4.0 Index Free DETSC 230# 0.1 mg/kg 4.0 Sulphate </td <td></td> <td></td> <td>Sampl</td> <td>ing Date</td> <td>06/09/2022</td>			Sampl	ing Date	06/09/2022
Test Method LOD Units Preparation			Sampli	ing Time	n/s
Preparation Moisture Content DETSC 1004 0.1 % 10 Metals	Test	Method	LOD	Units	
Moisture Content DETSC 1004 0.1 % 10 Metals	Preparation				
Metals DETSC 2301# 0.2 mg/kg 7.1 Beryllium DETSC 2301# 0.2 mg/kg 1.0 Boron, Water Soluble DETSC 2301# 0.2 mg/kg 7.4 Cadmium DETSC 2301# 0.1 mg/kg 0.1 Chromium, Hexavalent DETSC 2301# 0.1 mg/kg 31 Chromium, Hexavalent DETSC 2301# 0.3 mg/kg 43 Mercury DETSC 2301# 0.3 mg/kg 43.3 Selenium DETSC 2301# 0.5 mg/kg 43.3 Selenium DETSC 2301# 0.8 mg/kg 33 Selenium DETSC 2301# 0.8 mg/kg 42 Inorganics pH 7.7 Gyanide, Total DETSC 2008# pH 7.7 Cyanide, Total DETSC 2130# 0.1 mg/kg <0.1	Moisture Content	DETSC 1004	0.1	%	10
ArsenicDETSC 2301#0.2 mg/kg 7.1BerylliumDETSC 2301#0.2 mg/kg 1.0Boron, Water SolubleDETSC 2301#0.1 mg/kg 0.1CadmiumDETSC 2301#0.1 mg/kg 0.1Chromium IIIDETSC 2301#0.15 mg/kg 31Chromium, HexavalentDETSC 2301#0.2 mg/kg 25LeadDETSC 2301#0.3 mg/kg 40.0NickelDETSC 2301#0.3 mg/kg 33SeleniumDETSC 2301#1 mg/kg 33SeleniumDETSC 2301#0.5 mg/kg 39ZincDETSC 2301#0.8 mg/kg 39ZincDETSC 2301#1 mg/kg 42Inorganics	Metals				
Beryllium DETSC 2301# 0.2 mg/kg 1.0 Boron, Water Soluble DETSC 2311# 0.2 mg/kg 7.4 Cadmium DETSC 2301# 0.1 mg/kg 31 Chromium, Hexavalent DETSC 2301# 0.2 mg/kg 31 Chromium, Hexavalent DETSC 2301# 0.2 mg/kg 13 Mercury DETSC 2301# 0.3 mg/kg 13 Mercury DETSC 2301# 0.5 mg/kg <0.5	Arsenic	DETSC 2301#	0.2	mg/kg	7.1
Boron, Water Soluble DETSC 2311# 0.2 mg/kg 7.4 Cadmium DETSC 2301# 0.1 mg/kg 0.1 Chromium, Hexavalent DETSC 2301* 0.15 mg/kg 31 Chromium, Hexavalent DETSC 2301# 0.2 mg/kg 1.0 Copper DETSC 2301# 0.3 mg/kg 1.3 Mercury DETSC 2301# 0.3 mg/kg 33 Selenium DETSC 2301# 1 mg/kg 33 Selenium DETSC 2301# 0.5 mg/kg 30 Zinc DETSC 2301# 0.8 mg/kg 42 Inorganics pH 7.7 Cyanide, Total DETSC 2008# pH 7.7 Cyanide, Total DETSC 2130# 0.1 mg/kg <0.1	Beryllium	DETSC 2301#	0.2	mg/kg	1.0
Cadmium DETSC 2301# 0.1 mg/kg 0.1 Chromium III DETSC 2301* 0.15 mg/kg 31 Chromium, Hexavalent DETSC 2301# 0.2 mg/kg 25 Lead DETSC 2301# 0.3 mg/kg 13 Mercury DETSC 2301# 0.3 mg/kg 33 Selenium DETSC 2301# 0.5 mg/kg 33 Selenium DETSC 2301# 0.5 mg/kg 42 Inorganics DETSC 2301# 0.8 mg/kg 42 Inorganics DETSC 2130# 0.1 mg/kg <0.1	Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	7.4
Chromium III DETSC 2301* 0.15 mg/kg 31 Chromium, Hexavalent DETSC 2204* 1 mg/kg 25 Lead DETSC 2301# 0.2 mg/kg 25 Lead DETSC 2301# 0.3 mg/kg 25 Nercury DETSC 2301# 0.3 mg/kg 33 Selenium DETSC 2301# 1 mg/kg 33 Selenium DETSC 2301# 0.8 mg/kg 39 Zinc DETSC 2301# 0.8 mg/kg 42 Inorganics pH DETSC 2100# 0.1 mg/kg <0.1 Cyanide, Total DETSC 2100# 0.1 mg/kg <0.1 Thiocyanate 0.6 mg/kg <0.1 Cyanide, Free DETSC 2002# 0.1 mg/kg <0.1 mg/kg <0.1 Sulphate Aqueous Extract as SO4 DETSC 2002# 0.1 mg/kg <0.07 Sulphate Aqueous Extract as SO4 DETSC 2020# $0.$	Cadmium	DETSC 2301#	0.1	mg/kg	0.1
Chromium, Hexavalent DETSC 2204* 1 mg/kg < 1.0 Copper DETSC 2301# 0.2 mg/kg 25 Lead DETSC 2301# 0.3 mg/kg 13 Mercury DETSC 2301# 0.3 mg/kg 33 Selenium DETSC 2301# 1 mg/kg 33 Selenium DETSC 2301# 0.5 mg/kg 39 Zinc DETSC 2301# 0.8 mg/kg 39 Zinc DETSC 2301# 0.1 mg/kg <0.1	Chromium III	DETSC 2301*	0.15	mg/kg	31
CopperDETSC 2301#0.2 mg/kg 25LeadDETSC 2301#0.3 mg/kg 13MercuryDETSC 2325#0.05 mg/kg <0.05	Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0
LeadDETSC 2301#0.3mg/kg13MercuryDETSC 2325#0.05mg/kg<0.05	Copper	DETSC 2301#	0.2	mg/kg	25
MercuryDETSC 2325#0.05 mg/kg < 0.05NickelDETSC 2301#1 mg/kg 33SeleniumDETSC 2301#0.5 mg/kg 39ZincDETSC 2301#1 mg/kg 42InorganicsDETSC 2301#1 mg/kg 42InorganicsDETSC 2130#0.1 mg/kg <0.1	Lead	DETSC 2301#	0.3	mg/kg	13
Nickel DETSC 2301# 1 mg/kg 33 Selenium DETSC 2301# 0.5 mg/kg <0.5	Mercury	DETSC 2325#	0.05	mg/kg	< 0.05
SeleniumDETSC 2301#0.5 mg/kg < 0.5VanadiumDETSC 2301#0.8 mg/kg 39ZincDETSC 2301#1 mg/kg 42Inorganics </td <td>Nickel</td> <td>DETSC 2301#</td> <td>1</td> <td>mg/kg</td> <td>33</td>	Nickel	DETSC 2301#	1	mg/kg	33
VanadiumDETSC 2301#0.8mg/kg39ZincDETSC 2301#1mg/kg42InorganicspHDETSC 2008#pH7.7Cyanide, TotalDETSC 2130#0.1mg/kg<0.1	Selenium	DETSC 2301#	0.5	mg/kg	< 0.5
ZincDETSC 2301#1 mg/kg 42InorganicspHDETSC 2008#pH7.7Cyanide, TotalDETSC 2130#0.1 mg/kg <0.1	Vanadium	DETSC 2301#	0.8	mg/kg	39
Inorganics DETSC 2008# PH 7.7 Cyanide, Total DETSC 2130# 0.1 mg/kg < 0.1	Zinc	DETSC 2301#	1	mg/kg	42
pHDETSC 2008#pH7.7Cyanide, TotalDETSC 2130#0.1mg/kg<0.1	Inorganics		I	0, 0	
Cyanide, TotalDETSC 2130#0.1mg/kg< 0.1Cyanide, FreeDETSC 2130#0.1mg/kg< 0.1	pH	DETSC 2008#		рH	7.7
Cyanide, FreeDETSC 2130#0.1mg/kg< 0.1ThiocyanateDETSC 2130#0.6mg/kg< 0.6	Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1
ThiocyanateDETSC 2130#0.6mg/kg< 0.6Organic matterDETSC 2002#0.1%1.3Nitrate as NO3DETSC 20551mg/kg< 1.0	Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1
Organic matter DETSC 2002# 0.1 % 1.3 Nitrate as NO3 DETSC 2055 1 mg/kg <1.0	Thiocyanate	DETSC 2130#	0.6	mg/kg	< 0.6
Nitrate as NO3DETSC 20551mg/kg< 1.0Sulphate Aqueous Extract as SO4DETSC 2076#10mg/l540SulphideDETSC 2024*10mg/kg40Sulphur (free)DETSC 3049#0.75mg/kg< 0.75	Organic matter	DETSC 2002#	0.1	<u> </u>	1.3
Sulphate Aqueous Extract as SO4 DETSC 2076# 10 mg/l 540 Sulphide DETSC 2024* 10 mg/kg 40 Sulphur (free) DETSC 3049# 0.75 mg/kg <0.75	Nitrate as NO3	DETSC 2055	1	mg/kg	< 1.0
SulphideDETSC 2024*10mg/kg40Sulphur (free)DETSC 3049#0.75mg/kg<0.75	Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	540
Sulphur (free)DETSC 3049#0.75mg/kg< 0.75Sulphur as S, TotalDETSC 23200.01%0.07Sulphate as SO4, TotalDETSC 2321#0.01%0.10Petroleum HydrocarbonsAliphatic C5-C6: HS_1D_ALDETSC 3321*0.01mg/kg< 0.01	Sulphide	DETSC 2024*	10	mg/kg	40
Sulphur as S, TotalDETSC 23200.01%0.07Sulphate as SO4, TotalDETSC 2321#0.01%0.10Petroleum HydrocarbonsAliphatic C5-C6: HS_1D_ALDETSC 3321*0.01mg/kg< 0.01	Sulphur (free)	DETSC 3049#	0.75	mg/kg	< 0.75
Sulphate as SO4, TotalDETSC 2321# 0.01 % 0.10 Petroleum HydrocarbonsAliphatic C5-C6: HS_1D_ALDETSC 3321* 0.01 mg/kg< 0.01 Aliphatic C6-C8: HS_1D_ALDETSC 3321* 0.01 mg/kg< 0.01 Aliphatic C8-C10: HS_1D_ALDETSC 3321* 0.01 mg/kg< 0.01 Aliphatic >EC10-EC12: EH_2D_ALDETSC 3521# 1.5 mg/kg< 1.50 Aliphatic >EC10-EC12: EH_2D_ALDETSC 3521# 1.2 mg/kg< 1.20 Aliphatic >EC16-EC21: EH_2D_ALDETSC 3521# 1.5 mg/kg< 3.40 Aliphatic >EC21-EC35: EH_2D_ALDETSC 3521# 3.4 mg/kg< 3.40 Aliphatic >EC40-EC44: EH_2D_ALDETSC 3521# 3.4 mg/kg< 3.40 Aliphatic >EC40-EC44: EH_2D_ALDETSC 3521* 3.4 mg/kg< 3.40 Aliphatic >EC40-EC44: EH_2D_ALDETSC 3521* 10 mg/kg< 0.01 Aliphatic C5-C7: HS_1D_ARDETSC 3321* 0.01 mg/kg< 0.01 Aromatic C7-C8: HS_1D_ARDETSC 3321* 0.01 mg/kg< 0.01	Sulphur as S, Total	DETSC 2320	0.01	<u> </u>	0.07
Petroleum Hydrocarbons Aliphatic C5-C6: HS_1D_AL DETSC 3321* 0.01 mg/kg < 0.01	Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.10
Aliphatic C5-C6: HS_1D_ALDETSC 3321^* 0.01mg/kg< 0.01Aliphatic C6-C8: HS_1D_ALDETSC 3321^* 0.01mg/kg< 0.01	Petroleum Hydrocarbons				
Aliphatic C6-C8: HS_1D_ALDETSC 3321*0.01mg/kg< 0.01Aliphatic C8-C10: HS_1D_ALDETSC 3321*0.01mg/kg< 0.01	Aliphatic C5-C6: HS 1D AL	DETSC 3321*	0.01	mg/kg	< 0.01
Aliphatic C8-C10: HS_1D_AL DETSC 3321* 0.01 mg/kg < 0.01	Aliphatic C6-C8: HS 1D AL	DETSC 3321*	0.01	mg/kg	< 0.01
Aliphatic >EC10-EC12: EH_2D_AL DETSC 3521# 1.5 mg/kg < 1.50	Aliphatic C8-C10: HS 1D AL	DETSC 3321*	0.01	mg/kg	< 0.01
Aliphatic >EC12-EC16: EH_2D_AL DETSC 3521# 1.2 mg/kg < 1.20	Aliphatic >EC10-EC12: EH 2D AL	DETSC 3521#	1.5	mg/kg	< 1.50
Aliphatic >EC16-EC21: EH_2D_AL DETSC 3521# 1.5 mg/kg < 1.50	Aliphatic >EC12-EC16: EH 2D AL	DETSC 3521#	1.2	mg/kg	< 1.20
Aliphatic >EC21-EC35: EH_2D_AL DETSC 3521# 3.4 mg/kg < 3.40	Aliphatic >EC16-EC21: EH 2D AL	DETSC 3521#	1.5	mg/kg	< 1.50
Aliphatic >EC35-EC40: EH_2D_AL DETSC 3521# 3.4 mg/kg < 3.40	Aliphatic >EC21-EC35: EH 2D AL	DETSC 3521#	3.4	mg/kg	< 3.40
Aliphatic >EC40-EC44: EH_2D_AL DETSC 3521* 3.4 mg/kg < 3.40	Aliphatic >EC35-EC40: EH 2D AL	DETSC 3521#	3.4	mg/kg	< 3.40
Aliphatic C5-C44: EH_2D+HS_1D_AL DETSC 3521* 10 mg/kg 16.03 Aromatic C5-C7: HS_1D_AR DETSC 3321* 0.01 mg/kg < 0.01	Aliphatic >EC40-EC44: EH 2D AL	DETSC 3521*	3.4	mg/kg	< 3.40
Aromatic C5-C7: HS_1D_AR DETSC 3321* 0.01 mg/kg < 0.01 Aromatic C7-C8: HS_1D_AR DETSC 3321* 0.01 mg/kg < 0.01	Aliphatic C5-C44: EH 2D+HS 1D AL	DETSC 3521*	10	mg/kg	16.03
Aromatic C7-C8: HS_1D_AR DETSC 3321* 0.01 mg/kg < 0.01 Aromatic C8-C10: HS_1D_AR DETSC 3321* 0.01 mg/kg < 0.01	Aromatic C5-C7: HS 1D AR	DETSC 3321*	0.01	mg/kg	< 0.01
Aromatic C8-C10: HS_1D_AR DETSC 3321* 0.01 mg/kg < 0.01	Aromatic C7-C8: HS 1D AR	DETSC 3321*	0.01	mg/kg	< 0.01
	Aromatic C8-C10: HS 1D AR	DETSC 3321*	0.01	mg/kg	< 0.01

	Lab No			
		.Sa	mple ID	F-BH116
			Depth	20.55
		(Other ID	
		Sam	ple Type	ES
		Sampl	ing Date	06/09/2022
		Sampli	ing Time	n/s
Test	Method	LOD	Units	
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/kg	< 0.90
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	< 0.50
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	< 0.60
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg	< 1.40
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40
Aromatic >EC40-EC44: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40
Aromatic C5-C44: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	< 10.00
TPH Ali/Aro C5-C44: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	22.95
PAHs				
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	< 0.10
Phenols				
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3

Information in Support of the Analytical Results

Our Ref 22-17948 *Client Ref* 60678042 *Contract* NZT Feed GI

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2056602	F-BH116 20.55 SOIL	06/09/22	GJ 250ml, GJ 60ml, PT 1L		
Kev: G-Glas	s P-Plastic J-Jar T-Tub				

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Acronym

Det

Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC12	EH_2D_AL
Aliphatic >EC12-EC16	EH_2D_AL
Aliphatic >EC16-EC21	EH_2D_AL
Aliphatic >EC21-EC35	EH_2D_AL
Aliphatic >EC35-EC40	EH_2D_AL
Aliphatic >EC40-EC44	EH_2D_AL
Aliphatic C5-C44	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC12	EH_2D_AR
Aromatic >EC12-EC16	EH_2D_AR
Aromatic >EC16-EC21	EH_2D_AR
Aromatic >EC21-EC35	EH_2D_AR
Aromatic >EC35-EC40	EH_2D_AR
Aromatic >EC40-EC44	EH_2D_AR
Aromatic C5-C44	EH_2D+HS_1D_AR
TPH Ali/Aro C5-C44	EH_2D+HS_1D_Total

End of Report

Issued:

05-Oct-22

Certificate Number 22-18312

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- *Our Reference* 22-18312
- *Client Reference* 60678042
 - Order No (not supplied)
 - *Contract Title* (not supplied)
 - Description 4 Soil samples, 1 Leachate sample.
 - Date Received 15-Sep-22
- Date Started 15-Sep-22
- Date Completed 05-Oct-22
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logmood

Kirk Bridgewood General Manager

Derwentside Environmental Testing Services Limited Unit 2, Park Road Industrial Estate South, Consett, Co Durham, DH8 5PY Tel: 01207 582333 • email: info@dets.co.uk • www.dets.co.uk

Page 1 of 9

			Lab No	2058700	2058701	2058702	2058703
		.Sa	imple ID	F-BH102	F-BH102	F-BH102	F-BH102
			Depth	1.00	1.50	6.60	8.20
		C	Other ID			اا	
		Samp	ole Type	ES	ES	ES	ES
		Sampli	ing Date	09/09/2022	09/09/2022	09/09/2022	09/09/2022
		Sampli	ng Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Preparation	·			. <u> </u>			I
Moisture Content	DETSC 1004	0.1	%	8.3		5.0	18
Metals					1		I
Aluminium	DETSC 2301*		mg/kg	49000		<u> </u>	
Arsenic	DETSC 2301#	0.2	mg/kg	4.6		6.0	/.5
Beryllium	DETSC 2301#	0.2	mg/kg	5.3		9.2	0.2
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	1.6		8.6	1.2
Cadmium	DETSC 2301#	0.1	mg/kg	0.2		< 0.1	< 0.1
Chromium III	DETSC 2301*	0.15	mg/kg	53		5.9	5.2
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0		< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	11		4.9	4.6
Iron	DETSC 2301	25	mg/kg	14000			
Lead	DETSC 2301#	0.3	mg/kg	12		1.0	34
Manganese	DETSC 2301#	20	mg/kg	2900		[
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05		< 0.05	< 0.05
Molybdenum	DETSC 2301#	0.4	mg/kg	1.4		['	
Nickel	DETSC 2301#	1	mg/kg	2.7		< 1.0	4.7
Phosphorus	DETSC 2301*	1	mg/kg	330		['	
Selenium	DETSC 2301#	0.5	mg/kg	1.6		2.0	< 0.5
Tin	DETSC 2301	1	mg/kg	1.3		['	
Vanadium	DETSC 2301#	0.8	mg/kg	120		24	14
Zinc	DETSC 2301#	1	mg/kg	55		5.5	29
Inorganics							
рН	DETSC 2008#		pН	11.2		11.2	9.4
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1		0.1	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1		< 0.1	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg	1.7		0.9	< 0.6
Organic matter	DETSC 2002#	0.1	%	4.5		0.4	0.8
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg	1.8			
Chloride	DETSC 2055	1	mg/kg	36.7		<u> </u>	
Fluoride	DETSC 2055	1	mg/kg	2.4			
Nitrate as NO3	DETSC 2055	1	mg/kg	< 1.0		< 1.0	< 1.0
Ortho Phosphate as P	DETSC 2205*	0.1	mg/kg	< 0.10			
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	740		630	310
Sulphide	DETSC 2024*	10	mg/kg	1300		990	91
Sulphur (free)	DETSC 3049#	0.75	mg/kg	230		180	120
Sulphur as S, Total	DETSC 2320	0.01	%	0.56		0.35	0.18
Sulphate as SO4, Total	DETSC 2321#	0.01	%	1.2		0.69	0.17

Our Ref 22-18312 *Client Ref* 60678042 *Contract Title*

			Lab No	2058700	2058701	2058702	2058703
		.Si	ample ID	F-BH102	F-BH102	F-BH102	F-BH102
			Depth	1.00	1.50	6.60	8.20
			Other ID	ļ			
		Sam	ple Type	ES	ES	ES	ES
		Sampl	ing Date	09/09/2022	09/09/2022	09/09/2022	09/09/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Petroleum Hydrocarbons							
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >EC10-EC12: EH_2D_AL	DETSC 3521#	1.5	mg/kg	1.68	1.87	1.90	2.59
Aliphatic >EC12-EC16: EH_2D_AL	DETSC 3521#	1.2	mg/kg	1.79	1.52	< 1.20	2.47
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg	2.75	< 1.50	< 1.50	< 1.50
Aliphatic >EC21-EC35: EH_2D_AL	DETSC 3521#	3.4	mg/kg	177.1	< 3.40	< 3.40	< 3.40
Aliphatic >EC35-EC40: EH_2D_AL	DETSC 3521#	3.4	mg/kg	272.3	< 3.40	< 3.40	< 3.40
Aliphatic C5-C40: EH_2D+HS_1D_AL	DETSC 3521*	10	mg/kg	455.6	12.35	11.93	15.17
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/kg	1.22	< 0.90	< 0.90	< 0.90
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	20.59	< 0.50	< 0.50	< 0.50
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	227.4	1.04	2.37	1.28
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg	879.2	< 1.40	< 1.40	< 1.40
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg	58.48	< 1.40	< 1.40	< 1.40
Aromatic C5-C40: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	1187	< 10.00	< 10.00	< 10.00
TPH Ali/Aro C5-C40: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	1643	17.94	18.75	21.59
PAHs	· · · ·	. <u> </u>		<u>. </u>		<u> </u>	
Acenaphthene	DETSC 3303#	0.03	mg/kg	4.9		< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	0.22		< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	5.2		< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	28		0.05	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	27		0.05	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	37		0.09	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	15		< 0.03	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	16		0.03	< 0.03
Chrvsene	DETSC 3303	0.03	mg/kg	28		0.04	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	4.2		< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	72		0.07	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	2.1		< 0.03	< 0.03
Indeno(1.2.3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	16		0.03	< 0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	0.11		< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	28		< 0.03	< 0.03
Pvrene	DETSC 3303#	0.03	mg/kg	69		0.07	< 0.03
PAH - USEPA 16. Total	DETSC 3303	0.1	mg/kg	350		0.39	< 0.10
Phenols	<u></u>	L		<u> </u>		<u> </u>	
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	0.4		0.5	0.9

Key: * -not accredited. # -MCERTS (accreditation only applies if report carries the MCERTS logo). \$ -subcontracted. n/s -not supplied. Page 3 of 9

			Lab No	2058700	2058701	2058702	2058703
		.Sa	mple ID	F-BH102	F-BH102	F-BH102	F-BH102
			Depth	1.00	1.50	6.60	8.20
			Other ID				
		Sam	ple Type	ES	ES	ES	ES
		Sampl	ing Date	09/09/2022	09/09/2022	09/09/2022	09/09/2022
		Sampli	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Subcontracted Analysis							
Benzene	\$*	<2	ug/kg	<2			<2
Toluene	\$*	<5	ug/kg	<5			<5
Ethylbenzene	\$*	<2	ug/kg	<2			<2
p & m-xylene	\$*	<2	ug/kg	<2			<2
o-xylene	\$*	<2	ug/kg	<2			<2
МТВЕ	\$*	<5	ug/kg	<5			<5
ТАМЕ	\$*	< 5	ug/kg	< 5			< 5

Leachate Samples

Image: Sample Disolved F-BH102 Sample Disolved Perbloc Sample Disolved Sample Disolved Subcon to Jones-Liquid \$ O Subcon to Jones-Liquid \$ O Yee Subcon to Jones-Liquid \$ O Yee Aluminium, Dissolved DETSC 1009* Usg/ 850 Arsenic, Dissolved DETSC 2306 1.0 ug/ 850 Arsenic, Dissolved DETSC 2306 0.1 ug/ <1.0 Boron, Dissolved DETSC 2306 0.1 ug/ <1.0 Cadmium, Dissolved DETSC 2306 0.1 ug/ <1.0 Chromium, Hexavalent DETSC 2306 0.3 ug/ <1.0 Chromium, Hexavalent DETSC 2306 0.4 ug/ <1.0 Manganese, Dissolved DETSC 2306 0.1 ug/ <1.0 Manganese, Dissolved DETSC 2306 0.2 ug/ <1.1 Mercury, Dissolved DETSC 2306 0.5 ug/ <2.3				Lab No	2058704
Depth 1.00 Other 10			.Sa	mple ID	F-BH102
Other ID Sample Type Sampling Date Preparation Leachate 2:1 250g Non-WAC DETSC 1009* Y Metals Method Aluminium, Dissolved DETSC 2306 10.1 ug/ Q Boron, Dissolved DETSC 2306 0.1 ug/ Cadmium, Dissolved DETSC 2306 0.1 ug/ Colspan= Dissolved DETSC 2306 0.0 G Colspan= Dissolved DETSC 2306 0.0 G Colspan= Dissolved DETSC 2306 0.0 <				Depth	1.00
Sample Type Es Sampling Date Corr Sampling Time Corr Test Method LOD Units Subcon to Jones-Liquid \$ 0 Y Preparation			(Other ID	
Sampling Date Subcon to Jones-Liquid Sampling Time Subcon to Jones-Liquid O Units Subcon to Jones-Liquid \$ 0 Y Preparation			Sam	ple Type	ES
Test Method LOD Units Subcon to Jones-Liquid \$ 0 Y Preparation Leachate 2:1 250g Non-WAC DETSC 1009* Y Metals			Sampl	ing Date	09/09/2022
Test Method LOD Units Subcon to Jones-Liquid \$ 0 Y Preparation			Sampli	ing Time	n/s
Subcon to Jones-Liquid \$ 0 Y Preparation	Test	Method	LOD	Units	
Preparation V Leachate 2:1 250g Non-WAC DETSC 1009* Y Metals	Subcon to Jones-Liquid	\$	0		Y
Leachate 2:1 250g Non-WAC DETSC 1009* Y Metals	Preparation				
Metals Aluminium, Dissolved DETSC 2306 10 ug/l 850 Arsenic, Dissolved DETSC 2306 0.16 ug/l 0.44 Beryllium, Dissolved DETSC 2306* 0.1 ug/l <0.1	Leachate 2:1 250g Non-WAC	DETSC 1009*			Y
Aluminium, Dissolved DETSC 2306 10 ug/l 850 Arsenic, Dissolved DETSC 2306 0.16 ug/l 0.44 Beryllium, Dissolved DETSC 2306* 0.1 ug/l < 0.1	Metals				
Arsenic, Dissolved DETSC 2306 0.16 ug/l 0.44 Beryllium, Dissolved DETSC 2306* 0.1 ug/l < 0.1	Aluminium, Dissolved	DETSC 2306	10	ug/l	850
Beryllium, Dissolved DETSC 2306* 0.1 ug/l < 0.1 Boron, Dissolved DETSC 2306 12 ug/l < 12	Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.44
Boron, Dissolved DETSC 2306* 12 ug/l <12 Cadmium, Dissolved DETSC 2306 0.03 ug/l <0.03	Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1
Cadmium, Dissolved DETSC 2306 0.03 ug/l < 0.03 Chromium III, Dissolved DETSC 2306* 1 ug/l < 1.0	Boron, Dissolved	DETSC 2306*	12	ug/l	< 12
Chromium III, Dissolved DETSC 2306* 1 ug/l <1.0 Chromium, Hexavalent DETSC 2203 0.007 mg/l <0.007	Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03
Chromium, Hexavalent DETSC 2203 0.007 mg/l < 0.007 Copper, Dissolved DETSC 2306 0.4 ug/l 4.8 Iron, Dissolved DETSC 2306 5.5 ug/l 4.8 Iron, Dissolved DETSC 2306 0.09 ug/l 6.3 Manganese, Dissolved DETSC 2306 0.02 ug/l 1.1 Mercury, Dissolved DETSC 2306 0.01 ug/l 0.02 Molybdenum, Dissolved DETSC 2306 0.5 ug/l 4.7 Nickel, Dissolved DETSC 2306 0.5 ug/l 4.7 Nickel, Dissolved DETSC 2306 0.5 ug/l 4.7 Nickel, Dissolved DETSC 2306 0.4 ug/l 4.36 Selenium, Dissolved DETSC 2306 0.4 ug/l 4.9 Vanadium, Dissolved DETSC 2306 0.4 ug/l 4.5 Cyanide, Total Low Level DETSC 2131 0.1 ug/l 4.5 Cyanide, Free Low	Chromium III, Dissolved	DETSC 2306*	1	ug/l	< 1.0
Copper, Dissolved DETSC 2306 0.4 ug/l 4.8 Iron, Dissolved DETSC 2306 5.5 ug/l <5.5	Chromium, Hexavalent	DETSC 2203	0.007	mg/l	< 0.007
Iron, Dissolved DETSC 2306 5.5 ug/l < 5.5 Lead, Dissolved DETSC 2306 0.09 ug/l 6.3 Manganese, Dissolved DETSC 2306 0.22 ug/l 1.1 Mercury, Dissolved DETSC 2306 0.01 ug/l 0.02 Molybdenum, Dissolved DETSC 2306 1.1 ug/l 4.7 Nickel, Dissolved DETSC 2306 1.8 ug/l 36 Selenium, Dissolved DETSC 2306 0.25 ug/l 2.3 Tin, Dissolved DETSC 2306 0.4 ug/l <0.4	Copper, Dissolved	DETSC 2306	0.4	ug/l	4.8
Lead, Dissolved DETSC 2306 0.09 ug/l 6.3 Manganese, Dissolved DETSC 2306 0.22 ug/l 1.1 Mercury, Dissolved DETSC 2306 0.01 ug/l 0.02 Molybdenum, Dissolved DETSC 2306 1.1 ug/l 4.7 Nickel, Dissolved DETSC 2306 0.5 ug/l <0.5	Iron, Dissolved	DETSC 2306	5.5	ug/l	< 5.5
Manganese, DissolvedDETSC 23060.22ug/l1.1Mercury, DissolvedDETSC 23060.01ug/l0.02Molybdenum, DissolvedDETSC 23061.1ug/l4.7Nickel, DissolvedDETSC 23060.5ug/l<0.5	Lead, Dissolved	DETSC 2306	0.09	ug/l	6.3
Mercury, Dissolved DETSC 2306 0.01 ug/l 0.02 Molybdenum, Dissolved DETSC 2306 1.1 ug/l 4.7 Nickel, Dissolved DETSC 2306 0.5 ug/l <0.5	Manganese, Dissolved	DETSC 2306	0.22	ug/l	1.1
Molybdenum, Dissolved DETSC 2306 1.1 ug/l 4.7 Nickel, Dissolved DETSC 2306 0.5 ug/l < 0.5	Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.02
Nickel, Dissolved DETSC 2306 0.5 ug/l < 0.5 Phosphorus as P, Dissolved DETSC 2306 18 ug/l 36 Selenium, Dissolved DETSC 2306 0.25 ug/l 2.3 Tin, Dissolved DETSC 2306* 0.4 ug/l < 0.4	Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	4.7
Phosphorus as P, Dissolved DETSC 2306 18 ug/l 36 Selenium, Dissolved DETSC 2306 0.25 ug/l 2.3 Tin, Dissolved DETSC 2306* 0.4 ug/l <0.4	Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5
Selenium, Dissolved DETSC 2306 0.25 ug/l 2.3 Tin, Dissolved DETSC 2306* 0.4 ug/l < 0.4	Phosphorus as P, Dissolved	DETSC 2306	18	ug/l	36
Tin, Dissolved DETSC 2306* 0.4 ug/l < 0.4 Vanadium, Dissolved DETSC 2306 0.6 ug/l 19 Zinc, Dissolved DETSC 2306 1.3 ug/l 3.5 Inorganics pH DETSC 2008 pH 10.8 Cyanide, Total Low Level DETSC 2131 0.1 ug/l 4.5 Cyanide, Free Low Level DETSC 2131 0.1 ug/l 0.2 Thiocyanate DETSC 2303 0.1 ug/l 160 Total Hardness as CaCO3 DETSC 2207 0.015 mg/l 0.30 Ammoniacal Nitrogen as NH4 DETSC 2207 0.015 mg/l 0.24 Chloride DETSC 2055 0.1 mg/l 0.24 Fluoride DETSC 2055 0.1 mg/l 0.12 Nitrate as NO3 DETSC 2055 0.1 mg/l <0.10	Selenium, Dissolved	DETSC 2306	0.25	ug/l	2.3
Vanadium, Dissolved DETSC 2306 0.6 ug/l 19 Zinc, Dissolved DETSC 2306 1.3 ug/l 3.5 Inorganics DETSC 2008 PH 10.8 Cyanide, Total Low Level DETSC 2131 0.1 ug/l 4.5 Cyanide, Free Low Level DETSC 2131 0.1 ug/l 0.2 Thiocyanate DETSC 2303 0.1 ug/l 160 Total Hardness as CaCO3 DETSC 2303 0.1 mg/l 269 Ammoniacal Nitrogen as NH4 DETSC 2207 0.015 mg/l 0.29 Ammoniacal Nitrogen as NH3 DETSC 2207 0.015 mg/l 0.24 Chloride DETSC 2055 0.1 mg/l 1.4 Fluoride DETSC 2055 0.1 mg/l 0.12 Nitrate as NO3 DETSC 2055 0.1 mg/l 0.12 Nitrite as NO2 DETSC 2055 0.1 mg/l 0.02 Sulphate as SO4 DETSC 2055 0.1 mg/l 0.02	Tin, Dissolved	DETSC 2306*	0.4	ug/l	< 0.4
Zinc, Dissolved DETSC 2306 1.3 ug/l 3.5 Inorganics pH DETSC 2008 pH 10.8 Cyanide, Total Low Level DETSC 2131 0.1 ug/l 4.5 Cyanide, Free Low Level DETSC 2131 0.1 ug/l 0.2 Thiocyanate DETSC 2130 20 ug/l 160 Total Hardness as CaCO3 DETSC 2003 0.1 mg/l 269 Ammoniacal Nitrogen as NH4 DETSC 2207 0.015 mg/l 0.30 Ammoniacal Nitrogen as NH3 DETSC 2207 0.015 mg/l 0.29 Ammoniacal Nitrogen as N DETSC 2055 0.1 mg/l 0.24 Chloride DETSC 2055 0.1 mg/l 0.12 Nitrate as NO3 DETSC 2055 0.1 mg/l 0.12 Nitrite as NO2 DETSC 2055 0.1 mg/l <0.10	Vanadium, Dissolved	DETSC 2306	0.6	ug/l	19
Inorganics pH DETSC 2008 pH 10.8 Cyanide, Total Low Level DETSC 2131 0.1 ug/l 4.5 Cyanide, Free Low Level DETSC 2131 0.1 ug/l 0.2 Thiocyanate DETSC 2131 0.1 ug/l 0.2 Thiocyanate DETSC 2130 20 ug/l 160 Total Hardness as CaCO3 DETSC 2303 0.1 mg/l 269 Ammoniacal Nitrogen as NH4 DETSC 2207 0.015 mg/l 0.30 Ammoniacal Nitrogen as NH3 DETSC 2207 0.015 mg/l 0.29 Ammoniacal Nitrogen as NH3 DETSC 2207 0.015 mg/l 0.24 Chloride DETSC 2055 0.1 mg/l 1.4 Fluoride DETSC 2055 0.1 mg/l 0.12 Nitrate as NO3 DETSC 2055 0.1 mg/l <0.10	Zinc, Dissolved	DETSC 2306	1.3	ug/l	3.5
pH DETSC 2008 pH 10.8 Cyanide, Total Low Level DETSC 2131 0.1 ug/l 4.5 Cyanide, Free Low Level DETSC 2131 0.1 ug/l 0.2 Thiocyanate DETSC 2131 0.1 ug/l 0.2 Thiocyanate DETSC 2130 20 ug/l 160 Total Hardness as CaCO3 DETSC 2303 0.1 mg/l 269 Ammoniacal Nitrogen as NH4 DETSC 2207 0.015 mg/l 0.29 Ammoniacal Nitrogen as NH3 DETSC 2207 0.015 mg/l 0.24 Chloride DETSC 2055 0.1 mg/l 1.4 Fluoride DETSC 2055 0.1 mg/l 0.12 Nitrate as NO3 DETSC 2055 0.1 mg/l <0.10	Inorganics			0,	
Cyanide, Total Low Level DETSC 2131 0.1 ug/l 4.5 Cyanide, Free Low Level DETSC 2131 0.1 ug/l 0.2 Thiocyanate DETSC 2130 20 ug/l 160 Total Hardness as CaCO3 DETSC 2303 0.1 mg/l 269 Ammoniacal Nitrogen as NH4 DETSC 2207 0.015 mg/l 0.30 Ammoniacal Nitrogen as NH3 DETSC 2207 0.015 mg/l 0.29 Ammoniacal Nitrogen as NH3 DETSC 2007 0.015 mg/l 0.24 Chloride DETSC 2055 0.1 mg/l 0.14 Fluoride DETSC 2055 0.1 mg/l 0.12 Nitrate as NO3 DETSC 2055 0.1 mg/l <0.10	pH	DETSC 2008		Hq	10.8
Cyanide, Free Low Level DETSC 2131 0.1 ug/l 0.2 Thiocyanate DETSC 2130 20 ug/l 160 Total Hardness as CaCO3 DETSC 2303 0.1 mg/l 269 Ammoniacal Nitrogen as NH4 DETSC 2207 0.015 mg/l 0.30 Ammoniacal Nitrogen as NH3 DETSC 2207 0.015 mg/l 0.29 Ammoniacal Nitrogen as NH3 DETSC 2207 0.015 mg/l 0.24 Chloride DETSC 2055 0.1 mg/l 1.4 Fluoride DETSC 2055 0.1 mg/l 0.12 Nitrate as NO3 DETSC 2055 0.1 mg/l <0.10	Cyanide, Total Low Level	DETSC 2131	0.1	ug/l	4.5
Thiocyanate DETSC 2130 20 ug/l 160 Total Hardness as CaCO3 DETSC 2303 0.1 mg/l 269 Ammoniacal Nitrogen as NH4 DETSC 2207 0.015 mg/l 0.30 Ammoniacal Nitrogen as NH3 DETSC 2207 0.015 mg/l 0.29 Ammoniacal Nitrogen as NH3 DETSC 2207 0.015 mg/l 0.29 Ammoniacal Nitrogen as N DETSC 2207 0.015 mg/l 0.24 Chloride DETSC 2055 0.1 mg/l 1.4 Fluoride DETSC 2055 0.1 mg/l 0.12 Nitrate as NO3 DETSC 2055 0.1 mg/l <0.10	Cyanide, Free Low Level	DETSC 2131	0.1	ug/l	0.2
Total Hardness as CaCO3 DETSC 2303 0.1 mg/l 269 Ammoniacal Nitrogen as NH4 DETSC 2207 0.015 mg/l 0.30 Ammoniacal Nitrogen as NH3 DETSC 2207 0.015 mg/l 0.29 Ammoniacal Nitrogen as NH3 DETSC 2207 0.015 mg/l 0.24 Chloride DETSC 2055 0.1 mg/l 0.14 Fluoride DETSC 2055 0.1 mg/l 0.12 Nitrate as NO3 DETSC 2055 0.1 mg/l 0.12 Nitrite as NO2 DETSC 2055 0.1 mg/l <0.10	Thiocyanate	DETSC 2130	20	ug/l	160
Ammoniacal Nitrogen as NH4 DETSC 2207 0.015 mg/l 0.30 Ammoniacal Nitrogen as NH3 DETSC 2207 0.015 mg/l 0.29 Ammoniacal Nitrogen as N DETSC 2207 0.015 mg/l 0.24 Chloride DETSC 2055 0.1 mg/l 1.4 Fluoride DETSC 2055 0.1 mg/l 0.12 Nitrate as NO3 DETSC 2055 0.1 mg/l 0.12 Nitrite as NO2 DETSC 2055 0.1 mg/l <0.10	Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	269
Ammoniacal Nitrogen as NH3 DETSC 2207 0.015 mg/l 0.29 Ammoniacal Nitrogen as N DETSC 2207 0.015 mg/l 0.24 Chloride DETSC 2055 0.1 mg/l 1.4 Fluoride DETSC 2055* 0.1 mg/l 0.12 Nitrate as NO3 DETSC 2055 0.1 mg/l 0.12 Nitrite as NO2 DETSC 2055 0.1 mg/l <0.10	Ammoniacal Nitrogen as NH4	DETSC 2207	0.015	mg/l	0.30
Ammoniacal Nitrogen as N DETSC 2207 0.015 mg/l 0.24 Chloride DETSC 2055 0.1 mg/l 1.4 Fluoride DETSC 2055* 0.1 mg/l 0.12 Nitrate as NO3 DETSC 2055 0.1 mg/l 0.12 Nitrite as NO2 DETSC 2055 0.1 mg/l < 0.10	Ammoniacal Nitrogen as NH3	DETSC 2207	0.015	mg/l	0.29
Chloride DETSC 2055 0.1 mg/l 1.4 Fluoride DETSC 2055* 0.1 mg/l 0.12 Nitrate as NO3 DETSC 2055 0.1 mg/l <0.10	Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	0.24
Fluoride DETSC 2055* 0.1 mg/l 0.12 Nitrate as NO3 DETSC 2055 0.1 mg/l < 0.10	Chloride	DETSC 2055	0.1	mg/l	1.4
Nitrate as NO3 DETSC 2055 0.1 mg/l < 0.10 Nitrite as NO2 DETSC 2055 0.1 mg/l < 0.10	Fluoride	DETSC 2055*	0.1	mg/l	0.12
Nitrite as NO2 DETSC 2055 0.1 mg/l < 0.10 Ortho Phosphate as P DETSC 2205 0.01 mg/l 0.02 Sulphate as SO4 DETSC 2055 0.1 mg/l 18	Nitrate as NO3	DETSC 2055	0.1	mg/l	< 0.10
Ortho Phosphate as P DETSC 2205 0.01 mg/l 0.02 Sulphate as SO4 DETSC 2055 0.1 mg/l 18	Nitrite as NO2	DETSC 2055	0.1	mg/l	< 0.10
Sulphate as SO4DETSC 20550.1mg/l18	Ortho Phosphate as P	DETSC 2205	0.01	mg/l	0.02
	Sulphate as SO4	DETSC 2055	0.1	mg/l	18
Total Organic Carbon DFTSC 2085 1 1 mg/II 6 9	Total Organic Carbon	DETSC 2085	1	mg/l	6.9

Leachate Samples

	Lab No			2058704
		.Sa	mple ID	F-BH102
			Depth	1.00
		C	Other ID	
		Samp	le Type	ES
		Sampli	ng Date	09/09/2022
		Sampliı	ng Time	n/s
Test	Method	LOD	Units	
PAHs				
Acenaphthene	DETSC 3304	0.01	ug/l	2.5
Acenaphthylene	DETSC 3304	0.01	ug/l	0.17
Anthracene	DETSC 3304	0.01	ug/l	0.66
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	0.03
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	0.03
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	0.04
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	0.02
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	0.03
Chrysene	DETSC 3304	0.01	ug/l	0.04
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	0.21
Fluorene	DETSC 3304	0.01	ug/l	0.38
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	0.02
Naphthalene	DETSC 3304	0.05	ug/l	0.44
Phenanthrene	DETSC 3304	0.01	ug/l	0.90
Pyrene	DETSC 3304	0.01	ug/l	0.17
PAH Total	DETSC 3304	0.2	ug/l	5.7
Subcontracted Analysis				
Hexavalent Chromium	\$*	<2	ug/l	<2

I DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 22-18312 Client Ref 60678042 Contract Title

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2058700	F-BH102 1.00	SOIL	NAD	none	Pierce Booth
2058701	F-BH102 1.50	SOIL	NAD	none	Pierce Booth
2058702	F-BH102 6.60	SOIL	NAD	none	Pierce Booth

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Inappropriate

Information in Support of the Analytical Results

Our Ref 22-18312 Client Ref 60678042 Contract

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2058700	F-BH102 1.00 SOIL	09/09/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2058701	F-BH102 1.50 SOIL	09/09/22	GJ 250ml, GJ 60ml, PT 1L		
2058702	F-BH102 6.60 SOIL	09/09/22	GJ 250ml, GJ 60ml, PT 1L		
2058703	F-BH102 8.20 SOIL	09/09/22	GJ 250ml, GJ 60ml, PT 1L		
2058704	F-BH102 1.00 LEACHATE	09/09/22	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

	, ,
Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Acronym

List of HWOL Acronyms and Operators

Det

Aliphatic C5-C6	HS 1D AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC12	EH_2D_AL
Aliphatic >EC12-EC16	EH_2D_AL
Aliphatic >EC16-EC21	EH_2D_AL
Aliphatic >EC21-EC35	EH_2D_AL
Aliphatic >EC35-EC40	EH_2D_AL
Aliphatic C5-C40	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC12	EH_2D_AR
Aromatic >EC12-EC16	EH_2D_AR
Aromatic >EC16-EC21	EH_2D_AR
Aromatic >EC21-EC35	EH_2D_AR
Aromatic >EC35-EC40	EH_2D_AR
Aromatic C5-C40	EH_2D+HS_1D_AR
TPH Ali/Aro C5-C40	EH_2D+HS_1D_Total

End of Report

Issued:

Certificate Number 22-18314

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- *Our Reference* 22-18314
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description One Soil sample.
 - Date Received 15-Sep-22
 - Date Started 15-Sep-22
- Date Completed 28-Sep-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lyemood

Kirk Bridgewood General Manager

28-Sep-22

			Lab No	2058711
		.Sa	mple ID	F-BH102
			Depth	14.50
		(Other ID	
		Sam	ple Type	ES
		Sampl	ing Date	12/09/2022
		Sampli	ing Time	n/s
Test	Method	LOD	Units	
Preparation				
Moisture Content	DETSC 1004	0.1	%	14
Metals				
Aluminium	DETSC 2301*	1	mg/kg	2500
Arsenic	DETSC 2301#	0.2	mg/kg	20
Beryllium	DETSC 2301#	0.2	mg/kg	< 0.2
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	0.7
Cadmium	DETSC 2301#	0.1	mg/kg	< 0.1
Chromium III	DETSC 2301*	0.15	mg/kg	5.6
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	6.6
Iron	DETSC 2301	25	mg/kg	18000
Lead	DETSC 2301#	0.3	mg/kg	4.8
Manganese	DETSC 2301#	20	mg/kg	320
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05
Molybdenum	DETSC 2301#	0.4	mg/kg	1.2
Nickel	DETSC 2301#	1	mg/kg	6.6
Phosphorus	DETSC 2301*	1	mg/kg	520
Selenium	DETSC 2301#	0.5	mg/kg	0.6
Tin	DETSC 2301	1	mg/kg	< 1.0
Vanadium	DETSC 2301#	0.8	mg/kg	22
Zinc	DETSC 2301#	1	mg/kg	24
Inorganics		L L		
рН	DETSC 2008#		pН	8.8
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg	< 0.6
Organic matter	DETSC 2002#	0.1	%	0.5
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg	2.0
Chloride	DETSC 2055	1	mg/kg	532
Fluoride	DETSC 2055	1	mg/kg	< 1.0
Nitrate as NO3	DETSC 2055	1	mg/kg	< 1.0
Ortho Phosphate as P	DETSC 2205*	0.1	mg/kg	0.52
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	110
Sulphide	DETSC 2024*	10	mg/kg	36
Sulphur (free)	DETSC 3049#	0.75	mg/kg	< 0.75
Sulphur as S, Total	DETSC 2320	0.01	%	0.05
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.09

		Lab No		2058711
		.Sa	mple ID	F-BH102
			Depth	14.50
			Other ID	
		Sam	ole Type	ES
		Sampl	ing Date	12/09/2022
		Sampli	ing Time	n/s
Test	Method		Units	, 5
Petroleum Hydrocarbons	methou	105	0	
Aliphatic C5-C6: HS 1D Al	DFTSC 3321*	0.01	ma/ka	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01
Aliphatic SEC10-EC12: EH 2D AL	DETSC 2521#	1 5	mg/kg	1 92
Aliphatic >EC12 EC16: EH_2D_AL	DETSC 2521#	1.5	mg/kg	1.05
Aliphatic >EC16 EC21; EH_2D_AL	DETSC 3521#	1.2	mg/kg	1.40
Aliphatic >EC10-EC21. EH_2D_AL	DETSC 3521#	1.5	mg/kg	< 1.50
Aliphatic >EC21-EC35: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40
Aliphatic >EC35-EC40: EH_2D_AL	DETSC 3521#	3.4	mg/kg	< 3.40
Aliphatic C5-C40: EH_2D+HS_1D_AL	DETSC 3521*	10	mg/kg	12.86
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/kg	< 0.90
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	< 0.50
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	1.17
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg	< 1.40
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40
Aromatic C5-C40: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	< 10.00
TPH Ali/Aro C5-C40: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	18.92
PAHs				
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	< 0.03
PAH - USEPA 16. Total	DETSC 3303	0.1	mg/kg	< 0.10
Phenols		0.1	סיי זסייי	
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3

Information in Support of the Analytical Results

Our Ref 22-18314 *Client Ref* 60678042 *Contract* NZT Feed GI

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2058711	F-BH102 14.50 SOIL	12/09/22	GJ 250ml, GJ 60ml, PT 1L		
Kev: G-Glas	s P-Plastic J-Jar T-Tub				

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Acronym

Det

Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic >EC10-EC12	EH_2D_AL
Aliphatic >EC12-EC16	EH_2D_AL
Aliphatic >EC16-EC21	EH_2D_AL
Aliphatic >EC21-EC35	EH_2D_AL
Aliphatic >EC35-EC40	EH_2D_AL
Aliphatic C5-C40	EH_2D+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic >EC10-EC12	EH_2D_AR
Aromatic >EC12-EC16	EH_2D_AR
Aromatic >EC16-EC21	EH_2D_AR
Aromatic >EC21-EC35	EH_2D_AR
Aromatic >EC35-EC40	EH_2D_AR
Aromatic C5-C40	EH_2D+HS_1D_AR
TPH Ali/Aro C5-C40	EH_2D+HS_1D_Total

Issued: 23-Sep-22

Certificate Number 22-18373 Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- Our Reference 22-18373
- Client Reference 60678042
 - Order No (not supplied)
 - Contract Title NZT FEED GI
 - Description 2 Soil samples, 2 Leachate samples.
 - Date Received 08-Aug-22
 - Date Started 16-Sep-22
- Date Completed 23-Sep-22
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logwood.

Kirk Bridgewood General Manager

Our Ref 22-18373 *Client Ref* 60678042 *Contract Title* NZT FEED GI

			Lab No	2058947	2058948
		.Sa	ample ID	F-BH120	F-BH120
			Depth	3.50	5.50
			Other ID		
		Sam	ple Type	ES	ES
		Sampl	ing Date	02/08/2022	02/08/2022
		Sampl	ing Time	1400	1500
Test	Method	LOD	Units		
Metals					
Aluminium	DETSC 2301*	1	mg/kg	57000	3400
Iron	DETSC 2301	25	mg/kg	3200	8400
Manganese	DETSC 2301#	20	mg/kg	550	170
Molybdenum	DETSC 2301#	0.4	mg/kg	0.8	0.4
Phosphorus	DETSC 2301*	1	mg/kg	130	140
Tin	DETSC 2301	1	mg/kg	< 1.0	< 1.0
Inorganics					
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg	3.2	1.7
Chloride	DETSC 2055	1	mg/kg	29.9	28.0
Fluoride	DETSC 2055	1	mg/kg	1.5	1.5
Ortho Phosphate as P	DETSC 2205*	0.1	mg/kg	< 0.10	0.13

г

Summary of Chemical Analysis Leachate Samples

		2058949	2058950		
		.Sa	ample ID	F-BH120	F-BH120
			Depth	3.50	5.50
			Other ID		
		Sam	ple Type	ES	ES
		Samp	ing Date	02/08/2022	02/08/2022
		Sampl	ing Time	1400	1500
Test	Method	LOD	Units		
Preparation					
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y	Y
Metals					
Aluminium, Dissolved	DETSC 2306	10	ug/l	18	350
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1	< 0.1
Manganese, Dissolved	DETSC 2306	0.22	ug/l	5.6	1.5
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	3.9	16
Phosphorus as P, Dissolved	DETSC 2306	18	ug/l	19	51
Tin, Dissolved	DETSC 2306*	0.4	ug/l	< 0.4	< 0.4
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	18	16
Inorganics					
Chloride	DETSC 2055	0.1	mg/l	3.1	3.4
Fluoride	DETSC 2055*	0.1	mg/l	0.36	< 0.10
Ortho Phosphate as P	DETSC 2205	0.01	mg/l	0.02	0.05

Inappropriate

Information in Support of the Analytical Results

Our Ref 22-18373 *Client Ref* 60678042 *Contract* NZT FEED GI

Containers Received & Deviating Samples

	Date			container for
Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
F-BH120 3.50 SOIL	02/08/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
F-BH120 5.50 SOIL	02/08/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
F-BH120 3.50 LEACHATE	02/08/22	GJ 250ml, GJ 60ml, PT 1L		
F-BH120 5.50 LEACHATE	02/08/22	GJ 250ml, GJ 60ml, PT 1L		
	Sample ID F-BH120 3.50 SOIL F-BH120 5.50 SOIL F-BH120 3.50 LEACHATE F-BH120 5.50 LEACHATE	Date Sample ID Sampled F-BH120 3.50 SOIL 02/08/22 F-BH120 5.50 SOIL 02/08/22 F-BH120 3.50 LEACHATE 02/08/22 F-BH120 5.50 LEACHATE 02/08/22	Date Sample ID Sampled Containers Received F-BH120 3.50 SOIL 02/08/22 GJ 250ml, GJ 60ml, PT 1L F-BH120 5.50 SOIL 02/08/22 GJ 250ml, GJ 60ml, PT 1L F-BH120 3.50 LEACHATE 02/08/22 GJ 250ml, GJ 60ml, PT 1L F-BH120 5.50 LEACHATE 02/08/22 GJ 250ml, GJ 60ml, PT 1L	Date Holding time exceeded for tests Sample ID Sampled Containers Received Holding time exceeded for tests F-BH120 3.50 SOIL 02/08/22 GJ 250ml, GJ 60ml, PT 1L Ammonia (3 days) F-BH120 5.50 SOIL 02/08/22 GJ 250ml, GJ 60ml, PT 1L Ammonia (3 days) F-BH120 3.50 LEACHATE 02/08/22 GJ 250ml, GJ 60ml, PT 1L FOR THE CONTRACT OF THE CONTR

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Issued: 23-Sep-22

Certificate Number 22-18376 Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- Our Reference 22-18376
- Client Reference 60678042
 - Order No (not supplied)
 - Contract Title NZT FEED GI
 - Description 7 Soil samples, 4 Leachate samples.
 - Date Received 11-Aug-22
 - Date Started 16-Sep-22
- Date Completed 23-Sep-22
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logwood.

Kirk Bridgewood General Manager

			Lab No	2058956	2058957	2058958	2058959	2058960	2058961	2058962
		.Sa	mple ID	F-BH125	F-BH125	F-BH125	F-BH125	F-BH130	F-BH130	F-BH130
			Depth	3.80	4.80	5.30	6.30	4.25	6.60	9.00
		(Other ID							
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sampl	ing Date	04/08/2022	04/08/2022	04/08/2022	04/08/2022	04/08/2022	04/08/2022	04/08/2022
		Sampli	ing Time	1000	1030	1100	1130	1300	1400	1500
Test	Method	LOD	Units							
Metals										
Aluminium	DETSC 2301*	1	mg/kg	43000	5000	1700	9100	18000	1600	5600
Iron	DETSC 2301	25	mg/kg	5100	300000	10000	33000	43000	8500	14000
Manganese	DETSC 2301#	20	mg/kg	1500	3100	200	180	1300	230	140
Molybdenum	DETSC 2301#	0.4	mg/kg	0.9	1.0	0.5	1.2	2.8	0.6	1.6
Phosphorus	DETSC 2301*	1	mg/kg	200	18000	300	730	1500	190	300
Tin	DETSC 2301	1	mg/kg	< 1.0	1.8	< 1.0	< 1.0	6.1	< 1.0	< 1.0
Inorganics										
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg	0.58	1.0	0.69	24	1.9	2.6	4.7
Chloride	DETSC 2055	1	mg/kg	5.3	36.9	3.8	50.9	3.6	11.0	39.0
Fluoride	DETSC 2055	1	mg/kg	1.4	1.4	1.1	< 1.0	1.5	< 1.0	1.4
Ortho Phosphate as P	DETSC 2205*	0.1	mg/kg	< 0.10	5.8	0.32	7.0	0.40	0.22	0.49

Summary of Chemical Analysis Leachate Samples

	Lab No			2058963	2058964	2058965	2058966
	.Sample ID			F-BH125	F-BH125	F-BH130	F-BH130
			Depth	4.80	5.30	4.25	6.60
			Other ID				
		Sam	ple Type	LEACHATE	LEACHATE	LEACHATE	LEACHATE
		Sampl	ing Date	04/08/2022	04/08/2022	04/08/2022	04/08/2022
		Sampl	ing Time	1030	1100	1300	1400
Test	Method	LOD	Units				
Preparation							
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y	Y	Y	Y
Metals							
Aluminium, Dissolved	DETSC 2306	10	ug/l	760	610	79	51
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Manganese, Dissolved	DETSC 2306	0.22	ug/l	0.75	0.28	36	24
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	6.8	3.6	2.5	1.4
Phosphorus as P, Dissolved	DETSC 2306	18	ug/l	600	170	100	26
Tin, Dissolved	DETSC 2306*	0.4	ug/l	< 0.4	< 0.4	< 0.4	< 0.4
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	52	12	1.7	< 0.6
Inorganics				-			
Chloride	DETSC 2055	0.1	mg/l	1.8	2.8	0.88	0.89
Fluoride	DETSC 2055*	0.1	mg/l	0.16	0.18	2.4	0.25
Ortho Phosphate as P	DETSC 2205	0.01	mg/l	0.04	0.03	0.02	0.02

Inappropriate

Information in Support of the Analytical Results

Our Ref 22-18376 *Client Ref* 60678042 *Contract* NZT FEED GI

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2058956	F-BH125 3.80 SOIL	04/08/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2058957	F-BH125 4.80 SOIL	04/08/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2058958	F-BH125 5.30 SOIL	04/08/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2058959	F-BH125 6.30 SOIL	04/08/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2058960	F-BH130 4.25 SOIL	04/08/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2058961	F-BH130 6.60 SOIL	04/08/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2058962	F-BH130 9.00 SOIL	04/08/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2058963	F-BH125 4.80 LEACHATE	04/08/22	GJ 250ml, GJ 60ml, PT 1L		
2058964	F-BH125 5.30 LEACHATE	04/08/22	GJ 250ml, GJ 60ml, PT 1L		
2058965	F-BH130 4.25 LEACHATE	04/08/22	GJ 250ml, GJ 60ml, PT 1L		
2058966	F-BH130 6.60 LEACHATE	04/08/22	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Issued:

26-Sep-22

Certificate Number 22-18377

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- *Our Reference* 22-18377
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT FEED GI
 - Description One Soil sample.
 - Date Received 11-Aug-22
 - Date Started 16-Sep-22
- Date Completed 26-Sep-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lyemood

Kirk Bridgewood General Manager

			Lab No	2058967
		.Sa	ample ID	F-BH125
			Depth	14.80
			Other ID	
		Sam	ple Type	SOIL
		Sampl	ing Date	05/08/2022
		Sampl	ing Time	1600
Test	Method	LOD	Units	
Metals				
Aluminium	DETSC 2301*	1	mg/kg	17000
Iron	DETSC 2301	25	mg/kg	42000
Manganese	DETSC 2301#	20	mg/kg	560
Molybdenum	DETSC 2301#	0.4	mg/kg	1.1
Phosphorus	DETSC 2301*	1	mg/kg	560
Tin	DETSC 2301	1	mg/kg	< 1.0
Inorganics				
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg	2.4
Chloride	DETSC 2055	1	mg/kg	266
Fluoride	DETSC 2055	1	mg/kg	< 1.0
Ortho Phosphate as P	DETSC 2205*	0.1	mg/kg	0.16

Information in Support of the Analytical Results

Our Ref 22-18377 *Client Ref* 60678042 *Contract* NZT FEED GI

Containers Received & Deviating Samples

		Date			Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2058967	F-BH125 14.80 SOIL	05/08/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
Key: G-Glas DETS canno be deviating Deviating Sa etc are devi no sampled this will pre	s P-Plastic J-Jar T-Tub It be held responsible for th g. Deviating Sample criteria amples'. All samples receive iating due to the reasons sta date (soils) or date+time (v vent samples being reporte	e integrity of sar are based on Br ed are listed abov ated. This means waters) has been ed as deviating w	mples received whereby the labo itish and International standards ve. However, those samples that that the analysis is accredited w supplied then samples are devia where specific hold times are not	ratory did not undertake the sampling. In this instan and laboratory trials in conjunction with the UKAS n have additional comments in relation to hold time, i here applicable, but results may be compromised du ting. However, if you are able to supply a sampled d exceeded and where the container supplied is suitab	ce samples received may ote 'Guidance on nappropriate containers Je to sample deviations. If ate (and time for waters) Ie.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Issued: 26-Sep-22

Certificate Number 22-18381 Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- Our Reference 22-18381
- Client Reference 60678042
 - Order No (not supplied)
 - Contract Title NZT FEED GI
 - Description 5 Soil samples, 2 Leachate samples.
 - Date Received 17-Aug-22
- Date Started 16-Sep-22
- Date Completed 26-Sep-22
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logwood.

Kirk Bridgewood General Manager

			Lab No	2058982	2058983	2058984	2058985	2058986
		.Sa	ample ID	F-BH119	F-BH119	F-BH133	F-BH133	F-BH133
			Depth	2.90	4.30	0.70	2.70	5.00
			Other ID					
		Sam	ple Type	ES	ES	ES	ES	ES
		Sampl	ing Date	09/08/2022	09/08/2022	09/08/2022	09/08/2022	09/08/2022
		Sampl	ing Time	1000	1200	1400	1430	0930
Test	Method	LOD	Units					
Metals								
Aluminium	DETSC 2301*	1	mg/kg	8400	1200	16000	56000	1400
Iron	DETSC 2301	25	mg/kg	96000	7300	130000	70000	8800
Manganese	DETSC 2301#	20	mg/kg	27000	200	14000	1700	270
Molybdenum	DETSC 2301#	0.4	mg/kg	3.1	0.4	4.5	1.5	0.6
Phosphorus	DETSC 2301*	1	mg/kg	18000	170	6000	3000	240
Tin	DETSC 2301	1	mg/kg	4.9	< 1.0	14	1.1	< 1.0
Inorganics								
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg	1.2	1.4	1.7	2.3	2.0
Chloride	DETSC 2055	1	mg/kg	70.1	33.2	26.8	38.4	7.0
Fluoride	DETSC 2055	1	mg/kg	22	2.4	24	9.9	2.9
Ortho Phosphate as P	DETSC 2205*	0.1	mg/kg	0.25	0.12	1.0	0.20	0.87

Summary of Chemical Analysis Leachate Samples

		2058987	2058988		
		.Sa	ample ID	F-BH119	F-BH133
			Depth	2.90	0.70
			Other ID		
		Sam	ple Type	ES	ES
		Sampl	ing Date	09/08/2022	09/08/2022
		Sampl	ing Time	1000	1400
Test	Method	LOD	Units		
Preparation					
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y	Y
Metals					
Aluminium, Dissolved	DETSC 2306	10	ug/l	1200	180
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1	< 0.1
Manganese, Dissolved	DETSC 2306	0.22	ug/l	0.26	7.0
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	2.3	5.2
Phosphorus as P, Dissolved	DETSC 2306	18	ug/l	47	110
Tin, Dissolved	DETSC 2306*	0.4	ug/l	< 0.4	< 0.4
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	7.1	47
Inorganics					
Chloride	DETSC 2055	0.1	mg/l	5.2	3.4
Fluoride	DETSC 2055*	0.1	mg/l	1.2	0.94
Ortho Phosphate as P	DETSC 2205	0.01	mg/l	< 0.01	0.14

Inappropriate

Information in Support of the Analytical Results

Our Ref 22-18381 *Client Ref* 60678042 *Contract* NZT FEED GI

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2058982	F-BH119 2.90 SOIL	09/08/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2058983	F-BH119 4.30 SOIL	09/08/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2058984	F-BH133 0.70 SOIL	09/08/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2058985	F-BH133 2.70 SOIL	09/08/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2058986	F-BH133 5.00 SOIL	09/08/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2058987	F-BH119 2.90 LEACHATE	09/08/22	GJ 250ml, GJ 60ml, PT 1L		
2058988	F-BH133 0.70 LEACHATE	09/08/22	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Issued: 26-Sep-22

Certificate Number 22-18398 Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- Our Reference 22-18398
- Client Reference 60678042
 - Order No (not supplied)
 - Contract Title NZT FEED GI
 - Description 4 Soil samples, 1 Leachate sample.
 - Date Received 30-Aug-22
- Date Started 16-Sep-22
- Date Completed 26-Sep-22
- *Test Procedures* Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logwood.

Kirk Bridgewood General Manager

			Lab No	2059038	2059039	2059040	2059041
		.Sa	mple ID	F-BH104	F-BH104	F-BH104	F-BH104
			Depth	3.00	4.00	6.00	15.75
		(Other ID				
		Sam	ple Type	ES	ES	ES	ES
		Sampl	ing Date	17/08/2022	17/08/2022	17/08/2022	18/08/2022
		Sampli	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Metals							
Aluminium	DETSC 2301*	1	mg/kg	8900	6500	820	20000
Iron	DETSC 2301	25	mg/kg	94000	62000	4800	37000
Manganese	DETSC 2301#	20	mg/kg	1400	68000	120	570
Molybdenum	DETSC 2301#	0.4	mg/kg	2.3	1.4	< 0.4	1.0
Phosphorus	DETSC 2301*	1	mg/kg	1500	16000	120	490
Tin	DETSC 2301	1	mg/kg	1.9	2.3	< 1.0	1.1
Inorganics							
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg	1.8	1.4	1.5	3.2
Chloride	DETSC 2055	1	mg/kg	31.7	29.6	45.5	321
Fluoride	DETSC 2055	1	mg/kg	1.5	5.8	1.2	4.2
Ortho Phosphate as P	DETSC 2205*	0.1	mg/kg	0.16	< 0.10	< 0.10	0.18

Summary of Chemical Analysis Leachate Samples

			Lab No	2059042
		.S	ample ID	F-BH104
			Depth	4.00
			Other ID	
		Sam	ple Type	ES
		Samp	ling Date	17/08/2022
		Sampl	ing Time	n/s
Test	Method	LOD	Units	
Preparation				
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y
Metals				
Aluminium, Dissolved	DETSC 2306	10	ug/l	< 10
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1
Manganese, Dissolved	DETSC 2306	0.22	ug/l	< 0.22
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	< 1.1
Phosphorus as P, Dissolved	DETSC 2306	18	ug/l	< 18
Tin, Dissolved	DETSC 2306*	0.4	ug/l	< 0.4
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	< 0.6
Inorganics				
Chloride	DETSC 2055	0.1	mg/l	3.8
Fluoride	DETSC 2055*	0.1	mg/l	0.69
Ortho Phosphate as P	DETSC 2205	0.01	mg/l	0.02

Inappropriate

Information in Support of the Analytical Results

Our Ref 22-18398 *Client Ref* 60678042 *Contract* NZT FEED GI

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2059038	F-BH104 3.00 SOIL	17/08/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2059039	F-BH104 4.00 SOIL	17/08/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2059040	F-BH104 6.00 SOIL	17/08/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2059041	F-BH104 15.75 SOIL	18/08/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2059042	F-BH104 4.00 LEACHATE	17/08/22	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Issued:

23-Sep-22

Certificate Number 22-18458

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- *Our Reference* 22-18458
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description 3 Soil samples.
 - Date Received 16-Sep-22
 - Date Started 16-Sep-22
- Date Completed 23-Sep-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lymood

Kirk Bridgewood General Manager

			Lab No	2059320	2059321	2059322
		.Sa	ample ID	F-BH104	F-BH104	F-BH104
			Depth	6.75	12.00-12.70	14.30-15.00
			Other ID			
		Sample Type				В
		Samp	ling Date	17/08/2022	17/08/2022	17/08/2022
		Sampl	ing Time	n/s	n/s	n/s
Test	Method	LOD	Units			
Inorganics						
Organic matter	DETSC 2002#	0.1	%			0.5
Carbonate (as CO2)	DETSC 2005	1	%	2.8	4.3	

Inappropriate

Information in Support of the Analytical Results

Our Ref 22-18458 *Client Ref* 60678042 *Contract* NZT Feed GI

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2059320	F-BH104 6.75 SOIL	17/08/22	PT 1L	Carbonate (28 days)	
2059321	F-BH104 12.00-12.70 SOIL	17/08/22	PT 1L	Carbonate (28 days)	
2059322	F-BH104 14.30-15.00 SOIL	17/08/22	PT 1L	Organic Matter (Manual) (28 days)	

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Certificate Number 22-18467

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- *Our Reference* 22-18467
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description 2 Soil samples.
 - Date Received 16-Sep-22
 - Date Started 16-Sep-22
- Date Completed 23-Sep-22
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

hurod

Kirk Bridgewood General Manager

Derwentside Environmental Testing Services Limited Unit 2, Park Road Industrial Estate South, Consett, Co Durham, DH8 5PY Tel: 01207 582333 • email: info@dets.co.uk • www.dets.co.uk 23-Sep-22

Issued:

			Lab No	2059346	2059347
		.Sa	ample ID	F-BH115	F-BH115
			Depth	6.00-6.75	9.80-10.50
			Other ID		
		Sam	ple Type	В	В
		Samp	ing Date	25/08/2022	25/08/2022
		Sampl	ing Time	1300	1300
Test	Method	LOD	Units		
Inorganics					
Organic matter	DETSC 2002#	0.1	%	0.5	0.2
Carbonate (as CO2)	DETSC 2005	1	%	3.3	3.0

Information in Support of the Analytical Results

Our Ref 22-18467 *Client Ref* 60678042 *Contract* NZT Feed GI

Containers Received & Deviating Samples

		Date	•	Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2059346	F-BH115 6.00-6.75 SOIL	25/08/22	PT 1L		
2059347	F-BH115 9.80-10.50 SOIL	25/08/22	PT 1L		
Key: P-Plast	tic T-Tub				
DETS canno	ot be held responsible for the in	ntegrity of sar	nples received whereby the laboratory did not undertake the sampling.	In this instance san	nples received may
be deviatin	g. Deviating Sample criteria are	e based on Bri	itish and International standards and laboratory trials in conjunction with	th the UKAS note 'G	uidance on
Deviating S	amples'. All samples received a	are listed abov	ve. However, those samples that have additional comments in relation t	to hold time, inappr	opriate containers
etc are devi	iating due to the reasons state	d. This means	that the analysis is accredited where applicable, but results may be cor	mpromised due to s	ample deviations. If
no sampled	date (soils) or date+time (wat	ers) has been	supplied then samples are deviating. However, if you are able to supply	y a sampled date (a	nd time for waters)
this will pre	event samples being reported a	as deviating w	here specific hold times are not exceeded and where the container sup	plied is suitable.	

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Issued: 05-Oct-22

Certificate Number 22-18803 Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- Our Reference 22-18803
- Client Reference 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description 5 Soil samples, 3 Leachate samples.
 - Date Received 22-Sep-22
 - Date Started 22-Sep-22
- Date Completed 05-Oct-22
- *Test Procedures* Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

legenood.

Kirk Bridgewood General Manager

i DETS

Summary of Chemical Analysis Soil Samples

			Lab No	2061468	2061469	2061470	2061471	2061472
		.Sa	mple ID	F-BH114	F-BH114	F-BH114	F-BH114	F-BH114
			Depth	0.50	1.80	2.80	3.80	5.80
		(Other ID					
		Sam	ple Type	ES	ES	ES	ES	ES
		Sampl	ing Date	16/09/2022	16/09/2022	16/09/2022	16/09/2022	16/09/2022
		Sampli	ing Time	1000	0900	0930	1000	1103
Test	Method	LOD	Units					
Asbestos Quantification	DETSC 1102	0.001	%	0.002				
Preparation								
Moisture Content	DETSC 1004	0.1	%	6.5	6.6	2.5	4.3	23
Metals								
Aluminium	DETSC 2301*	1	mg/kg	33000	21000		37000	
Arsenic	DETSC 2301#	0.2	mg/kg	13	24	9.1	5.9	7.5
Beryllium	DETSC 2301#	0.2	mg/kg	3.6	2.3	0.2	5.8	< 0.2
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	7.7	2.3	0.4	7.6	0.8
Cadmium	DETSC 2301#	0.1	mg/kg	0.4	0.4	< 0.1	< 0.1	< 0.1
Chromium III	DETSC 2301*	0.15	mg/kg	42	120	6.8	9.9	3.3
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	23	70	4.9	5.0	3.6
Iron	DETSC 2301	25	mg/kg	19000	42000		4100	
Lead	DETSC 2301#	0.3	mg/kg	35	67	19	8.8	19
Manganese	DETSC 2301#	20	mg/kg	16000	3800		1300	
Mercury	DETSC 2325#	0.05	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Molybdenum	DETSC 2301#	0.4	mg/kg	1.9	1.9		0.8	
Nickel	DETSC 2301#	1	mg/kg	7.5	20	4.2	1.4	3.1
Phosphorus	DETSC 2301*	1	mg/kg	650	1900		92	
Selenium	DETSC 2301#	0.5	mg/kg	5.4	1.5	< 0.5	3.0	< 0.5
Tin	DETSC 2301	1	mg/kg	3.0	7.4		1.0	
Vanadium	DETSC 2301#	0.8	mg/kg	150	270	30	37	12
Zinc	DETSC 2301#	1	mg/kg	140	130	28	8.6	19
Inorganics	1							
рН	DETSC 2008#		рН	10.6	10.5	8.6	10.9	7.7
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.5	0.2	< 0.1	< 0.1	0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg	1.0	< 0.6	< 0.6	< 0.6	< 0.6
Organic matter	DETSC 2002#	0.1	%	0.7	1.7	< 0.1	0.4	0.2
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg	0.74	1.1		0.79	
Chloride	DETSC 2055	1	mg/kg	363	87.6		9.6	
Fluoride	DETSC 2055	1	mg/kg	< 1.0	4.1		4.8	
Nitrate as NO3	DETSC 2055	1	mg/kg	< 1.0	7.0	7.6	< 1.0	< 1.0
Ortho Phosphate as P	DETSC 2205*	0.1	mg/kg	0.54	0.16		0.13	
Sulphate Aqueous Extract as SO4	DETSC 2076#	10		1600	1200	83	630	160
Sulphide	DETSC 2074*	10	mg/kg	1400	950	170	2100	160
Sulphuc Sulphur (free)	DETSC 2024	0.75	mg/kg	17	60	3.8	2100	2 5
Sulphur as § Total	DETSC 3330	0.75	0/	0.75	0.20	0.04	0.41	0.06
Sulphoto og COA Totol	DETSC 2320	0.01	70	0.75	0.59	0.04	0.41	0.00
Sulphate as SO4, IOtal	DEISC 2321#	0.01	%	2.8	1.4	0.12	0.91	0.13
Aliphotia CE CE US 15 AL		0.01	no - /1.	- 0.04	- 0.04	10.04	10.04	10.04
	DEISC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

i DETS

Summary of Chemical Analysis Soil Samples

			Lab No	2061468	2061469	2061470	2061471	2061472
		.Sa	mple ID	F-BH114	F-BH114	F-BH114	F-BH114	F-BH114
			Depth	0.50	1.80	2.80	3.80	5.80
		(Other ID					
		Sam	ple Type	ES	ES	ES	ES	ES
		Sampl	ing Date	16/09/2022	16/09/2022	16/09/2022	16/09/2022	16/09/2022
Test	Mathad	Sampli	ng Time	1000	0900	0930	1000	1103
Aliphatic C10 C12: EH CH 1D AL		1 5	Units ma/ka	< 1 E	< 1 E	< 1 E	< 1 E	< 1 E
	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
	DETSC 3072#	3.4	mg/кg	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C35-C40: EH_CU_1D_AL	DETSC 3072*	3.4	mg/kg	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C5-C40: EH_CU+HS_1D_AL	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072#	0.6	mg/kg	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Aromatic C35-C40: EH_CU_1D_AR	DETSC 3072*	1.4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Aromatic C5-C40: EH_CU+HS_1D_AR	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10
TPH Ali/Aro C5-C40: EH_CU+HS_1D_Total	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10
PAHs								
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	0.03	< 0.03	< 0.03	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	0.10	0.06	< 0.03	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	0.30	0.31	< 0.03	< 0.03	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	0.17	0.25	< 0.03	< 0.03	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	0.54	0.39	< 0.03	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	0.14	0.10	< 0.03	< 0.03	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	0.19	0.15	< 0.03	< 0.03	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	0.49	0.36	< 0.03	< 0.03	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	0.04	0.03	< 0.03	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	1.5	0.73	< 0.03	< 0.03	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	0.15	0.10	< 0.03	< 0.03	< 0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	0.04	0.04	< 0.03	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	0.97	0.29	< 0.03	< 0.03	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	0.93	0.66	< 0.03	< 0.03	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	5.6	3.4	< 0.10	< 0.10	< 0.10

	Lab No		2061468	2061469	2061470	2061471	2061472	
		.Sa	ample ID	F-BH114	F-BH114	F-BH114	F-BH114	F-BH114
			Depth	0.50	1.80	2.80	3.80	5.80
			Other ID					
		Sam	ple Type	ES	ES	ES	ES	ES
		Sampl	ing Date	16/09/2022	16/09/2022	16/09/2022	16/09/2022	16/09/2022
T = -4		Sampl	ing Time	1000	0900	0930	1000	1103
	wiethod	LOD	Units					
	DETSC 2401#	0.01	ma/ka	< 0.01			< 0.01	
	DETSC 2401#	0.01	mg/kg	< 0.01			< 0.01	
PCB 32	DETSC 3401#	0.01	mg/kg	< 0.01			< 0.01	
	DETSC 3401#	0.01	mg/kg	< 0.01			< 0.01	
PCB 153	DETSC 3401#	0.01	mg/kg	< 0.01			< 0.01	
PCB 138	DETSC 3401#	0.01	mg/kg	< 0.01			< 0.01	
PCB 180	DETSC 3401#	0.01	mg/kg	< 0.01			< 0.01	
РСВ 77	DETSC 3401*	0.01	mg/kg	< 0.01			< 0.01	
PCB 81	DETSC 3401*	0.01	mg/kg	< 0.01			< 0.01	
PCB 105	DETSC 3401*	0.01	mg/kg	< 0.01			< 0.01	
PCB 114	DETSC 3401*	0.01	mg/kg	< 0.01			< 0.01	
PCB 118	DETSC 3401*	0.01	mg/kg	< 0.01			< 0.01	
PCB 123	DETSC 3401*	0.01	mg/kg	< 0.01			< 0.01	
PCB 126	DETSC 3401*	0.01	mg/kg	< 0.01			< 0.01	
PCB 156	DETSC 3401*	0.01	mg/kg	< 0.01			< 0.01	
PCB 157	DETSC 3401*	0.01	mg/kg	< 0.01			< 0.01	
PCB 167	DETSC 3401*	0.01	mg/kg	< 0.01			< 0.01	
PCB 169	DETSC 3401*	0.01	mg/kg	< 0.01			< 0.01	
PCB 189	DETSC 3401*	0.01	mg/kg	< 0.01			< 0.01	
PCB 7 Total	DETSC 3401#	0.01	mg/kg	< 0.01			< 0.01	
Phenols	1							
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3	0.7	< 0.3
Subcontracted Analysis	1							
Benzene	\$*	<2	ug/kg	5		<2		<2
Toluene	\$*	<5	ug/kg	<5		<5		<5
Ethylbenzene	\$*	<2	ug/kg	<2		<2		<2
p & m-xylene	\$*	<2	ug/kg	<2		<2		<2
o-xylene	\$*	<2	ug/kg	<2		<2		<2
МТВЕ	\$*	<5	ug/kg	<5		<5		<5
ТАМЕ	\$*	< 5	ug/kg	< 5		<5		<5

Summary of Chemical Analysis

Leachate Samples Our Ref 22-18803 Client Ref 60678042

Contract Title NZT Feed GI

		Lab No Sample ID. Depth		2061473	2061474	2061475
				F-BH114	F-BH114	F-BH114
				0.50	1.80	3.80
			Other ID			
		Sam	ple Type	ES	ES	ES
		Samp	ling Date	16/09/2022	16/09/2022	16/09/2022
		Sampl	ling Time	1000	0900	1000
Test	Method	LOD	Units			
Preparation						
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y	Y	Y
Metals		10		r		r
Aluminium, Dissolved	DETSC 2306	10	ug/I	2.2	280	1.0
Arsenic, Dissolved	DETSC 2306	0.16	ug/I	3.3	2.0	1.0
Beryllium, Dissolved	DETSC 2306*	0.1	ug/I	170	< 0.1	120
Boron, Dissolved	DETSC 2306*	12	ug/I	1/0	64	120
Cadmium, Dissolved	DETSC 2306	0.03	ug/I	< 0.03	< 0.03	< 0.03
Chromium III, Dissolved	DETSC 2306*	1	ug/l	< 1.0	1.1	1.7
Chromium, Hexavalent	DETSC 2203	0.007	mg/l	< 0.007	< 0.007	< 0.007
Copper, Dissolved	DETSC 2306	0.4	ug/l	11	5.0	2.8
Iron, Dissolved	DETSC 2306	5.5	ug/l	< 5.5	< 5.5	< 5.5
Lead, Dissolved	DETSC 2306	0.09	ug/l	25	24	20
Manganese, Dissolved	DETSC 2306	0.22	ug/l		2.4	
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.02	0.07	0.03
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l		5.8	
Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5	< 0.5	< 0.5
Phosphorus as P, Dissolved	DETSC 2306	18	ug/l		46	
Selenium. Dissolved	DETSC 2306	0.25	ug/l	1.3	1.4	9.1
Tin. Dissolved	DETSC 2306*	0.4	ug/l		< 0.4	
Vanadium, Dissolved	DETSC 2306	0.6	ug/l		45	
Zinc Dissolved	DETSC 2306	13		< 1 3	< 1.3	< 1 3
	021002000	1.0	~8/ i	110	. 1.0	12.0
nH	DETSC 2008		nH	94	95	10.6
Cvanide Total Low Level	DETSC 2131	01	ייק ווס/ו	1.8	0.5	0.2
Cvanide, Free Low Level	DETSC 2131	0.1	روب اروب	< 0.1	< 0.1	< 0.1
Thiocyanate	DETSC 2131	20	μσ/I	150	30	< 20
Total Hardness as CaCO3	DETSC 2202	0.1	mg/l	516	257	126
Ammoniacal Nitrogon as NH4	DETSC 2303	0.1	mg/l	0.00	0.11	< 0.02
	DETSC 2207	0.015	mg/l	0.08	0.11	< 0.02
	DETSC 2207	0.015	mg/i	0.078	0.11	< 0.015
Ammoniacai Nitrogen as N	DETSC 2207	0.015	mg/I	0.064	0.087	< 0.015
Chloride	DETSC 2055	0.1	mg/I		13	
Fluoride	DETSC 2055*	0.1	mg/l		< 0.10	
Nitrate as NO3	DETSC 2055	0.1	mg/l	< 0.10	0.99	< 0.10
Nitrite as NO2	DETSC 2055	0.1	mg/l	0.48	< 0.10	< 0.10
Ortho Phosphate as P	DETSC 2205	0.01	mg/l		< 0.01	
Sulphate as SO4	DETSC 2055	0.1	mg/l	560	310	22
Total Organic Carbon	DETSC 2085	1	mg/l	11	6.2	5.6
Petroleum Hydrocarbons						
Aliphatic C5-C6: HS_1D_AL	DETSC 3322	0.1	ug/l		< 0.1	
Aliphatic C6-C8: HS 1D AL	DETSC 3322	0.1	ug/l		< 0.1	

i DETS

Summary of Chemical Analysis

Leachate Samples

		Lab No		2061473	2061474	2061475
		.S	ample ID	F-BH114	F-BH114	F-BH114
		Depth		0.50	1.80	3.80
		Other ID Sample Type				
				ES	ES	ES
		Sampling Date		16/09/2022	16/09/2022	16/09/2022
_		Sampl	ing Time	1000	0900	1000
Test	Method	LOD	Units			
Aliphatic C8-C10: HS_1D_AL	DETSC 3322	0.1	ug/l		< 0.1	
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072*	1	ug/l		< 1.0	
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072*	1	ug/l		< 1.0	
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072*	1	ug/l		< 1.0	
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072*	1	ug/l		< 1.0	
Aliphatic C5-C35: EH_CU+HS_1D_AL	DETSC 3072*	10	ug/l		< 10	
Aromatic C5-C7: HS_1D_AR	DETSC 3322	0.1	ug/l		< 0.1	
Aromatic C7-C8: HS_1D_AR	DETSC 3322	0.1	ug/l		< 0.1	
Aromatic C8-C10: HS_1D_AR	DETSC 3322	0.1	ug/l		< 0.1	
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072*	1	ug/l		< 1.0	
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072*	1	ug/l		< 1.0	
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072*	1	ug/l		< 1.0	
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072*	1	ug/l		< 1.0	
Aromatic C5-C35: EH_CU+HS_1D_AR	DETSC 3072*	10	ug/l		< 10	
TPH Ali/Aro Total C5-C35: EH_CU+HS_1D_Total	DETSC 3072*	10	ug/l		< 10	
Benzene	DETSC 3322	1	ug/l		< 1.0	
Toluene	DETSC 3322	1	ug/l		< 1.0	
Ethylbenzene	DETSC 3322	1	ug/l		< 1.0	
Xvlene	DETSC 3322	1	ug/l		< 1.0	
PAHs			10		_	
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01	0.02	< 0.01
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01
Anthracene	DETSC 3304	0.01	ug/l	0.03	0.01	< 0.01
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	0.02	0.03	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	0.01	0.02	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	0.02	0.04	< 0.01
Benzo(g.h.i)pervlene	DETSC 3304	0.01	ug/l	0.01	0.02	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	0.01	0.03	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	0.02	0.03	< 0.01
Dibenzo(a.h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	0.06	0.06	< 0.01
Fluorene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-c,d)pvrene	DETSC 3304	0.01	ug/l	< 0.01	0.01	< 0.01
Naphthalene	DETSC 3304	0.05	ug/l	0.06	< 0.05	< 0.05
Phenanthrene	DETSC 3304	0.01	ug/l	0.10	0.03	< 0.01
Pyrene	DETSC 3304	0.01	ug/l	0.04	0.05	< 0.01
PAH Total	DETSC 3304	0.2	ug/l	0.39	0.34	< 0.20

Summary of Chemical Analysis

Leachate Samples

		Lab No		2061473	2061474	2061475
		.Sample ID		F-BH114	F-BH114	F-BH114
		Depth Other ID Sample Type		0.50	1.80	3.80
				ES	ES	ES
		Samp	ing Date	16/09/2022	16/09/2022	16/09/2022
_ .		Sampl	ing Time	1000	0900	1000
Test	Method	LOD	Units			
PCBS		0.0				
PCB 28 + PCB 31	DETSC 3402	0.3	ug/i		< 0.3	
PCB 52	DETSC 3402	0.2	ug/I		< 0.2	
PCB 77	DETSC 3402	0.3	ug/l		< 0.3	
PCB 81	DETSC 3402	0.2	ug/l		< 0.2	
PCB 101	DETSC 3402	0.3	ug/l		< 0.3	
PCB 105	DETSC 3402	0.2	ug/l		< 0.2	
PCB 114	DETSC 3402	0.3	ug/l		< 0.3	
PCB 118 + PCB 123	DETSC 3402	0.6	ug/l		< 0.6	
PCB 126	DETSC 3402	0.5	ug/l		< 0.5	
PCB 138	DETSC 3402	0.2	ug/l		< 0.2	
PCB 153	DETSC 3402	0.2	ug/l		< 0.2	
PCB 156	DETSC 3402	0.3	ug/l		< 0.3	
PCB 157	DETSC 3402	0.2	ug/l		< 0.2	
PCB 167	DETSC 3402	0.3	ug/l		< 0.3	
PCB 169	DETSC 3402	0.2	ug/l		< 0.2	
PCB 180	DETSC 3402	0.2	ug/l		< 0.2	
PCB 189	DETSC 3402	0.3	ug/l		< 0.3	
PCB 12	DETSC 3402	1	ug/l		< 1.0	
PCB 7 Total	DETSC 3402	1	ug/l		< 1.0	
Phenols						
Phenol	DETSC 3451*	0.1	ug/l		< 0.10	
4-Chloro-3-methylphenol	DETSC 3451*	0.1	ug/l		< 0.10	
2,4-Dichlorophenol	DETSC 3451*	0.1	ug/l		< 0.10	
2,4-Dimethylphenol	DETSC 3451*	0.1	ug/l		< 0.10	
p-cresol	DETSC 3451*	0.1	ug/l		< 0.10	
2,6-Dimethylphenol	DETSC 3451*	0.1	ug/l		< 0.10	
2,6-Dichlorophenol	DETSC 3451*	0.1	ug/l		< 0.10	
2,4,6-Trichlorophenol	DETSC 3451*	0.1	ug/l		< 0.10	

i DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 22-18803 Client Ref 60678042 Contract Title NZT Feed GI

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2061468	F-BH114 0.50	SOIL	Amosite	Amosite present as fibre bundles	Josh Best
2061469	F-BH114 1.80	SOIL	NAD	none	Josh Best
2061470	F-BH114 2.80	SOIL	NAD	none	Josh Best

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * -not included in laboratory scope of accreditation.

Summary of Asbestos Quantification Analysis Soil Samples

Our Ref 22-18803 *Client Ref* 60678042 *Contract Title* NZT Feed GI

		2061468			
		F-BH114			
		0.50			
		Other ID			
	Sar	nple Type	ES		
	Sam	pling Date	16/09/2022		
	Sam	oling Time	1000		
Test	Method	Units			
Total Mass% Asbestos (a+b+c)	DETSC 1102	Mass %	0.002		
Gravimetric Quantification (a)	DETSC 1102	Mass %	na		
Detailed Gravimetric Quantification (b)	DETSC 1102	Mass %	0.002		
Quantification by PCOM (c)	DETSC 1102	Mass %	na		
Potentially Respirable Fibres (d)	DETSC 1102	Fibres/g	na		
Breakdown of Gravimetric Analysis (a)					
Mass of Sample		g	26.51		
ACMs present*		type			
Mass of ACM in sample		g			
% ACM by mass		%			
% asbestos in ACM		%			
% asbestos in sample		%			
Breakdown of Detailed Gravimetric Analysis (b)					
% Amphibole bundles in sample		Mass %	0.002		
% Chrysotile bundles in sample		Mass %	na		
Breakdown of PCOM Analysis (c)					
% Amphibole fibres in sample		Mass %	na		
% Chrysotile fibres in sample		Mass %	na		
Breakdown of Potentially Respirable Fibre Analysis (d)					
Amphibole fibres		Fibres/g	na		
Chrysotile fibres		Fibres/g	na		
* Denotes test or material description outside of UKAS accreditation.					

% asbestos in Asbestos Containing Materials (ACMs) is determined by by reference to HSG 264. Recommended sample size for quantification is approximately 1kg

denotes deviating sample

Inappropriate

Information in Support of the Analytical Results

Our Ref 22-18803 Client Ref 60678042 Contract NZT Feed GI

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2061468	F-BH114 0.50 SOIL	16/09/22	GJ 250ml, GJ 500ml, PT 1L	Ammonia (3 days)	
2061469	F-BH114 1.80 SOIL	16/09/22	GJ 250ml, GJ 500ml, PT 1L	Ammonia (3 days)	
2061470	F-BH114 2.80 SOIL	16/09/22	GJ 250ml, GJ 500ml, PT 1L		
2061471	F-BH114 3.80 SOIL	16/09/22	GJ 250ml, GJ 500ml, PT 1L	Ammonia (3 days)	
2061472	F-BH114 5.80 SOIL	16/09/22	GJ 250ml, GJ 500ml, PT 1L		
2061473	F-BH114 0.50 LEACHATE	16/09/22	GJ 250ml, GJ 500ml, PT 1L		
2061474	F-BH114 1.80 LEACHATE	16/09/22	GJ 250ml, GJ 500ml, PT 1L		
2061475	F-BH114 3.80 LEACHATE	16/09/22	GJ 250ml, GJ 500ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det

Aliphatic C5-C6 Aliphatic C6-C8 Aliphatic C8-C10 Aliphatic C10-C12 Aliphatic C12-C16 Aliphatic C16-C21 Aliphatic C21-C35 Aliphatic C35-C40 Aliphatic C5-C40 Aromatic C5-C7 Aromatic C7-C8 Aromatic C8-C10 Aromatic C10-C12 Aromatic C12-C16 Aromatic C16-C21 Aromatic C21-C35 Aromatic C35-C40 Aromatic C5-C40 TPH Ali/Aro C5-C40 Aliphatic C5-C35 Aromatic C5-C35 TPH Ali/Aro Total C5-C35 Acronym HS 1D AL HS_1D_AL HS 1D AL EH_CU_1D_AL EH_CU_1D_AL EH CU 1D AL EH_CU_1D_AL EH CU 1D AL EH_CU+HS_1D_AL HS_1D_AR HS_1D_AR HS_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH CU 1D AR EH CU 1D AR EH_CU+HS_1D_AR EH_CU+HS_1D_Total EH_CU+HS_1D_AL EH_CU+HS_1D_AR EH_CU+HS_1D_Total

End of Report

Issued:

20-Oct-22

Certificate Number 22-19109

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- *Our Reference* 22-19109
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description 4 Soil samples.
 - Date Received 27-Sep-22
 - Date Started 27-Sep-22
- Date Completed 20-Oct-22
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

hurod

Kirk Bridgewood General Manager

Derwentside Environmental Testing Services Limited Unit 2, Park Road Industrial Estate South, Consett, Co Durham, DH8 5PY Tel: 01207 582333 • email: info@dets.co.uk • www.dets.co.uk

Page 1 of 10

			Lab No	2063354	2063355	2063356	2065445
		.Sa	ample ID	F-BH114	CR-TP112	CR-TP112	F-BH114
			Depth	13.20	0.30	2.30	20.30
			Other ID				
		Sam	ple Type	ES	ES	ES	ES
		Sampl	ing Date	20/09/2022	20/09/2022	20/09/2022	20/09/2022
		Sampli	ing Time	1200	n/s	n/s	1500
Test	Method	LOD	Units				
Preparation							
Moisture Content	DETSC 1004	0.1	%	26	7.1		11
Metals							
Aluminium	DETSC 2301*	1	mg/kg				12000
Arsenic	DETSC 2301#	0.2	mg/kg	9.1	13		8.5
Beryllium	DETSC 2301#	0.2	mg/kg	1.0	0.5		0.6
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	5.9	0.8		2.8
Cadmium	DETSC 2301#	0.1	mg/kg	0.1	0.5		< 0.1
Chromium III	DETSC 2301*	0.15	mg/kg	37	36		17
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0		< 1.0
Copper	DETSC 2301#	0.2	mg/kg	21	38		21
Iron	DETSC 2301	25	mg/kg				21000
Lead	DETSC 2301#	0.3	mg/kg	21	74		5.9
Manganese	DETSC 2301#	20	mg/kg				450
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05		< 0.05
Molybdenum	DETSC 2301#	0.4	mg/kg				0.5
Nickel	DETSC 2301#	1	mg/kg	33	22		21
Phosphorus	DETSC 2301*	1	mg/kg				890
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	4.0		< 0.5
Tin	DETSC 2301	1	mg/kg				1.0
Vanadium	DETSC 2301#	0.8	mg/kg	59	69		21
Zinc	DETSC 2301#	1	mg/kg	80	190		24
Inorganics							
рН	DETSC 2008#		рН	8.5	8.2		9.1
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.2	0.6		0.3
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1		< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg	0.9	< 0.6		4.1
Organic matter	DETSC 2002#	0.1	%	3.3	0.5		1.2
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg				6.2
Chloride	DETSC 2055	1	mg/kg				75.5
Fluoride	DETSC 2055	1	mg/kg				36
Nitrate as NO3	DETSC 2055	1	mg/kg	< 1.0	< 1.0		17
Ortho Phosphate as P	DETSC 2205*	0.1	mg/kg				0.15
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	450	730		260
Sulphide	DETSC 2024*	10	mg/kg	76	160		24
Sulphur (free)	DETSC 3049#	0.75	mg/kg	2.8	1.1		< 0.75
Sulphur as S, Total	DETSC 2320	0.01	%	0.56	0.11		0.53
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.18	0.30		0.10

*Iib***ETS**

Summary of Chemical Analysis Soil Samples

Sample ID F-BH114 CR-TP112 F-BH114 Depth 13.20 0.30 2.30 Other ID Sample Type ES ES 20/09/2022 20
Depth Other ID 13.20 0.30 2.30 20.30 Sample Type ES ES ES ES ES Sampling Date Sampling Time 1200 n/s n/s 1500 Test Method LOD Units 0.01 <0.01
Other ID Other ID Es Main Januard Januard </td
Sample Type Sampling Date Sampling Date Sampling Date Sampling Time Es Date Sampling Time Sampling Time <th< td=""></th<>
Sampling Date Sampling Time 20/09/2022 20/01 20/01 20/01 20/01 20/01 20/01 20/01 20/01 20/01 20/01 20/01 20/01 20/01 20/01
Sampling Time 1200 n/s n/s 1500 Test Method LOD Units Petroleum Hydrocarbons Aliphatic C5-C6: HS_1D_AL DETSC 3321* 0.01 mg/kg <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Test Method LOD Units Petroleum Hydrocarbons Aliphatic C5-C6: HS_1D_AL DETSC 3321* 0.01 mg/kg < 0.01
Petroleum Hydrocarbons Aliphatic CS-C6: HS_1D_AL DETSC 3321* 0.01 mg/kg < 0.01
Aliphatic CS-C6: HS_1D_AL DETSC 3321* 0.01 mg/kg < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Aliphatic C6-C8: HS_1D_AL DETSC 3321* 0.01 mg/kg < 0.01
Aliphatic C8-C10: HS_1D_AL DETSC 3321* 0.01 mg/kg < 0.01
Aliphatic C10-C12: EH_CU_1D_AL DETSC 3072# 1.5 mg/kg < 1.5
Aliphatic C12-C16: EH_CU_1D_AL DETSC 3072# 1.2 mg/kg < 1.2
Aliphatic C16-C21: EH_CU_1D_AL DETSC 3072# 1.5 mg/kg < 1.5
Aliphatic C21-C35: EH_CU_1D_AL DETSC 3072# 3.4 mg/kg < 3.4 190 < 3.4 Aliphatic C35-C40: EH_CU_1D_AL DETSC 3072* 3.4 mg/kg < 3.4
Aliphatic C35-C40: EH_CU_1D_AL DETSC 3072* 3.4 mg/kg < 3.4
Aliphatic C5-C40: EH_CU+HS_1D_AL DETSC 3072* 10 mg/kg < 10
Aromatic C5-C7: HS_1D_ARDETSC 3321*0.01mg/kg< 0.01< 0.01< 0.01< 0.01Aromatic C7-C8: HS_1D_ARDETSC 3321*0.01mg/kg< 0.01
Aromatic C7-C8: HS_1D_ARDETSC 3321*0.01mg/kg< 0.01< 0.01< 0.01< 0.01Aromatic C8-C10: HS_1D_ARDETSC 3321*0.01mg/kg< 0.01
Aromatic C8-C10: HS_1D_ARDETSC 3321*0.01mg/kg< 0.01< 0.01< 0.01< 0.01< 0.01Aromatic C10-C12: EH_CU_1D_ARDETSC 3072#0.9mg/kg< 0.9
Aromatic C10-C12: EH_CU_1D_AR DETSC 3072# 0.9 mg/kg < 0.9
Aromatic C12-C16: EH_CU_1D_AR DETSC 3072# 0.5 mg/kg < 0.5
Aromatic C16-C21: EH_CU_1D_ARDETSC 3072#0.6mg/kg< 0.6< 0.6290< 0.6Aromatic C21-C35: EH_CU_1D_ARDETSC 3072#1.4mg/kg< 1.4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Aromatic C35-C40: EH_CU_1D_AR DETSC 3072* 1.4 mg/kg < 1.4 < 1.4 < 1.4 < 1.4 < 1.4 Aromatic C5-C40: EH_CU+HS_1D_AR DETSC 3072* 10 mg/kg < 10
Aromatic C5-C40: EH_CU+HS_1D_AR DETSC 3072* 10 mg/kg <10 <10 680 <10 TPH Ali/Aro C5-C40: EH_CU+HS_1D_Total DETSC 3072* 10 mg/kg <10
TPH Ali/Aro C5-C40: EH_CU+HS_1D_Total DETSC 3072* 10 mg/kg < 10 < 10 2100 < 10 PAHs Acenaphthene DETSC 3303# 0.03 mg/kg < 0.03
PAHs Acenaphthene DETSC 3303# 0.03 mg/kg < 0.03
Acenaphthene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 <th< td=""></th<>
Acenaphthylene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 Anthracene DETSC 3303 0.03 mg/kg < 0.03
Anthracene DETSC 3303 0.03 mg/kg < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 <
Benzo(a)anthracene DETSC 3303# 0.03 mg/kg < 0.03 0.05 < 0.03
Benzo(a)pyrene DETSC 3303# 0.03 mg/kg < 0.03 0.03 < 0.03
Benzo(b)fluoranthene DETSC 3303# 0.03 mg/kg < 0.03 0.06 < 0.03
Benzo(g,h,i)perylene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 < 0.03
Benzo(k)fluoranthene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 < 0.03
Chrysene DETSC 3303 0.03 mg/kg < 0.03 0.05 < 0.03
Dibenzo(a,h)anthracene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03 < 0.03
Fluoranthene DETSC 3303# 0.03 mg/kg < 0.03 0.09 < 0.03
Fluorene DETSC 3303 0.03 mg/kg < 0.03 < 0.03 < 0.03
Indeno(1,2,3-c,d)pyrene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03
Naphthalene DETSC 3303# 0.03 mg/kg < 0.03 < 0.03 < 0.03
Phenanthrene DETSC 3303# 0.03 mg/kg < 0.03 0.03 < 0.03
Pyrene DETSC 3303# 0.03 mg/kg < 0.03 0.08 < 0.03
PAH - USEPA 16, Total DETSC 3303 0.1 mg/kg < 0.10 0.39 < 0.10

			Lab No	2063354	2063355	2063356	2065445
		.Sa	ample ID	F-BH114	CR-TP112	CR-TP112	F-BH114
			Depth	13.20	0.30	2.30	20.30
			Other ID				
		Sam	ple Type	ES	ES	ES	ES
		Sampl	ing Date	20/09/2022	20/09/2022	20/09/2022	20/09/2022
		Sampl	ing Time	1200	n/s	n/s	1500
Test	Method	LOD	Units				
Phenols	-						
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	0.4	< 0.3		< 0.3
Phenol	DETSC 3451*	0.01	mg/kg	< 0.01			
4-Chloro-3-methylphenol	DETSC 3451*	0.01	mg/kg	< 0.01			
2,4-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01			
2,4-Dimethylphenol	DETSC 3451*	0.01	mg/kg	< 0.01			
p-cresol	DETSC 3451*	0.01	mg/kg	< 0.01			
2,6-Dimethylphenol	DETSC 3451*	0.01	mg/kg	< 0.01			
2,6-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01			
2,4,6-Trichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01			
Subcontracted Analysis							
Benzene	\$*	<2	ug/kg	<2		<2	
Toluene	\$*	<5	ug/kg	<5		<5	
Ethylbenzene	\$*	<2	ug/kg	<2		<2	
p & m-xylene	\$*	<2	ug/kg	<2		<2	
o-xylene	\$*	<2	ug/kg	<2		<2	
МТВЕ	\$*	<5	ug/kg	<5		<5	
ТАМЕ	\$*	< 5	ug/kg	< 5		< 5	

Summary of Chemical Analysis Soil VOC/SVOC Samples

			Lab No	2063354	2063356
		.Sa	mple ID	F-BH114	CR-TP112
			Depth	13.20	2.30
			Other ID		
		Sam	ple Type	ES	ES
		Sampl	ing Date	20/09/2022	20/09/2022
		Sampli	ing Time	1200	n/s
Test	Method	LOD	Units		
VOCs					
Vinyl Chloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1 Dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Trans-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Cis-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
2,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Bromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Chloroform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1,1-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Carbon tetrachloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Benzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Trichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Dibromomethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Bromodichloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
cis-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Toluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
trans-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1,2-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Tetrachloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,3-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Dibromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dibromoethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Chlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1,1,2-tetrachloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Ethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
m+p-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
o-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Styrene	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01
Bromotorm	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Isopropylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Bromobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2,3-trichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
n-propylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
2-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,3,5-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
4-chlorotoluene	DFTSC 3431	0.01	mg/kg	< 0.01	< 0.01

Summary of Chemical Analysis Soil VOC/SVOC Samples

	Lab No				2063356
		.Sa	ample ID	F-BH114	CR-TP112
			Depth	13.20	2.30
			Other ID		
		Sam	ple Type	ES	ES
		Samp	ing Date	20/09/2022	20/09/2022
		Sampl	ing Time	1200	n/s
Test	Method	LOD	Units		
Tert-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2,4-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
sec-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
p-isopropyltoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,3-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,4-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
n-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dibromo-3-chloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2,4-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Hexachlorobutadiene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Naphthalene	DETSC 3431	0.01	mg/kg		< 0.01
1,2,3-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
MTBE	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01
SVOCs					
Phenol	DETSC 3433	0.1	mg/kg		< 0.1
Aniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2-Chlorophenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Benzyl Alcohol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2-Methylphenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Bis(2-chloroisopropyl)ether	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
3&4-Methylphenol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2,4-Dimethylphenol	DETSC 3433	0.1	mg/kg		< 0.1
Bis-(dichloroethoxy)methane	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2,4-Dichlorophenol	DETSC 3433	0.1	mg/kg		< 0.1
1,2,4-Trichlorobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
4-Chloro-3-methylphenol	DETSC 3433	0.1	mg/kg		< 0.1
2-Methylnaphthalene	DETSC 3433	0.1	mg/kg	< 0.1	0.3
Hexachlorocyclopentadiene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2,4,6-Trichlorophenol	DETSC 3433	0.1	mg/kg		< 0.1
2,4,5-Trichlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2-Chloronaphthalene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2,4-Dinitrotoluene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Acenaphthylene	DETSC 3433	0.1	mg/kg		< 0.1
3-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Acenaphthene	DETSC 3433	0.1	mg/kg		< 0.1
4-Nitrophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Dibenzofuran	DETSC 3433	0.1	mg/kg	< 0.1	0.1
2,6-Dinitrotoluene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1

Summary of Chemical Analysis Soil VOC/SVOC Samples

	2063354	2063356			
		.Sa	ample ID	F-BH114	CR-TP112
			Depth	13.20	2.30
			Other ID		
		Sam	ple Type	ES	ES
		Sampl	ing Date	20/09/2022	20/09/2022
		Sampl	ing Time	1200	n/s
Test	Method	LOD	Units		
2,3,4,6-Tetrachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Diethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
4-Chlorophenylphenylether	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Fluorene	DETSC 3433	0.1	mg/kg		< 0.1
4-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2-Methyl-4,6-Dinitrophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Diphenylamine	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
4-Bromophenylphenylether	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Hexachlorobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Pentachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Phenanthrene	DETSC 3433	0.1	mg/kg		0.5
Anthracene	DETSC 3433	0.1	mg/kg		< 0.1
Di-n-butylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Fluoranthene	DETSC 3433	0.1	mg/kg		0.3
Pyrene	DETSC 3433	0.1	mg/kg		0.2
Butylbenzylphthalate	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Benzo(a)anthracene	DETSC 3433	0.1	mg/kg		< 0.1
Chrysene	DETSC 3433	0.1	mg/kg		0.1
Bis(2-ethylhexyl)phthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Di-n-octylphthalate	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3433	0.1	mg/kg		< 0.1
Benzo(k)fluoranthene	DETSC 3433	0.1	mg/kg		< 0.1
Benzo(a)pyrene	DETSC 3433	0.1	mg/kg		< 0.1
Indeno(123cd)pyrene	DETSC 3433	0.1	mg/kg		< 0.1
Dibenzo(ah)anthracene	DETSC 3433	0.1	mg/kg		< 0.1
Benzo(ghi)perylene	DETSC 3433	0.1	mg/kg		< 0.1
1,4-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Dimethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
1,3-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
1,2-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2,3,5,6-Tetrachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Azobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Carbazole	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1

i DETS

Summary of Asbestos Analysis Soil Samples

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2063355	CR-TP112 0.30	SOIL	NAD	none	Michael Kay
Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * · not included in laboratory scope of accreditation.					

Inappropriate

Information in Support of the Analytical Results

Our Ref 22-19109 *Client Ref* 60678042 *Contract* NZT Feed GI

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2063354	F-BH114 13.20 SOIL	20/09/22	GJ 250ml, GJ 500ml, PT 1L		
2063355	CR-TP112 0.30 SOIL	20/09/22	GJ 250ml, GJ 500ml, PT 1L		
2063356	CR-TP112 2.30 SOIL	20/09/22	GJ 250ml, GJ 500ml, PT 1L		
2065445	F-BH114 20.30 SOIL	20/09/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days), Sulphur (free) (7 days), Total	
				Sulphur ICP (7 days), pH + Conductivity (7 days)	

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

	, ,
Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

List of HWOL Acronyms and Operators

Det

Det	Acronym
Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic C10-C12	EH_CU_1D_AL
Aliphatic C12-C16	EH_CU_1D_AL
Aliphatic C16-C21	EH_CU_1D_AL
Aliphatic C21-C35	EH_CU_1D_AL
Aliphatic C35-C40	EH_CU_1D_AL
Aliphatic C5-C40	EH_CU+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic C10-C12	EH_CU_1D_AR
Aromatic C12-C16	EH_CU_1D_AR
Aromatic C16-C21	EH_CU_1D_AR
Aromatic C21-C35	EH_CU_1D_AR
Aromatic C35-C40	EH_CU_1D_AR
Aromatic C5-C40	EH_CU+HS_1D_AR
TPH Ali/Aro C5-C40	EH CU+HS 1D Total

End of Report

Issued:

04-Oct-22

Certificate Number 22-19275

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- *Our Reference* 22-19275
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description 8 Soil samples.
 - Date Received 28-Sep-22
 - Date Started 28-Sep-22
- Date Completed 04-Oct-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logwood

Kirk Bridgewood General Manager

Soil Samples

			Lab No	2064390	2064391	2064392	2064393	2064394	2064395	2064396	2064397
		.Sa	ample ID	F-BH116	F-BH116	F-BH116	F-BH116	F-BH116	F-BH116	F-BH116	F-BH116
			Depth	4.50-4.93	6.00-6.70	9.00-9.70	11.02-11.53	12.00-12.53	12.88-13.50	14.00-14.45	14.55-15.00
			Other ID								
		Sam	ple Type	В	В	В	В	В	В	В	В
		Sampl	ing Date	02/09/2022	02/09/2022	02/09/2022	05/09/2022	05/09/2022	05/09/2002	05/09/2022	05/09/2022
		Sampl	ing Time	0900	0900	0900	1000	1000	1000	1000	1000
Test	Method	LOD	Units								
Inorganics											
рН	DETSC 2008#		рН	12.0		11.7					
Organic matter	DETSC 2002#	0.1	%				2.2	1.8		2.5	5.4
Carbonate (as CO2)	DETSC 2005	1	%		3.4				4.5		
Chloride Aqueous Extract	DETSC 2055	1	mg/l	100		24					
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	38		41					
Sulphur as S, Total	DETSC 2320	0.01	%	0.22		0.03					
Sulphate as SO4 Total	DETCC 2224 //	0.01	0/	0.00		0.00					

Information in Support of the Analytical Results

Our Ref 22-19275 *Client Ref* 60678042 *Contract* NZT Feed GI

Containers Received & Deviating Samples

		Date			Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2064390	F-BH116 4.50-4.93 SOIL	02/09/22	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2064391	F-BH116 6.00-6.70 SOIL	02/09/22	PT 1L		
2064392	F-BH116 9.00-9.70 SOIL	02/09/22	PT 1L	Total Sulphur ICP (7 days), pH + Conductivity (7 days)	
2064393	F-BH116 11.02-11.53 SOIL	05/09/22	PT 1L		
2064394	F-BH116 12.00-12.53 SOIL	05/09/22	PT 1L		
2064395	F-BH116 12.88-13.50 SOIL	05/09/02	PT 1L	Carbonate (28 days)	
2064396	F-BH116 14.00-14.45 SOIL	05/09/22	PT 1L		
2064397	F-BH116 14.55-15.00 SOIL	05/09/22	PT 1L		

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Issued:

10-Oct-22

Certificate Number 22-19347

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- Our Reference 22-19347
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description 5 Soil samples, 1 Leachate sample.
 - Date Received 28-Sep-22
- Date Started 28-Sep-22
- Date Completed 10-Oct-22
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logmood

Kirk Bridgewood General Manager

Derwentside Environmental Testing Services Limited Unit 2, Park Road Industrial Estate South, Consett, Co Durham, DH8 5PY Tel: 01207 582333 • email: info@dets.co.uk • www.dets.co.uk

			Lab No	2064596	2064597	2064598	2064599
		.Sa	ample ID	F-TP114	F-TP114	F-TP114	F-TP114
			Depth	1.00	3.30	4.00	4.30
		(Other ID				
		Sam	ple Type	ES	ES	ES	ES
		Sampl	ing Date	22/09/2022	22/09/2022	22/09/2022	22/09/2022
		Sampli	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Preparation		· • • •					
Moisture Content	DETSC 1004	0.1	%	4.4	8.2	6.4	3.9
Metals		· •	4			1500	
Aluminium	DETSC 2301*	1	mg/kg	9900	10000	4500	2700
Arsenic	DETSC 2301#	0.2	mg/kg	6.8	16	7.0	8.1
Beryllium	DETSC 2301#	0.2	mg/kg	0.8	1.6	0.5	0.3
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	1.5	1.2	0.9	0.5
Cadmium	DETSC 2301#	0.1	mg/kg	0.3	0.7	0.3	0.2
Chromium III	DETSC 2301*	0.15	mg/kg	1300	540	310	63
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	52	54	27	14
Iron	DETSC 2301	25	mg/kg	83000	55000	42000	24000
Lead	DETSC 2301#	0.3	mg/kg	31	130	61	47
Manganese	DETSC 2301#	20	mg/kg	22000	9300	5700	1800
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Molybdenum	DETSC 2301#	0.4	mg/kg	5.6	4.0	1.7	0.9
Nickel	DETSC 2301#	1	mg/kg	9.1	19	11	7.4
Phosphorus	DETSC 2301*	1	mg/kg	18000	9200	6000	1400
Selenium	DETSC 2301#	0.5	mg/kg	7.0	2.5	1.9	< 0.5
Tin	DETSC 2301	1	mg/kg	6.4	7.0	2.4	1.8
Vanadium	DETSC 2301#	0.8	mg/kg	2500	1200	800	170
Zinc	DETSC 2301#	1	mg/kg	59	140	61	51
Inorganics							
рН	DETSC 2008#		pН	11.7	11.6	11.2	11.3
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.1	0.2	< 0.1	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg	< 0.6	< 0.6	< 0.6	< 0.6
Organic matter	DETSC 2002#	0.1	%	0.5	1.2	1.0	0.3
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg	0.50	0.63	1.4	0.82
Chloride	DETSC 2055	1	mg/kg	54.9	56.4	77.4	33.0
Fluoride	DETSC 2055	1	mg/kg	11	23	9.7	21
Nitrate as NO3	DETSC 2055	1	mg/kg	3.6	9.7	7.9	3.7
Ortho Phosphate as P	DETSC 2205*	0.1	mg/kg	< 0.10	< 0.10	0.15	0.15
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	69	75	90	47
Sulphide	DETSC 2024*	10	mg/kg	420	530	330	110
Sulphur (free)	DETSC 3049#	0.75	mg/kg	1.2	0.97	< 0.75	< 0.75
Sulphur as S. Total	DFTSC 2320	0.01	%	0.22	0.13	0.07	0.03
Sulphate as SO4 Total	DFTSC 2321#	0.01	%	0.25	0.20	0.14	0.08
	DEIGCEGEIN	0.01	,,,	0.25	0.20	0.11	0.00

			Lab No	2064596	2064597	2064598	2064599
		.Sa	ample ID	F-TP114	F-TP114	F-TP114	F-TP114
			Depth	1.00	3.30	4.00	4.30
			Other ID				
		Sam	ple Type	ES	ES	ES	ES
		Sampl	ing Date	22/09/2022	22/09/2022	22/09/2022	22/09/2022
		Sampli	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Petroleum Hydrocarbons							
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C35-C40: EH_CU_1D_AL	DETSC 3072*	3.4	mg/kg	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C5-C40: EH_CU+HS_1D_AL	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9	< 0.9	< 0.9
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072#	0.6	mg/kg	< 0.6	< 0.6	< 0.6	< 0.6
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4
Aromatic C35-C40: EH_CU_1D_AR	DETSC 3072*	1.4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4
Aromatic C5-C40: EH_CU+HS_1D_AR	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10
TPH Ali/Aro C5-C40: EH_CU+HS_1D_Total	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10
PAHs		<u> </u>				<u>. </u>	
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	0.05	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	0.26	0.07	0.06
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	0.19	0.05	0.06
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	0.38	0.10	0.09
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	0.17	0.04	0.04
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	0.18	0.04	0.04
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03	0.29	0.09	0.07
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	0.03	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	0.47	0.13	0.10
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03
Indeno(1.2.3-c.d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	0.14	0.04	0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	0.03	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03	0.31	0.09	0.09
Pvrene	DETSC 3303#	0.03	mg/kg	< 0.03	0.39	0.11	0.09
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	< 0.10	2.9	0.77	0.64
		-	0, 0,				

			Lab No	2064596	2064597	2064598	2064599
		.Sa	ample ID	F-TP114	F-TP114	F-TP114	F-TP114
			Depth	1.00	3.30	4.00	4.30
			Other ID				
		Sam	ple Type	ES	ES	ES	ES
		Sampl	ing Date	22/09/2022	22/09/2022	22/09/2022	22/09/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Phenols							
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
Phenol	DETSC 3451*	0.01	mg/kg	< 0.01			
4-Chloro-3-methylphenol	DETSC 3451*	0.01	mg/kg	< 0.01			
2,4-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01			
2,4-Dimethylphenol	DETSC 3451*	0.01	mg/kg	< 0.01			
p-cresol	DETSC 3451*	0.01	mg/kg	< 0.01			
2,6-Dimethylphenol	DETSC 3451*	0.01	mg/kg	< 0.01			
2,6-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01			
2,4,6-Trichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01			
Subcontracted Analysis							
Benzene	\$*	<2	ug/kg	40		41	
Toluene	\$*	<5	ug/kg	11		12	
Ethylbenzene	\$*	<2	ug/kg	38		124	
p & m-xylene	\$*	<2	ug/kg	35		103	
o-xylene	\$*	<2	ug/kg	11		26	
МТВЕ	\$*	<5	ug/kg	<5		<5	
ТАМЕ	\$*	< 5	ug/kg	< 5		< 5	

Leachate Samples

			Lab No	2064600
		.Sa	F-TP114	
			Depth	1.00
		(Other ID	
		Sam	ple Type	ES
		Sampl	ing Date	22/09/2022
		Sampli	ng Time	n/s
Test	Method	LOD	Units	· · · · · · · · · · · · · · · · · · ·
Preparation				
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y
Metals				
Aluminium, Dissolved	DETSC 2306	10	ug/l	630
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	1.8
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	34
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03
Chromium III, Dissolved	DETSC 2306*	1	ug/l	4.2
Chromium, Hexavalent	DETSC 2203	0.007	mg/l	0.034
Copper, Dissolved	DETSC 2306	0.4	ug/l	2.6
Iron, Dissolved	DETSC 2306	5.5	ug/l	< 5.5
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.89
Manganese, Dissolved	DETSC 2306	0.22	ug/l	0.35
Mercury. Dissolved	DETSC 2306	0.01	ug/l	0.07
Molvbdenum. Dissolved	DETSC 2306	1.1	ug/l	1.2
Nickel. Dissolved	DETSC 2306	0.5	ug/l	< 0.5
Phosphorus as P. Dissolved	DETSC 2306	18	ug/l	24
Selenium, Dissolved	DETSC 2306	0.25	ug/l	0.32
Tin. Dissolved	DFTSC 2306*	0.4	ug/l	< 0.4
Vanadium. Dissolved	DETSC 2306	0.6	ug/l	48
Zinc Dissolved	DETSC 2306	13		1 7
Inorganics	521362300	1.0	4 <u>8</u> / 1	1.7
ne gamee	DETSC 2008		рH	9.0
Cvanide Total Low Level	DETSC 2000	0.1	بر ارهر	< 0.1
Cvanide, Free Low Level	DETSC 2131	0.1	رون ارون	< 0.1
Thiocyanate	DETSC 2131	20		< 20
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	48.1
Ammoniacal Nitrogen as NH4	DETSC 2303	0.1	mg/l	0.12
Ammoniacal Nitrogen as NH2	DETSC 2207	0.015	ma/l	0.12
Ammoniacal Nitrogen as N	DETSC 2207	0.015	m_/I	0.12
Chloride		0.013	mg/I	0.095 A 0
Eluoride	DETSC 2000	0.1	ma/l	4.0 0 // 7
Nitrate as NO2		0.1		0.47
Nitrito as NO2	DE 13C 2055	0.1	mg/1	0.51
Ortho Phosphate as P	DE ISC 2055	0.1	mg/1	0.10
Sulphate as SO4	DE13C 2205	0.01	111g/1	0.02
Suprate as SU4	DETSC 2055	0.1	mg/l	9.4
Dalla	DE15C 2085	L I	mg/I	1.8
rans Aconomhthono		0.01		< 0.01
	10=150.3304	i U.U.I.I	116/1	≤ 0.01

Leachate Samples

			Lab No	2064600
		.Sa	ample ID	F-TP114
			Depth	1.00
			Other ID	
		Sam	ple Type	ES
		Sampl	ing Date	22/09/2022
		Sampl	ing Time	n/s
Test	Method	LOD	Units	
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01
Anthracene	DETSC 3304	0.01	ug/l	< 0.01
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	< 0.01
Fluorene	DETSC 3304	0.01	ug/l	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01
Naphthalene	DETSC 3304	0.05	ug/l	0.09
Phenanthrene	DETSC 3304	0.01	ug/l	< 0.01
Pyrene	DETSC 3304	0.01	ug/l	< 0.01
PAH Total	DETSC 3304	0.2	ug/l	< 0.20

I DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 22-19347 Client Ref 60678042 Contract Title NZT Feed GI

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2064595	F-TP114 0.30	SOIL	NAD	none	Vicky Convery
2064596	F-TP114 1.00	SOIL	NAD	none	Vicky Convery
2064597	F-TP114 3.30	SOIL	NAD	none	Vicky Convery

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Inappropriate

Information in Support of the Analytical Results

Our Ref 22-19347 *Client Ref* 60678042 *Contract* NZT Feed GI

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2064595	F-TP114 0.30 SOIL	22/09/22	GJ 250ml, GJ 60ml, PT 1L		
2064596	F-TP114 1.00 SOIL	22/09/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2064597	F-TP114 3.30 SOIL	22/09/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2064598	F-TP114 4.00 SOIL	22/09/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2064599	F-TP114 4.30 SOIL	22/09/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2064600	F-TP114 1.00 LEACHATE	22/09/22	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

List of HWOL Acronyms and Operators

Det

Det	Acronym
Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic C10-C12	EH_CU_1D_AL
Aliphatic C12-C16	EH_CU_1D_AL
Aliphatic C16-C21	EH_CU_1D_AL
Aliphatic C21-C35	EH_CU_1D_AL
Aliphatic C35-C40	EH_CU_1D_AL
Aliphatic C5-C40	EH_CU+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic C10-C12	EH_CU_1D_AR
Aromatic C12-C16	EH_CU_1D_AR
Aromatic C16-C21	EH_CU_1D_AR
Aromatic C21-C35	EH_CU_1D_AR
Aromatic C35-C40	EH_CU_1D_AR
Aromatic C5-C40	EH_CU+HS_1D_AR
TPH Ali/Aro C5-C40	EH CU+HS 1D Total

End of Report

Issued:

10-Oct-22

Certificate Number 22-19349

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- Our Reference 22-19349
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description 5 Soil samples, 1 Leachate sample.
 - Date Received 28-Sep-22
- Date Started 28-Sep-22
- Date Completed 10-Oct-22
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logmood

Kirk Bridgewood General Manager

Derwentside Environmental Testing Services Limited Unit 2, Park Road Industrial Estate South, Consett, Co Durham, DH8 5PY Tel: 01207 582333 • email: info@dets.co.uk • www.dets.co.uk

Page 1 of 9

Soil Samples

			Lab No	2064602	2064604	2064605	2064606
		.Sa	ample ID	F-TP113	F-TP113	F-TP113	F-TP113
			Depth	0.20	2.50	3.30	4.50
			Other ID				
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL
		Sampl	ing Date	23/09/2022	23/09/2022	23/09/2022	23/09/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Preparation							
Moisture Content	DETSC 1004	0.1	%	7.3	7.7	11	4.4
Metals							
Aluminium	DETSC 2301*	1	mg/kg	10000	23000	13000	
Arsenic	DETSC 2301#	0.2	mg/kg	2.5	16	39	9.9
Beryllium	DETSC 2301#	0.2	mg/kg	1.2	2.9	1.9	< 0.2
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	4.7	1.3	1.2	0.3
Cadmium	DETSC 2301#	0.1	mg/kg	0.1	0.7	5.5	0.1
Chromium III	DETSC 2301*	0.15	mg/kg	64	150	97	3.8
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	10	79	160	6.7
Iron	DETSC 2301	25	mg/kg	8600	37000	73000	
Lead	DETSC 2301#	0.3	mg/kg	9.6	130	3900	57
Manganese	DETSC 2301#	20	mg/kg	1700	4200	2300	
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	0.08	0.13	< 0.05
Molybdenum	DETSC 2301#	0.4	mg/kg	1.4	2.4	3.3	
Nickel	DETSC 2301#	1	mg/kg	3.0	15	37	3.1
Phosphorus	DETSC 2301*	1	mg/kg	850	1600	1800	
Selenium	DETSC 2301#	0.5	mg/kg	0.9	2.1	< 0.5	< 0.5
lin	DETSC 2301	1	mg/kg	1.2	11	24	45
Vanadium	DETSC 2301#	0.8	mg/kg	130	250	230	15
Zinc	DETSC 2301#	1	mg/kg	19	270	1300	56
inorganics				10 7	44.2	10.0	
pH	DETSC 2008#		рн	10.7	11.2	10.2	9.8
Cyanide, Iotal	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	16	0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg	< 0.6	3.1	< 0.6	< 0.6
Organic matter	DETSC 2002#	0.1	%	0.5	2.0	1.4	0.4
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg	0.74	0.76	0.81	
Chloride	DETSC 2055	1	mg/kg	25.2	50.1	78.3	
Fluoride	DETSC 2055	1	mg/kg	4.6	6.3	23	
Nitrate as NO3	DETSC 2055	1	mg/kg	3.8	8.1	2.8	2.8
Ortho Phosphate as P	DETSC 2205*	0.1	mg/kg	< 0.10	0.15	0.14	
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	810	130	100	24
Sulphide	DETSC 2024*	10	mg/kg	870	2000	420	200
Sulphur (free)	DETSC 3049#	0.75	mg/kg	19	< 0.75	< 0.75	< 0.75
Sulphur as S, Total	DETSC 2320	0.01	%	0.18	0.33	0.14	0.02
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.65	0.33	0.14	0.33

Soil Samples

	Lab No			2064602	2064604	2064605	2064606
	.Sample ID		F-TP113	F-TP113	F-TP113	F-TP113	
			Depth	0.20	2.50	3.30	4.50
			Other ID				
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL
		Samp	ing Date	23/09/2022	23/09/2022	23/09/2022	23/09/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Petroleum Hydrocarbons							
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C35-C40: EH_CU_1D_AL	DETSC 3072*	3.4	mg/kg	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C5-C40: EH_CU+HS_1D_AL	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS 1D AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12: EH CU 1D AR	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9	< 0.9	< 0.9
Aromatic C12-C16: EH CU 1D AR	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072#	0.6	mg/kg	< 0.6	7.9	22	< 0.6
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072#	1.4	mg/kg	< 1.4	26	54	< 1.4
Aromatic C35-C40: FH_CU_1D_AR	DETSC 3072*	1.4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4
Aromatic C5-C40: FH_CU+HS_1D_AR	DETSC 3072*	10	mg/kg	< 10	34	76	< 10
TPH Ali/Aro C5-C40: EH_CU+HS_1D_Total	DETSC 3072*	10	mg/kg	< 10	34	76	< 10
PAHs	52100 0072	10		. 10	0.		. 10
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	0.06	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	0.09	0.07	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	0.36	0.57	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	0.04	2.2	1.9	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	1.8	1.2	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	0.06	2.4	1.7	< 0.03
Benzo(g,h,i)pervlene	DETSC 3303#	0.03	mg/kg	< 0.03	0.83	0.49	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	1.1	0.74	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	0.06	1.8	14	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	0.25	0.15	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	0.10	4.6	5.1	0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	0.07	0.18	< 0.03
Indeno(1,2,3-c,d)pyrene	DFTSC 3303#	0.03	mg/kg	< 0.03	0.88	0.56	< 0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	0.09	0.07	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	0.04	13	2.2	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	0.01	3.7	3.9	< 0.03
PAH - USEPA 16 Total	DETSC 3303	0.03	mg/kg	0.10	21	20	< 0.00
PCBs	DEISC 5505	0.1	116/16	0.55		20	, 0.10
PCB 28 + PCB 31	DETSC 3401#	0.01	mg/kg		< 0.01		
PCB 52	DETSC 3401#	0.01	mg/kg		< 0.01		
PCB 101	DETSC 3401#	0.01	mg/kg		< 0.01		
PCB 118	DETSC 3401#	0.01	mg/kg		< 0.01		
PCB 152	DETSC 2401#	0.01	mg/kg		< 0.01		
PCB 133	DETSC 3401#	0.01	mg/kg		< 0.01		
PCB 130	DETSC 3401#	0.01	mg/kg		< 0.01		
	DETSC 3401#	0.01	mg/kg		< 0.01		
	DETSC 3401*	0.01	ma /li-		< 0.01		
	DEISC 3401*	0.01	mg/Kg		< 0.01		
	DEISC 3401*	0.01	rng/kg		< 0.01		
PCB 114	DEISC 3401*	0.01	mg/kg		< 0.01		
PCB 118	DEISC 3401*	0.01	mg/kg		< 0.01		

Soil Samples

		Lab No		2064602	2064604	2064605	2064606
		.Sa	ample ID	F-TP113	F-TP113	F-TP113	F-TP113
			Depth	0.20	2.50	3.30	4.50
			Other ID				
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL
		Sampl	ing Date	23/09/2022	23/09/2022	23/09/2022	23/09/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
PCB 123	DETSC 3401*	0.01	mg/kg		< 0.01		
PCB 126	DETSC 3401*	0.01	mg/kg		< 0.01		
PCB 156	DETSC 3401*	0.01	mg/kg		< 0.01		
PCB 157	DETSC 3401*	0.01	mg/kg		< 0.01		
PCB 167	DETSC 3401*	0.01	mg/kg		< 0.01		
PCB 169	DETSC 3401*	0.01	mg/kg		< 0.01		
PCB 189	DETSC 3401*	0.01	mg/kg		< 0.01		
PCB 7 Total	DETSC 3401#	0.01	mg/kg		< 0.01		
Phenols							
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
Phenol	DETSC 3451*	0.01	mg/kg		< 0.01		
4-Chloro-3-methylphenol	DETSC 3451*	0.01	mg/kg		< 0.01		
2,4-Dichlorophenol	DETSC 3451*	0.01	mg/kg		< 0.01		
2,4-Dimethylphenol	DETSC 3451*	0.01	mg/kg		< 0.01		
p-cresol	DETSC 3451*	0.01	mg/kg		< 0.01		
2,6-Dimethylphenol	DETSC 3451*	0.01	mg/kg		< 0.01		
2,6-Dichlorophenol	DETSC 3451*	0.01	mg/kg		< 0.01		
2,4,6-Trichlorophenol	DETSC 3451*	0.01	mg/kg		< 0.01		
Subcontracted Analysis							
Benzene	\$*	<2	ug/kg	41	<2		
Toluene	\$*	<5	ug/kg	12	<85		
Ethylbenzene	\$*	<2	ug/kg	41	<2		
p & m-xylene	\$*	<2	ug/kg	33	<2		
o-xylene	\$*	<2	ug/kg	10	<2		
МТВЕ	\$*	<5	ug/kg	<5	<5		
TAME	Ś*	< 5	ug/kg	< 5	<5		

Leachate Samples

		2064607			
		.Sa	F-TP113		
			Depth	2.50	
		(Other ID		
		Sam	ple Type	LEACHATE	
		Sampl	ing Date	23/09/2022	
		Sampli	ing Time	n/s	
Test	Method	LOD	Units		
Preparation					
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y	
Metals					
Aluminium, Dissolved	DETSC 2306	10	ug/l	450	
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	2.8	
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1	
Boron, Dissolved	DETSC 2306*	12	ug/l	17	
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	
Chromium III, Dissolved	DETSC 2306*	1	ug/l	< 1.0	
Chromium, Hexavalent	DETSC 2203	0.007	mg/l	0.018	
Copper, Dissolved	DETSC 2306	0.4	ug/l	5.8	
Iron, Dissolved	DETSC 2306	5.5	ug/l	190	
Lead, Dissolved	DETSC 2306	0.09	ug/l	3.8	
Manganese, Dissolved	DETSC 2306	0.22	ug/l	7.4	
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.04	
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	< 1.1	
Nickel, Dissolved	DETSC 2306	0.5	ug/l	0.6	
Phosphorus as P. Dissolved	DETSC 2306	18	ug/l	38	
Selenium. Dissolved	DETSC 2306	0.25	ug/l	0.46	
Tin. Dissolved	DETSC 2306*	0.4	ug/l	< 0.4	
Vanadium. Dissolved	DETSC 2306	0.6	ug/l	14	
Zinc Dissolved	DETSC 2306	13		6.4	
Inorganics			87		
Н	DETSC 2008		нa	8.7	
Cvanide Total Low Level	DETSC 2131	01	ייק וופ/ו	0.1	
Cvanide Free Low Level	DETSC 2131	0.1	ug/l	< 0.1	
Thiocyanate	DETSC 2130	20		< 20	
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	15.6	
Ammoniacal Nitrogen as NH4	DETSC 2303	0.015	mg/l	0.19	
Ammoniacal Nitrogen as NH3	DETSC 2207	0.015	mg/l	0.13	
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	0.10	
Chloride	DETSC 2207	0.013	mg/l	1.14	
Eluoride	DETSC 2055*	0.1	mg/l	4.4	
		0.1	mg/l	0.44	
		0.1	ma/l	0.20	
Ortho Phoenbate as P		0.1	ma/l	< 0.10 0.02	
		0.01	ma/	0.02	
Supriate as SU4	DE ISC 2055	0.1	mg/l		
	DE15C 2085	1	mg/I	4.6	
rans		0.01		0.01	
ACEUDUITIETE	1011150.3304	I U.U.I	1/9/1	0.01	

Leachate Samples

			2064607	
		.Sa	ample ID	F-TP113
			2.50	
			Other ID	
		Sam	ple Type	LEACHATE
		Samp	ing Date	23/09/2022
		Sampl	ing Time	n/s
Test	Method	LOD	Units	
Acenaphthylene	DETSC 3304	0.01	ug/l	0.05
Anthracene	DETSC 3304	0.01	ug/l	0.03
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	0.08
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	0.08
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	0.11
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	0.08
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	0.04
Chrysene	DETSC 3304	0.01	ug/l	0.09
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	0.02
Fluoranthene	DETSC 3304	0.01	ug/l	0.23
Fluorene	DETSC 3304	0.01	ug/l	0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	0.08
Naphthalene	DETSC 3304	0.05	ug/l	0.09
Phenanthrene	DETSC 3304	0.01	ug/l	0.06
Pyrene	DETSC 3304	0.01	ug/l	0.20
PAH Total	DETSC 3304	0.2	ug/l	1.3

I DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 22-19349 Client Ref 60678042 Contract Title NZT Feed GI

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2064603	F-TP113 0.50	SOIL	NAD	none	Josh Best
2064604	F-TP113 2.50	SOIL	NAD	none	Josh Best
2064605	F-TP113 3.30	SOIL	NAD	none	Josh Best

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Inappropriate

Information in Support of the Analytical Results

Our Ref 22-19349 *Client Ref* 60678042 *Contract* NZT Feed GI

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2064602	F-TP113 0.20 SOIL	23/09/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2064603	F-TP113 0.50 SOIL	23/09/22	GJ 250ml, GJ 60ml, PT 1L		
2064604	F-TP113 2.50 SOIL	23/09/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2064605	F-TP113 3.30 SOIL	23/09/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2064606	F-TP113 4.50 SOIL	23/09/22	GJ 250ml, GJ 60ml, PT 1L		
2064607	F-TP113 2.50 LEACHATE	23/09/22	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

	, ,
Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

List of HWOL Acronyms and Operators

Det

Det	Acronym
Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic C10-C12	EH_CU_1D_AL
Aliphatic C12-C16	EH_CU_1D_AL
Aliphatic C16-C21	EH_CU_1D_AL
Aliphatic C21-C35	EH_CU_1D_AL
Aliphatic C35-C40	EH_CU_1D_AL
Aliphatic C5-C40	EH_CU+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic C10-C12	EH_CU_1D_AR
Aromatic C12-C16	EH_CU_1D_AR
Aromatic C16-C21	EH_CU_1D_AR
Aromatic C21-C35	EH_CU_1D_AR
Aromatic C35-C40	EH_CU_1D_AR
Aromatic C5-C40	EH_CU+HS_1D_AR
TPH Ali/Aro C5-C40	EH CU+HS 1D Total

End of Report

Issued:

11-Oct-22

Certificate Number 22-19513

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- Our Reference 22-19513
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description 4 Soil samples, 1 Leachate sample.
 - Date Received 30-Sep-22
- Date Started 30-Sep-22
- Date Completed 11-Oct-22
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logmood

Kirk Bridgewood General Manager

Derwentside Environmental Testing Services Limited Unit 2, Park Road Industrial Estate South, Consett, Co Durham, DH8 5PY Tel: 01207 582333 • email: info@dets.co.uk • www.dets.co.uk

			Lah No	2065520	2065521	2065522
		¢,		2005529 F-TP112	2005531 F_TD112	2005532 F-TD112
		.30	Donth	0.20	2.00	1-11112
			Other ID	0.30	2.00	3.70
		Com				50
		Sam	pie Type	ES	ES	ES
		Sampi	ing Date	26/09/2022	26/09/2022	26/09/2022
Tost	Mothod	JOD		n/s	n/s	n/s
Propagation	Wethou	100	Units			
Moisture Content	DETSC 1004	0.1	%	2.2	15	13
Motals	DE13C 1004	0.1	70	5.5	4.5	4.5
Aluminium	DFTSC 2301*	1	mg/kg	1900	8400	2200
Arsenic	DETSC 2301#	02	mg/kg	3.6	2 7	83
Beryllium	DETSC 2301#	0.2	mg/kg	< 0.2	0.9	0.3
Boron Water Soluble	DETSC 2301#	0.2	mg/kg	0.2	1.5	0.5
Cadmium	DETSC 2301#	0.1	mg/kg	< 0.1	0.3	< 0.1
Chromium III	DETSC 2301*	0.1	mg/kg	19	1300	22
Chromium Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	82	41	8.0
Iron	DETSC 2301	25	mg/kg	44000	100000	10000
Lead	DETSC 2301#	03	mg/kg	73	18	15
Manganese	DETSC 2301#	20	mg/kg	600	29000	370
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Molybdenum	DETSC 2323#	0.03	mg/kg	1.6	6.2	< 0.03
Nickel	DETSC 2301#	0.4	mg/kg	4.6	5.8	61
Phosphorus	DETSC 2301*	1	mg/kg	140	22000	340
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	7.0	< 0.5
Tin	DETSC 2301	1	mg/kg	< 1.0	7.1	< 1.0
Vanadium	DETSC 2301#	0.8		19	2600	48
Zinc	DETSC 2301#	1	mg/kg	85	73	34
Inorganics						
pH	DFTSC 2008#		рН	9.3	11.1	9.1
Cvanide, Total	DFTSC 2130#	0.1	mg/kg	0.2	< 0.1	< 0.1
Cvanide, Free	DFTSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Thiocyanate	DFTSC 2130#	0.6	mg/kg	< 0.6	< 0.6	< 0.6
Organic matter	DFTSC 2002#	0.0	%	0.8	0.7	03
Ammoniacal Nitrogen as N	DETSC 2119#	0.1	mg/kg	1.2	0.62	0.64
Chloride	DETSC 2055	0.5	mg/kg	51.9	41.6	0.04 4 1
Eluoride	DETSC 2055	1	mg/kg	2.4	13	1.1
Nitrate as NO3	DETSC 2055	1	mg/kg	2.4	11	2.2
Ortho Phosphate as P	DETSC 2005*	01	mg/kg	< 0.10	< 0.10	0.20
Sulphate Aqueous Extract as SOA	DETSC 2205	10	mg/l	840	23	30
Sulphido		10	ma/ka	0+0	510	200
Sulphur (free)	DETSC 2024	0.75	mg/kg	030	510	200
Sulphur as S. Total	DETSC 3049#	0.75	тт <u>е</u> / к <u>е</u> 0/	5.0	< 0.75	< 0.75
	DETSC 2320	0.01	%	0.08	0.19	0.03
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.70	0.30	0.08

		Lab No		2065529	2065531	2065532
		.Sa	ample ID	F-TP112	F-TP112	F-TP112
			Depth	0.30	2.00	3.70
			Other ID			
		Sam	ple Type	ES	ES	ES
		Samp	ing Date	26/09/2022	26/09/2022	26/09/2022
		Sampl	ing Time	n/s	n/s	n/s
Test	Method	LOD	Units			
Petroleum Hydrocarbons		1 1		[ſ
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	< 1.5	1.8	< 1.5
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072#	3.4	mg/kg	< 3.4	12	< 3.4
Aliphatic C35-C40: EH_CU_1D_AL	DETSC 3072*	3.4	mg/kg	< 3.4	< 3.4	< 3.4
Aliphatic C5-C40: EH_CU+HS_1D_AL	DETSC 3072*	10	mg/kg	< 10	16	< 10
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9	< 0.9
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072#	0.6	mg/kg	< 0.6	< 0.6	< 0.6
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4	< 1.4
Aromatic C35-C40: EH_CU_1D_AR	DETSC 3072*	1.4	mg/kg	< 1.4	< 1.4	< 1.4
Aromatic C5-C40: EH_CU+HS_1D_AR	DETSC 3072*	10	mg/kg	< 10	< 10	< 10
TPH Ali/Aro C5-C40: EH_CU+HS_1D_Total	DETSC 3072*	10	mg/kg	< 10	16	< 10
PAHs						
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	0.07	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	0.11	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	0.03	0.14	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	0.08	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	0.08	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	0.04	0.10	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	0.06	0.13	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	0.05	< 0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	0.04	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	0.08	0.05	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	0.05	0.12	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	0.30	0.93	< 0.10

			2065529	2065531	2065532	
		.Sa	ample ID	F-TP112	F-TP112	F-TP112
			Depth	0.30	2.00	3.70
			Other ID			
		Sam	ple Type	ES	ES	ES
		Sampl	ing Date	26/09/2022	26/09/2022	26/09/2022
		Sampl	ing Time	n/s	n/s	n/s
Test	Method	LOD	Units			
Phenols						
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	0.5	< 0.3	< 0.3
Subcontracted Analysis						
Benzene	\$*	<2	ug/kg	<2	<2	
Toluene	\$*	<5	ug/kg	<5	<5	
Ethylbenzene	\$*	<2	ug/kg	<2	<2	
p & m-xylene	\$*	<2	ug/kg	<2	<2	
o-xylene	\$*	<2	ug/kg	<2	<2	
МТВЕ	\$*	<5	ug/kg	<5	<5	
TAME	\$*	< 5	ug/kg	< 5	< 5	

Leachate Samples

		Lab No			
		.Sa	F-TP112		
			Depth	2.00	
		(Other ID		
		Sam	ple Type	ES	
		Sampl	ing Date	26/09/2022	
		Sampli	ing Time	n/s	
Test	Method	LOD	Units		
Preparation					
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y	
Metals					
Aluminium, Dissolved	DETSC 2306	10	ug/l	840	
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	2.3	
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1	
Boron, Dissolved	DETSC 2306*	12	ug/l	20	
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	
Chromium III, Dissolved	DETSC 2306*	1	ug/l	< 1.0	
Chromium, Hexavalent	DETSC 2203	0.007	mg/l	0.022	
Copper, Dissolved	DETSC 2306	0.4	ug/l	2.5	
Iron, Dissolved	DETSC 2306	5.5	ug/l	16	
Lead, Dissolved	DETSC 2306	0.09	ug/l	3.1	
Manganese, Dissolved	DETSC 2306	0.22	ug/l	< 0.22	
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.04	
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	1.1	
Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5	
Phosphorus as P, Dissolved	DETSC 2306	18	ug/l	22	
Selenium, Dissolved	DETSC 2306	0.25	ug/l	0.26	
Tin, Dissolved	DETSC 2306*	0.4	ug/l	< 0.4	
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	21	
Zinc, Dissolved	DETSC 2306	1.3	ug/l	3.8	
Inorganics		I			
рН	DETSC 2008		pН	10.8	
Cyanide, Total Low Level	DETSC 2131	0.1	ug/l	< 0.1	
Cyanide, Free Low Level	DETSC 2131	0.1	ug/l	< 0.1	
Thiocyanate	DETSC 2130	20	ug/l	< 20	
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	78.8	
Ammoniacal Nitrogen as NH4	DETSC 2207	0.015	mg/l	0.04	
Ammoniacal Nitrogen as NH3	DETSC 2207	0.015	mg/l	0.040	
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	0.033	
Chloride	DETSC 2055	0.1	mg/l	4.1	
Fluoride	DETSC 2055*	0.1	mg/l	0.43	
Nitrate as NO3	DETSC 2055	0.1	mg/l	2.3	
Nitrite as NO2	DETSC 2055	0.1	mg/l	2.0	
Ortho Phosphate as P	DETSC 2205	0.01	mg/l	< 0.01	
Sulphate as SO4	DETSC 2055	0.1	mg/l	22	
Total Organic Carbon	DETSC 2085	1	mg/l	43	

Leachate Samples

			2065533		
		.Sample ID			
			Depth	2.00	
		C	Other ID		
		Samp	ole Type	ES	
		Sampli	ng Date	26/09/2022	
		Sampli	ng Time	n/s	
Test	Method	LOD	Units		
Petroleum Hydrocarbons					
Aliphatic C5-C6: HS 1D AL	DETSC 3322	0.1	ug/l	< 0.1	
Aliphatic C6-C8: HS_1D_AI	DETSC 3322	0.1	ug/l	< 0.1	
Aliphatic C8-C10: HS_1D_AI	DETSC 3322	0.1	ug/l	< 0.1	
Aliphatic C10-C12: FH_CU_1D_AL	DETSC 3072*	1	σ/I	< 1.0	
Aliphatic C12-C16: FH_CU_1D_AL	DETSC 3072*	1	ισ/I	< 1.0	
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 2072*	1	ug/1	< 1.0	
Aliphatic C10-C21: EII_C0_1D_AL	DETSC 3072	1	ug/i	< 1.0	
Aliphatic C21-C55. EH_CU_US_1D_AL	DETSC 3072*	10	ug/i	< 1.0	
	DETSC 3072*	10	ug/i	< 10	
Aromatic C5-C7: HS_ID_AR	DETSC 3322	0.1	ug/I	< 0.1	
Aromatic C7-C8: HS_1D_AR	DETSC 3322	0.1	ug/I	< 0.1	
Aromatic C8-C10: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	
Aromatic C5-C35: EH_CU+HS_1D_AR	DETSC 3072*	10	ug/l	< 10	
TPH Ali/Aro Total C5-C35: EH_CU+HS_1D_Total	DETSC 3072*	10	ug/l	< 10	
Benzene	DETSC 3322	1	ug/l	< 1.0	
Toluene	DETSC 3322	1	ug/l	< 1.0	
Ethylbenzene	DETSC 3322	1	ug/l	< 1.0	
Xylene	DETSC 3322	1	ug/l	< 1.0	
PAHs					
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01	
Acenaphthylene	DETSC 3304	0.01	ug/l	0.01	
Anthracene	DETSC 3304	0.01	ug/l	0.01	
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01	
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	0.01	
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	
Chrysene	DETSC 3304	0.01	ug/l	< 0.01	
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	
Fluoranthene	DETSC 3304	0.01	ug/l	0.03	
Fluorene	DETSC 3304	0.01	ug/l	< 0.01	
Indeno(1.2.3-c.d)pyrene	DETSC 3304	0.01	י,יפ∼ ו\סוו	< 0.01	
Nanhthalene	DETSC 3304	0.05	ر روبی ار میں	0.01	
Phenanthrene	DETSC 2204	0.05	ug/1	0.03	
Dyrono	DETSC 2204	0.01	ug/1	0.02	
ryielle	DE13C 3304	0.01	ug/I	0.02	

Leachate Samples

			Lab No	2065533
		.Sa	mple ID	F-TP112
			Depth	2.00
		C	Other ID	
		ole Type	ES	
		Sampli	ng Date	26/09/2022
		Sampli	n/s	
Test	Method	LOD	Units	
PAH Total	DETSC 3304	0.2	ug/l	< 0.20

Leachate Samples

			2065533	
		.Sa	F-TP112	
			Depth	2.00
		C	Other ID	
		Samp	le Type	ES
		Sampli	ng Date	26/09/2022
		Sampli	ng Time	n/s
Test	Method	LOD	Units	
PCBs				
PCB 28 + PCB 31	DETSC 3402	0.3	ug/l	< 0.3
PCB 52	DETSC 3402	0.2	ug/l	< 0.2
РСВ 77	DETSC 3402	0.3	ug/l	< 0.3
PCB 81	DETSC 3402	0.2	ug/l	< 0.2
PCB 101	DETSC 3402	0.3	ug/l	< 0.3
PCB 105	DETSC 3402	0.2	ug/l	< 0.2
PCB 114	DETSC 3402	0.3	ug/l	< 0.3
PCB 118 + PCB 123	DETSC 3402	0.6	ug/l	< 0.6
PCB 126	DETSC 3402	0.5	ug/l	< 0.5
PCB 138	DETSC 3402	0.2	ug/l	< 0.2
PCB 153	DETSC 3402	0.2	ug/l	< 0.2
PCB 156	DETSC 3402	0.3	ug/l	< 0.3
PCB 157	DETSC 3402	0.2	ug/l	< 0.2
PCB 167	DETSC 3402	0.3	ug/l	< 0.3
PCB 169	DETSC 3402	0.2	ug/l	< 0.2
PCB 180	DETSC 3402	0.2	ug/l	< 0.2
PCB 189	DETSC 3402	0.3	ug/l	< 0.3
PCB 12	DETSC 3402	1	ug/l	< 1.0
PCB 7 Total	DETSC 3402	1	ug/l	< 1.0
Phenols				
Phenol	DETSC 3451*	0.1	ug/l	< 0.10
4-Chloro-3-methylphenol	DETSC 3451*	0.1	ug/l	< 0.10
2,4-Dichlorophenol	DETSC 3451*	0.1	ug/l	< 0.10
2,4-Dimethylphenol	DETSC 3451*	0.1	ug/l	< 0.10
p-cresol	DETSC 3451*	0.1	ug/l	< 0.10
2,6-Dimethylphenol	DETSC 3451*	0.1	ug/l	< 0.10
2,6-Dichlorophenol	DETSC 3451*	0.1	ug/l	< 0.10
2,4,6-Trichlorophenol	DETSC 3451*	0.1	ug/l	< 0.10
Subcontracted Analysis				
Hexavalent Chromium	\$*	<2	ug/l	20

I DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 22-19513 Client Ref 60678042 Contract Title NZT Feed GI

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2065529	F-TP112 0.30	SOIL	NAD	none	Josh Best
2065530	F-TP112 1.00	SOIL	NAD	none	Josh Best
2065531	F-TP112 2.00	SOIL	NAD	none	Josh Best

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Inappropriate

Information in Support of the Analytical Results

Our Ref 22-19513 *Client Ref* 60678042 *Contract* NZT Feed GI

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2065529	F-TP112 0.30 SOIL	26/09/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2065530	F-TP112 1.00 SOIL	26/09/22	GJ 250ml, GJ 60ml, PT 1L		
2065531	F-TP112 2.00 SOIL	26/09/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2065532	F-TP112 3.70 SOIL	26/09/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2065533	F-TP112 2.00 LEACHATE	26/09/22	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

	, ,
Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Acronym

List of HWOL Acronyms and Operators

Det

Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic C10-C12	EH_CU_1D_AL
Aliphatic C12-C16	EH_CU_1D_AL
Aliphatic C16-C21	EH_CU_1D_AL
Aliphatic C21-C35	EH_CU_1D_AL
Aliphatic C35-C40	EH_CU_1D_AL
Aliphatic C5-C40	EH_CU+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic C10-C12	EH_CU_1D_AR
Aromatic C12-C16	EH_CU_1D_AR
Aromatic C16-C21	EH_CU_1D_AR
Aromatic C21-C35	EH_CU_1D_AR
Aromatic C35-C40	EH_CU_1D_AR
Aromatic C5-C40	EH_CU+HS_1D_AR
TPH Ali/Aro C5-C40	EH_CU+HS_1D_Total
Aliphatic C5-C35	EH_CU+HS_1D_AL
Aromatic C5-C35	EH_CU+HS_1D_AR
TPH Ali/Aro Total C5-C35	EH_CU+HS_1D_Total

End of Report

Issued:

13-Oct-22

Certificate Number 22-19762

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- Our Reference 22-19762
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT FEED GI
 - Description 12 Soil samples, 5 Leachate samples.
 - Date Received 04-Oct-22
- Date Started 04-Oct-22
- Date Completed 13-Oct-22
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

legenood

Kirk Bridgewood General Manager

Derwentside Environmental Testing Services Limited Unit 2, Park Road Industrial Estate South, Consett, Co Durham, DH8 5PY Tel: 01207 582333 • email: info@dets.co.uk • www.dets.co.uk

Page 1 of 18

			Lab No	2066853	2066854	2066855	2066856	2066857	2066858
		.Sa	mple ID	F-TP115	F-TP115	F-TP115	F-TP117	F-TP117	F-TP117
			Depth	0.30	1.50	2.30	0.50	1.50	2.50
		(Other ID						
		Sam	ple Type	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	27/09/2022	27/09/2022	27/09/2022	27/09/2022	27/09/2022	27/09/2022
		Sampli	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Asbestos Quantification	DETSC 1102	0.001	%	0.003	0.003	0.003			
Preparation									
Moisture Content	DETSC 1004	0.1	%	8.5		9.7	8.7	11	6.6
Metals									
Aluminium	DETSC 2301*	1	mg/kg	9600		11000	5800	4200	4900
Arsenic	DETSC 2301#	0.2	mg/kg	14		14	50	19	20
Beryllium	DETSC 2301#	0.2	mg/kg	1.1		1.4	0.9	0.5	0.5
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	2.2		2.4	1.7	1.1	1.2
Cadmium	DETSC 2301#	0.1	mg/kg	0.5		0.5	0.8	0.4	0.2
Chromium III	DETSC 2301*	0.15	mg/kg	120		240	110	240	160
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	41		38	72	37	28
Iron	DETSC 2301	25	mg/kg	35000		38000	58000	50000	52000
Lead	DETSC 2301#	0.3	mg/kg	70		85	110	76	15
Manganese	DETSC 2301#	20	mg/kg	3600		5900	7300	10000	11000
Mercury	DETSC 2325#	0.05	mg/kg	0.14		< 0.05	< 0.05	< 0.05	< 0.05
Molybdenum	DETSC 2301#	0.4	mg/kg	1.6		2.0	1.2	1.0	0.7
Nickel	DETSC 2301#	1	mg/kg	22		13	25	19	14
Phosphorus	DETSC 2301*	1	mg/kg	2700		3300	2400	5300	4800
Selenium	DETSC 2301#	0.5	mg/kg	2.2		2.4	3.2	4.5	4.5
Tin	DETSC 2301	1	mg/kg	4.3		5.8	4.9	4.8	2.8
Vanadium	DETSC 2301#	0.8	mg/kg	330		460	420	860	640
Zinc	DETSC 2301#	1	mg/kg	170		160	160	54	28
Inorganics									
рН	DETSC 2008#		рН	10.9		11.7	9.2	11.4	10.3
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.2		0.8	0.2	< 0.1	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg	< 0.6		< 0.6	< 0.6	< 0.6	< 0.6
Organic matter	DETSC 2002#	0.1	%	2.6		12	2.8	2.8	0.2
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg	0.90		1.4	0.80	0.65	1.1
Chloride	DETSC 2055	1	mg/kg	89.5		63.9	371	334	64.5
Fluoride	DETSC 2055	1	mg/kg	22		46	2.5	8.9	< 1.0
Nitrate as NO3	DETSC 2055	1	mg/kg	5.1		10	17	34	13
Ortho Phosphate as P	DETSC 2205*	0.1	mg/kg	0.23		0.22	0.95	0.29	1.6
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	18		410	390	790	1000
Sulphide	DETSC 2024*	10	mg/kg	920		1300	1100	310	700
Sulphur (free)	DETSC 3049#	0.75	mg/kg	8.9		3.1	10	0.94	2.1
Sulphur as S, Total	DETSC 2320	0.01	%	0.20		0.21	0.17	0.10	0.11
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.34		0.78	0.42	0.42	0.50
Petroleum Hydrocarbons	1				1	_			

			Lab No	2066853	2066854	2066855	2066856	2066857	2066858
		.Sa	ample ID	F-TP115	F-TP115	F-TP115	F-TP117	F-TP117	F-TP117
			Depth	0.30	1.50	2.30	0.50	1.50	2.50
			Other ID						
		Sam	ple Type	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	27/09/2022	27/09/2022	27/09/2022	27/09/2022	27/09/2022	27/09/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	< 1.5		< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072#	1.2	mg/kg	11		< 1.2	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	35		< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072#	3.4	mg/kg	200		< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C35-C40: EH_CU_1D_AL	DETSC 3072*	3.4	mg/kg	< 3.4		< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C5-C40: EH_CU+HS_1D_AL	DETSC 3072*	10	mg/kg	250		< 10	< 10	< 10	< 10
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072#	0.9	mg/kg	< 0.9		< 0.9	< 0.9	< 0.9	< 0.9
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072#	0.5	mg/kg	9.0		< 0.5	< 0.5	< 0.5	< 0.5
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072#	0.6	mg/kg	50		6.7	23	< 0.6	4.7
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072#	1.4	mg/kg	460		42	85	< 1.4	39
Aromatic C35-C40: EH_CU_1D_AR	DETSC 3072*	1.4	mg/kg	89		12	6.6	< 1.4	6.6
Aromatic C5-C40: EH_CU+HS_1D_AR	DETSC 3072*	10	mg/kg	610		61	120	< 10	50
TPH Ali/Aro C5-C40: EH_CU+HS_1D_Total	DETSC 3072*	10	mg/kg	850		61	120	< 10	50
PAHs				-					
Acenaphthene	DETSC 3303#	0.03	mg/kg	0.03		< 0.03	0.05	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	0.03		< 0.03	< 0.03	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	0.16		0.11	0.32	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	0.45		0.36	1.4	< 0.03	0.07
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	0.32		0.25	1.0	< 0.03	0.04
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	0.56		0.50	1.6	0.05	0.08
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	0.20		0.17	0.51	0.04	0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	0.27		0.22	0.62	< 0.03	0.03
Chrysene	DETSC 3303	0.03	mg/kg	0.57		0.49	1.7	0.05	0.11
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	0.06		0.04	0.18	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	1.3		0.99	3.2	0.06	0.17
Fluorene	DETSC 3303	0.03	mg/kg	0.05		< 0.03	0.04	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	0.17		0.16	0.46	0.04	0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	0.03		0.03	0.05	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	0.49		0.40	1.6	0.04	0.10
Pyrene	DETSC 3303#	0.03	mg/kg	1.2		0.97	2.4	0.04	0.11
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	5.8		4.7	15	0.32	0.74
PCBs			0				1		
PCB 28 + PCB 31	DETSC 3401#	0.01	mg/kg				< 0.01		
PCB 52	DETSC 3401#	0.01	mg/kg				< 0.01		
	1	· · · · · · · · · · · · · · · · · · ·			-				

			Lab No	2066853	2066854	2066855	2066856	2066857	2066858
		.Sa	ample ID	F-TP115	F-TP115	F-TP115	F-TP117	F-TP117	F-TP117
			Depth	0.30	1.50	2.30	0.50	1.50	2.50
			Other ID						
		Sam	ple Type	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	27/09/2022	27/09/2022	27/09/2022	27/09/2022	27/09/2022	27/09/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
PCB 101	DETSC 3401#	0.01	mg/kg				< 0.01		
PCB 118	DETSC 3401#	0.01	mg/kg				< 0.01		
PCB 153	DETSC 3401#	0.01	mg/kg				< 0.01		
PCB 138	DETSC 3401#	0.01	mg/kg				< 0.01		
PCB 180	DETSC 3401#	0.01	mg/kg				< 0.01		
PCB 77	DETSC 3401*	0.01	mg/kg				< 0.01		
PCB 81	DETSC 3401*	0.01	mg/kg				< 0.01		
PCB 105	DETSC 3401*	0.01	mg/kg				< 0.01		
PCB 114	DETSC 3401*	0.01	mg/kg				< 0.01		
PCB 118	DETSC 3401*	0.01	mg/kg				< 0.01		
PCB 123	DETSC 3401*	0.01	mg/kg				< 0.01		
PCB 126	DETSC 3401*	0.01	mg/kg				< 0.01		
PCB 156	DETSC 3401*	0.01	mg/kg				< 0.01		
PCB 157	DETSC 3401*	0.01	mg/kg				< 0.01		
PCB 167	DETSC 3401*	0.01	mg/kg				< 0.01		
PCB 169	DETSC 3401*	0.01	mg/kg				< 0.01		
PCB 189	DETSC 3401*	0.01	mg/kg				< 0.01		
PCB 7 Total	DETSC 3401#	0.01	mg/kg				< 0.01		
Phenols									
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3		< 0.3	< 0.3	< 0.3	< 0.3
Phenol	DETSC 3451*	0.01	mg/kg					< 0.01	
4-Chloro-3-methylphenol	DETSC 3451*	0.01	mg/kg					< 0.01	
2,4-Dichlorophenol	DETSC 3451*	0.01	mg/kg					< 0.01	
2,4-Dimethylphenol	DETSC 3451*	0.01	mg/kg					< 0.01	
p-cresol	DETSC 3451*	0.01	mg/kg					< 0.01	
2,6-Dimethylphenol	DETSC 3451*	0.01	mg/kg					< 0.01	
2,6-Dichlorophenol	DETSC 3451*	0.01	mg/kg					< 0.01	
2,4,6-Trichlorophenol	DETSC 3451*	0.01	mg/kg					< 0.01	
Subcontracted Analysis									
Benzene	\$*	<2	ug/kg	<2			5		6
Toluene	\$*	<5	ug/kg	<5			<5		<5
Ethylbenzene	\$*	<2	ug/kg	<2			<2		<2
p & m-xylene	\$*	<2	ug/kg	<2			<2		<2
o-xylene	\$*	<2	ug/kg	<2			<2		<2
МТВЕ	\$*	<5	ug/kg	<5			<5		<5
ТАМЕ	\$*	< 5	ug/kg	< 5			< 5		< 5

Sample ID F7113 F7113<				Lab No	2066859	2066860	2066861	2066862	2066863	2066864
Depth Other 0.20 0.70 1.70 2.70 3.00 4.00 Sample Type Sampling Date 2709/022 270 7.0 12 A 12			.Sa	ample ID	F-TP119	F-TP119	F-TP119	F-TP119	F-TP119	F-TP119
Other ID Sample Type Stample Type Stample Type Stample Type Stample Type Stample Type Type				Depth	0.20	0.70	1.70	2.70	3.00	4.00
Sample Type Es			(Other ID						
Sampling Date 2//09/2022 2//09/202 2//09/202 2//09/202 2//09/202 2//09/202 2//09/202 2//09/202 2//09/202 2//09/202 2//09/202 2//09/202 2//09/202 2//09/202 2//09/202 2//09/202 2//09/202 2//00 2//00 2//00 2//00 2//00 2//00 <			Sam	ple Type	ES	ES	ES	ES	ES	ES
sampling Time (n/s (n/s)			Sampl	ing Date	27/09/2022	27/09/2022	27/09/2022	27/09/2022	27/09/2022	27/09/2022
Test Method LOD Units Asbestos Quantification DETSC 1102 0.001 % 0.004 0.015 Image: Construct			Sampli	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Asbestos Quantífication DETSC 1102 0.001 % 0.004 0.015 Image: Content Preparation Netsure Content DETSC 1004 0.1 % 6.7 5.5 12 7.0 12 Metais Net/Sc 2301* 1 mg/kg 3700 14000 14000 3900 Assenic DETSC 2301* 0.2 mg/kg 0.3 0.6 1.5 1.7 0.4 Boron, Water Soluble DETSC 2301* 0.1 mg/kg 1.0 1.0 <<<.2 1.1 0.9 Chromium, Heavalent DETSC 2301* 0.1 mg/kg 1.0 1.0 < <<.10 < <<.10 < <<.10 < <<.10 < <<.10 < <<.10 <<.10 <<.10 < <<.10 < <<.10 < <<.10 < <.10 < <.100 <<.100 <<.100 <<.100 <<.10 <<.10 <<.10 < <.10 <<.10 <.10 <.10	Test	Method	LOD	Units						
Preparation Moisture Content DETSC 1004 0.1 % 6.7 S.5 1.2 7.0 1.2 Metals 1 mg/kg 3700 14000 14000 3900 Arsenic DETSC 2301# 0.2 mg/kg 6.2 1.3 9.5 5.1 5.6 Beryllium DETSC 2301# 0.2 mg/kg 1.0 1.0 <0.2 1.1 0.9 Cadmium DETSC 2301# 0.1 mg/kg 1.0 1.5 1.0 0.4 <0.1 Chromium, Hexavalent DETSC 2301# 0.15 mg/kg 31 290 240 230 200 Copper DETSC 2301# 0.3 mg/kg 2100 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Asbestos Quantification	DETSC 1102	0.001	%	0.004		0.015			
Moisture Content DETSC 1004 0.1 % 6.7 5.5 1.2 7.0 1.2 Metals 3.00	Preparation									
Metals DETSC 2301* 1 mg/kg 3700 14000 <	Moisture Content	DETSC 1004	0.1	%	6.7	5.5		12	7.0	12
Aluminium DETSC 2301* 1 mg/kg 3700 14000 14000 3900 Arsenic DETSC 2301* 0.2 mg/kg 6.2 13 9.5 5.1 5.0 Boron, Water Soluble DETSC 2301* 0.2 mg/kg 1.0 1.0 <0.2	Metals									
Arsenic DETSC 2301# 0.2 mg/kg 6.2 13 9.5 5.1 5.6 Beryllium DETSC 2301# 0.2 mg/kg 1.0 0.4 0.2 1.1 0.9 Cadmium DETSC 2301# 0.1 mg/kg 1.0 1.0 0.4 0.1 0.4 0.1 Chromium III DETSC 2301# 0.1 mg/kg 1.0 1.0 0.4 0.1 0.4 0.1 0.4 0.1 0.4 0.1 0.4 0.1 0.4 0.1 0.4 0.1 0.4 0.1 0.4 0.1 0.4 0.1 0.4 0.1 0.4 0.1 0.4 0.1 0.0 0.4 0.1 0.0 0.4 0.1 0.0 0.1 0.0	Aluminium	DETSC 2301*	1	mg/kg	3700			14000	14000	3900
Beryllium DETSC 2301# O.2 mg/kg O.3 O.6 I.5 I.7 O.4 Boron, Water Soluble DETSC 2311# O.2 mg/kg 1.0 I.0 <<0.2	Arsenic	DETSC 2301#	0.2	mg/kg	6.2	13		9.5	5.1	5.6
Boron, Water Soluble DETSC 2311# 0.2 mg/kg 1.0 < 0.2 1.1 0.9 Cadmium DETSC 2301# 0.1 mg/kg 1.0 1.0 0.4 <0.1	Beryllium	DETSC 2301#	0.2	mg/kg	0.3	0.6		1.5	1.7	0.4
Cadmium DETSC 2301# 0.1 mg/kg 1.0 1.0 0.4 <0.1 Chromium III DETSC 2301* 0.15 mg/kg 31 290 240 230 200 Chromium, Hexavalent DETSC 2301 1 mg/kg 210 <1.0	Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	1.0	1.0		< 0.2	1.1	0.9
Chromium III DETSC 2301* 0.15 mg/kg 31 290 240 230 200 Chromium, Hexavalent DETSC 2301* 0.2 mg/kg <1.0	Cadmium	DETSC 2301#	0.1	mg/kg	1.0	1.5		1.0	0.4	< 0.1
Chromium, Hexavalent DETSC 2204* 1 mg/kg <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Chromium III	DETSC 2301*	0.15	mg/kg	31	290		240	230	20
Copper DETSC 2301 # 0.2 mg/kg 29 45 57 24 3.1 Iron DETSC 2301 Z5 mg/kg 140000 72000 50000 6300 Lead DETSC 2301 # 0.3 mg/kg 1400 11000 10000 560 Marganese DETSC 2301 # 0.4 mg/kg 4.00 0.07 <0.05	Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0
Iron DETSC 2301 25 mg/kg 140000 72000 50000 6300 Lead DETSC 2301# 0.3 mg/kg 26 30 130 26 170 Manganese DETSC 2301# 20 mg/kg 400 11000 10000 560 Molybdenum DETSC 2301# 0.4 mg/kg 2.5 2.7 2.1 <0.4	Copper	DETSC 2301#	0.2	mg/kg	29	45		57	24	3.1
Lead DETSC 2301# 0.3 mg/kg 26 30 130 26 17 Manganese DETSC 2301# 20 mg/kg 1400 11000 10000 560 Morpdenum DETSC 2301# 0.05 mg/kg 2.0.5 0.0.7 <0.05	Iron	DETSC 2301	25	mg/kg	140000			72000	50000	6300
Manganese DETS C 2301# 20 mg/kg 1400 11000 10000 560 Mercury DETS C 2325# 0.05 mg/kg <0.05	Lead	DETSC 2301#	0.3	mg/kg	26	30		130	26	17
Mercury DETSC 2325# 0.05 mg/kg < 0.05 < 0.05 0.07 < 0.05 < 0.05 Molybdenum DETSC 2301# 0.4 mg/kg 2.5 2.7 2.1 < 0.4 Nickel DETSC 2301# 1 mg/kg 400 2700 1700 2700 Selenium DETSC 2301# 0.5 mg/kg 1.0 3.1 3.5 3.8 < 0.5 Tin DETSC 2301# 0.5 mg/kg 6.3 710 790 810 455 Zinc DETSC 2301# 0.8 mg/kg 63 710 190 71 19 Inorganics pH DETSC 2100# 0.1 mg/kg <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 </td <td>Manganese</td> <td>DETSC 2301#</td> <td>20</td> <td>mg/kg</td> <td>1400</td> <td></td> <td></td> <td>11000</td> <td>10000</td> <td>560</td>	Manganese	DETSC 2301#	20	mg/kg	1400			11000	10000	560
Molybdenum DETSC 2301# 0.4 mg/kg 2.5 2.7 2.1 <0.4 Nickel DETSC 2301# 1 mg/kg 19 22 17 8.0 2.1 Phosphorus DETSC 2301# 1 mg/kg 10 3.1 3.5 3.8 <0.5	Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05		0.07	< 0.05	< 0.05
Nickel DETSC 2301# 1 mg/kg 19 22 17 8.0 2.1 Phosphorus DETSC 2301* 1 mg/kg 400 2700 1700 270 Selenium DETSC 2301* 0.5 mg/kg 1.0 3.1 3.5 3.8 <0.5	Molybdenum	DETSC 2301#	0.4	mg/kg	2.5			2.7	2.1	< 0.4
Phosphorus DETSC 2301* 1 mg/kg 400 2700 1700 270 Selenium DETSC 2301# 0.5 mg/kg 1.0 3.1 3.5 3.8 <0.5	Nickel	DETSC 2301#	1	mg/kg	19	22		17	8.0	2.1
Selenium DETSC 2301# 0.5 mg/kg 1.0 3.1 3.5 3.8 < 0.5 Tin DETSC 2301 1 mg/kg 2.8 6.7 3.0 < 1.0	Phosphorus	DETSC 2301*	1	mg/kg	400			2700	1700	270
Tin DETSC 2301 1 mg/kg 2.8 6.7 3.0 <1.0 Vanadium DETSC 2301# 0.8 mg/kg 63 710 790 810 455 Zinc DETSC 2301# 1 mg/kg 170 110 190 71 199 Inorganics PH 0.6 11.6 11.8 12.0 11.1 Cyanide, Total DETSC 2103# 0.1 mg/kg <0.1	Selenium	DETSC 2301#	0.5	mg/kg	1.0	3.1		3.5	3.8	< 0.5
Vanadium DETSC 2301# 0.8 mg/kg 63 710 790 810 45 Zinc DETSC 2301# 1 mg/kg 170 110 190 71 19 Inorganics pH DETSC 2008# pH 10.6 11.6 11.8 12.0 11.1 Cyanide, Total DETSC 2130# 0.1 mg/kg < 0.1	Tin	DETSC 2301	1	mg/kg	2.8			6.7	3.0	< 1.0
Zinc DETSC 2301# 1 mg/kg 170 110 190 71 19 Inorganics PH DETSC 2008# PH 10.6 11.6 11.8 12.0 11.1 Cyanide, Total DETSC 2130# 0.1 mg/kg < 0.1 < < 0.1 < < 0.1 0.3 0.4 < < 0.1 Cyanide, Free DETSC 2130# 0.1 mg/kg < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1 < < 0.1	Vanadium	DETSC 2301#	0.8	mg/kg	63	710		790	810	45
Inorganics DETSC 2008# PH OH OLO OLI	Zinc	DETSC 2301#	1	mg/kg	170	110		190	71	19
pH DETSC 2008# pH 10.6 11.6 11.8 12.0 11.1 Cyanide, Total DETSC 2130# 0.1 mg/kg < 0.1	Inorganics									
Cyanide, Total DETSC 2130# 0.1 mg/kg < 0.1 < 0.1 0.3 0.4 < 0.1 Cyanide, Free DETSC 2130# 0.1 mg/kg < 0.1	рН	DETSC 2008#		рН	10.6	11.6		11.8	12.0	11.1
Cyanide, Free DETSC 2130# 0.1 mg/kg < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1		0.3	0.4	< 0.1
Thiocyanate DETSC 2130# 0.6 mg/kg < 0.6 < 0.6 < 0.6 1.8 < 0.6 Organic matter DETSC 2002# 0.1 % < 0.1	Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1
Organic matter DETSC 2002# 0.1 % < 0.1 0.7 7.9 < 0.1 0.7 Ammoniacal Nitrogen as N DETSC 2119# 0.5 mg/kg 0.66 0.63 0.79 0.68 Chloride DETSC 2055 1 mg/kg 140 172 552 22.2 Fluoride DETSC 2055 1 mg/kg 2.4 13 3.5 4.8 Nitrate as NO3 DETSC 2055 1 mg/kg 33 16 13 3.4 9.3 Ortho Phosphate as P DETSC 2076# 10 mg/kg 0.35 0.21 0.19 0.24 Sulphate Aqueous Extract as SO4 DETSC 2076# 10 mg/kg 140 280 580 1100 240 Sulphide DETSC 3049# 0.75 mg/kg 2.0 3.1 20 5.6 <0.75	Thiocyanate	DETSC 2130#	0.6	mg/kg	< 0.6	< 0.6		< 0.6	1.8	< 0.6
Ammoniacal Nitrogen as N DETSC 2119# 0.5 mg/kg 0.66 0.63 0.79 0.68 Chloride DETSC 2055 1 mg/kg 140 172 552 22.2 Fluoride DETSC 2055 1 mg/kg 2.4 13 3.5 4.8 Nitrate as NO3 DETSC 2055 1 mg/kg 33 16 13 3.4 9.3 Ortho Phosphate as P DETSC 205* 0.1 mg/kg 0.35 0.21 0.19 0.24 Sulphate Aqueous Extract as SO4 DETSC 2024* 10 mg/kg 140 280 580 1100 240 Sulphur (free) DETSC 2024* 10 mg/kg 2.0 3.1 20 5.6 < 0.75	Organic matter	DETSC 2002#	0.1	%	< 0.1	0.7		7.9	< 0.1	0.7
Chloride DETSC 2055 1 mg/kg 140 172 552 22.2 Fluoride DETSC 2055 1 mg/kg 2.4 13 3.5 4.8 Nitrate as NO3 DETSC 2055 1 mg/kg 33 16 13 3.4 9.3 Ortho Phosphate as P DETSC 205* 0.1 mg/kg 0.35 0.21 0.19 0.24 Sulphate Aqueous Extract as SO4 DETSC 2076# 10 mg/kg 140 280 580 1100 240 Sulphide DETSC 3049# 0.75 mg/kg 2.0 3.1 20 5.6 < 0.75	Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg	0.66			0.63	0.79	0.68
Fluoride DETSC 2055 1 mg/kg 2.4 13 3.5 4.8 Nitrate as NO3 DETSC 2055 1 mg/kg 33 16 13 3.4 9.3 Ortho Phosphate as P DETSC 2205* 0.1 mg/kg 0.35 0.21 0.19 0.24 Sulphate Aqueous Extract as SO4 DETSC 2076# 10 mg/kg 140 280 580 1100 240 Sulphide DETSC 2024* 10 mg/kg 140 280 580 1100 240 Sulphur (free) DETSC 3049# 0.75 mg/kg 2.0 3.1 20 5.6 < 0.75	Chloride	DETSC 2055	1	mg/kg	140			172	552	22.2
Nitrate as NO3 DETSC 2055 1 mg/kg 33 16 13 3.4 9.3 Ortho Phosphate as P DETSC 2205* 0.1 mg/kg 0.35 0.21 0.19 0.24 Sulphate Aqueous Extract as SO4 DETSC 2076# 10 mg/kg 140 280 210 130 240 Sulphide DETSC 2024* 10 mg/kg 140 280 580 1100 240 Sulphur (free) DETSC 3049# 0.75 mg/kg 2.0 3.1 20 5.6 <0.75	Fluoride	DETSC 2055	1	mg/kg	2.4			13	3.5	4.8
Ortho Phosphate as P DETSC 2205* 0.1 mg/kg 0.35 0.21 0.19 0.24 Sulphate Aqueous Extract as SO4 DETSC 2076# 10 mg/l 420 290 210 130 240 Sulphide DETSC 2024* 10 mg/kg 140 280 580 1100 240 Sulphur (free) DETSC 3049# 0.75 mg/kg 2.0 3.1 20 5.6 < 0.75	Nitrate as NO3	DETSC 2055	1	mg/kg	33	16		13	3.4	9.3
Sulphate Aqueous Extract as SO4 DETSC 2076# 10 mg/l 420 290 210 130 240 Sulphide DETSC 2024* 10 mg/kg 140 280 580 1100 240 Sulphur (free) DETSC 3049# 0.75 mg/kg 2.0 3.1 20 5.6 < 0.75	Ortho Phosphate as P	DETSC 2205*	0.1	mg/kg	0.35			0.21	0.19	0.24
Sulphide DETSC 2024* 10 mg/kg 140 280 580 1100 240 Sulphur (free) DETSC 3049# 0.75 mg/kg 2.0 3.1 20 5.6 < 0.75	Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	420	290		210	130	240
Sulphur (free) DETSC 3049# 0.75 mg/kg 2.0 3.1 20 5.6 < 0.75 Sulphur as S, Total DETSC 2320 0.01 % 0.04 0.10 0.20 0.24 0.06 Sulphate as SO4, Total DETSC 2321# 0.01 % 0.19 0.37 0.60 0.78 0.19	Sulphide	DETSC 2024*	10	mg/kg	140	280		580	1100	240
Sulphur as S, Total DETSC 2320 0.01 % 0.04 0.10 0.20 0.24 0.06 Sulphate as SO4, Total DETSC 2321# 0.01 % 0.19 0.37 0.60 0.78 0.19	Sulphur (free)	DETSC 3049#	0.75	mg/kg	2.0	3.1		20	5.6	< 0.75
Sulphate as SO4, Total DETSC 2321# 0.01 % 0.19 0.37 0.60 0.78 0.19	Sulphur as S. Total	DETSC 2320	0.01	<u> </u>	0.04	0.10		0.20	0.24	0.06
	Sulphate as SO4. Total	DETSC 2321#	0.01	%	0.19	0.37		0.60	0.78	0.19
Petroleum Avarocarbons	Petroleum Hydrocarbons			,0	0.20	0.07		0.00	00	0.20

			Lab No	2066859	2066860	2066861	2066862	2066863	2066864
		.Sa	ample ID	F-TP119	F-TP119	F-TP119	F-TP119	F-TP119	F-TP119
			Depth	0.20	0.70	1.70	2.70	3.00	4.00
		(Other ID						
		Sam	ple Type	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	27/09/2022	27/09/2022	27/09/2022	27/09/2022	27/09/2022	27/09/2022
		Sampli	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5		< 1.5	< 1.5	< 1.5
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072#	1.2	mg/kg	< 1.2	7.9		< 1.2	11	< 1.2
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	< 1.5	13		< 1.5	13	< 1.5
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072#	3.4	mg/kg	< 3.4	20		< 3.4	14	< 3.4
Aliphatic C35-C40: EH_CU_1D_AL	DETSC 3072*	3.4	mg/kg	< 3.4	< 3.4		< 3.4	< 3.4	< 3.4
Aliphatic C5-C40: EH_CU+HS_1D_AL	DETSC 3072*	10	mg/kg	< 10	41		< 10	39	< 10
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9		2.4	< 0.9	< 0.9
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5		17	2.0	< 0.5
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072#	0.6	mg/kg	< 0.6	< 0.6		77	18	< 0.6
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4		140	25	< 1.4
Aromatic C35-C40: EH_CU_1D_AR	DETSC 3072*	1.4	mg/kg	< 1.4	< 1.4		16	< 1.4	< 1.4
Aromatic C5-C40: EH_CU+HS_1D_AR	DETSC 3072*	10	mg/kg	< 10	< 10		260	44	< 10
TPH Ali/Aro C5-C40: EH_CU+HS_1D_Total	DETSC 3072*	10	mg/kg	< 10	41		260	83	< 10
PAHs									
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03		0.60	0.86	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03		0.03	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	0.03	0.05		1.4	1.5	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	0.04	0.05		3.2	1.7	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	0.05	0.05		2.3	1.2	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	0.06	0.09		3.3	2.2	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	0.04		1.1	0.73	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	0.04		1.3	0.89	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	0.08	0.11		3.5	2.4	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03		0.27	0.19	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	0.14	0.24		12	7.9	0.06
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03		0.36	0.78	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	0.04		0.89	0.60	< 0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	0.09	0.05		0.10	0.38	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	0.14	0.15		7.8	8.0	0.03
Pyrene	DETSC 3303#	0.03	mg/kg	0.10	0.17		11	6.4	0.04
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	0.71	1.1		48	36	< 0.10
PCBs	•	· ·							
PCB 28 + PCB 31	DETSC 3401#	0.01	mg/kg						
PCB 52	DETSC 3401#	0.01	mg/kg						

			Lab No	2066859	2066860	2066861	2066862	2066863	2066864
		.Sa	ample ID	F-TP119	F-TP119	F-TP119	F-TP119	F-TP119	F-TP119
			Depth	0.20	0.70	1.70	2.70	3.00	4.00
			Other ID						
		Sam	ple Type	ES	ES	ES	ES	ES	ES
		Samp	ing Date	27/09/2022	27/09/2022	27/09/2022	27/09/2022	27/09/2022	27/09/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
PCB 101	DETSC 3401#	0.01	mg/kg						
PCB 118	DETSC 3401#	0.01	mg/kg						
PCB 153	DETSC 3401#	0.01	mg/kg						
PCB 138	DETSC 3401#	0.01	mg/kg						
PCB 180	DETSC 3401#	0.01	mg/kg						
PCB 77	DETSC 3401*	0.01	mg/kg						
PCB 81	DETSC 3401*	0.01	mg/kg						
PCB 105	DETSC 3401*	0.01	mg/kg						
PCB 114	DETSC 3401*	0.01	mg/kg						
PCB 118	DETSC 3401*	0.01	mg/kg						
PCB 123	DETSC 3401*	0.01	mg/kg						
PCB 126	DETSC 3401*	0.01	mg/kg						
PCB 156	DETSC 3401*	0.01	mg/kg						
PCB 157	DETSC 3401*	0.01	mg/kg						
PCB 167	DETSC 3401*	0.01	mg/kg						
PCB 169	DETSC 3401*	0.01	mg/kg						
PCB 189	DETSC 3401*	0.01	mg/kg						
PCB 7 Total	DETSC 3401#	0.01	mg/kg						
Phenols									
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3		< 0.3	< 0.3	< 0.3
Phenol	DETSC 3451*	0.01	mg/kg						
4-Chloro-3-methylphenol	DETSC 3451*	0.01	mg/kg						
2,4-Dichlorophenol	DETSC 3451*	0.01	mg/kg						
2,4-Dimethylphenol	DETSC 3451*	0.01	mg/kg						
p-cresol	DETSC 3451*	0.01	mg/kg						
2,6-Dimethylphenol	DETSC 3451*	0.01	mg/kg						
2,6-Dichlorophenol	DETSC 3451*	0.01	mg/kg						
2,4,6-Trichlorophenol	DETSC 3451*	0.01	mg/kg						
Subcontracted Analysis									
Benzene	\$*	<2	ug/kg		<2		5	4	
Toluene	\$*	<5	ug/kg		<5		<5	<5	
Ethylbenzene	\$*	<2	ug/kg		<2		<2	<2	
p & m-xylene	\$*	<2	ug/kg		<2		<2	<2	
o-xylene	\$*	<2	ug/kg		<2		<2	<2	
МТВЕ	\$*	<5	ug/kg		<5		<5	<5	
ТАМЕ	\$*	< 5	ug/kg		< 5		< 5	< 5	

Summary of Chemical Analysis Soil VOC/SVOC Samples

			Lab No	2066856
		.Sa	ample ID	F-TP117
			Depth	0.50
			Other ID	
		Sam	ple Type	ES
		Sampl	ing Date	27/09/2022
		Sampl	ing Time	n/s
Test	Method	LOD	Units	-
VOCs				
Vinyl Chloride	DETSC 3431	0.01	mg/kg	< 0.01
1,1 Dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01
Trans-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01
1,1-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01
Cis-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01
2,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01
Bromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01
Chloroform	DETSC 3431	0.01	mg/kg	< 0.01
1,1,1-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01
1,1-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01
Carbon tetrachloride	DETSC 3431	0.01	mg/kg	< 0.01
Benzene	DETSC 3431	0.01	mg/kg	< 0.01
1,2-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01
Trichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01
1,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01
Dibromomethane	DETSC 3431	0.01	mg/kg	< 0.01
Bromodichloromethane	DETSC 3431	0.01	mg/kg	< 0.01
cis-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01
Toluene	DETSC 3431	0.01	mg/kg	< 0.01
trans-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01
1,1,2-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01
Tetrachloroethylene	DETSC 3431	0.01	mg/kg	< 0.01
1,3-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01
Dibromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01
1,2-dibromoethane	DETSC 3431	0.01	mg/kg	< 0.01
Chlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01
1,1,1,2-tetrachloroethane	DETSC 3431	0.01	mg/kg	< 0.01
Ethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01
m+p-Xylene	DETSC 3431	0.01	mg/kg	< 0.01
o-Xylene	DETSC 3431	0.01	mg/kg	< 0.01
Styrene	DETSC 3431*	0.01	mg/kg	< 0.01
Bromoform	DETSC 3431	0.01	mg/kg	< 0.01
Isopropylbenzene	DETSC 3431	0.01	mg/kg	< 0.01
Bromobenzene	DETSC 3431	0.01	mg/kg	< 0.01
1,2,3-trichloropropane	DETSC 3431	0.01	mg/kg	< 0.01
n-propylbenzene	DETSC 3431	0.01	mg/kg	< 0.01
2-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01
1,3,5-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01
4-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01

Summary of Chemical Analysis Soil VOC/SVOC Samples

			Lab No	2066856
		.Sa	ample ID	F-TP117
			Depth	0.50
		(Other ID	
		Sam	ple Type	ES
		Sampl	ing Date	27/09/2022
		Sampli	ing Time	n/s
Test	Method	LOD	Units	
Tert-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01
1,2,4-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01
sec-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01
p-isopropyltoluene	DETSC 3431	0.01	mg/kg	< 0.01
1,3-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01
1,4-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01
n-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01
1,2-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01
1,2-dibromo-3-chloropropane	DETSC 3431	0.01	mg/kg	< 0.01
1,2,4-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01
Hexachlorobutadiene	DETSC 3431	0.01	mg/kg	< 0.01
1,2,3-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01
MTBE	DETSC 3431*	0.01	mg/kg	< 0.01
SVOCs				
Phenol	DETSC 3433	0.1	mg/kg	< 0.1
Aniline	DETSC 3433*	0.1	mg/kg	< 0.1
2-Chlorophenol	DETSC 3433	0.1	mg/kg	< 0.1
Benzyl Alcohol	DETSC 3433	0.1	mg/kg	< 0.1
2-Methylphenol	DETSC 3433	0.1	mg/kg	< 0.1
Bis(2-chloroisopropyl)ether	DETSC 3433	0.1	mg/kg	< 0.1
3&4-Methylphenol	DETSC 3433	0.1	mg/kg	< 0.1
2,4-Dimethylphenol	DETSC 3433	0.1	mg/kg	< 0.1
Bis-(dichloroethoxy)methane	DETSC 3433	0.1	mg/kg	< 0.1
2,4-Dichlorophenol	DETSC 3433	0.1	mg/kg	< 0.1
1,2,4-Trichlorobenzene	DETSC 3433	0.1	mg/kg	< 0.1
4-Chloro-3-methylphenol	DETSC 3433	0.1	mg/kg	< 0.1
2-Methylnaphthalene	DETSC 3433	0.1	mg/kg	0.2
Hexachlorocyclopentadiene	DETSC 3433*	0.1	mg/kg	< 0.1
2,4,6-Trichlorophenol	DETSC 3433	0.1	mg/kg	< 0.1
2,4,5-Trichlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1
2-Chloronaphthalene	DETSC 3433	0.1	mg/kg	< 0.1
2-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1
2,4-Dinitrotoluene	DETSC 3433*	0.1	mg/kg	< 0.1
3-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1
4-Nitrophenol	DETSC 3433*	0.1	mg/kg	< 0.1
Dibenzofuran	DETSC 3433	0.1	mg/kg	0.2
2,6-Dinitrotoluene	DETSC 3433	0.1	mg/kg	< 0.1
2,3,4,6-Tetrachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1
Diethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1
4-Chlorophenylphenylether	DETSC 3433*	0.1	mg/kg	< 0.1

Summary of Chemical Analysis Soil VOC/SVOC Samples

			Lab No	2066856
		.Sa	ample ID	F-TP117
			Depth	0.50
			Other ID	
		Sam	ple Type	ES
		Samp	ing Date	27/09/2022
		Sampl	ing Time	n/s
Test	Method	LOD	Units	
4-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1
2-Methyl-4,6-Dinitrophenol	DETSC 3433*	0.1	mg/kg	< 0.1
Diphenylamine	DETSC 3433	0.1	mg/kg	< 0.1
4-Bromophenylphenylether	DETSC 3433	0.1	mg/kg	< 0.1
Hexachlorobenzene	DETSC 3433	0.1	mg/kg	< 0.1
Pentachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1
Di-n-butylphthalate	DETSC 3433	0.1	mg/kg	< 0.1
Butylbenzylphthalate	DETSC 3433*	0.1	mg/kg	< 0.1
Bis(2-ethylhexyl)phthalate	DETSC 3433	0.1	mg/kg	< 0.1
Di-n-octylphthalate	DETSC 3433*	0.1	mg/kg	< 0.1
1,4-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1
Dimethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1
1,3-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1
1,2-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1
2,3,5,6-Tetrachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1
Azobenzene	DETSC 3433	0.1	mg/kg	< 0.1
Carbazole	DETSC 3433*	0.1	mg/kg	0.5

Leachate Samples

			Lah No	2066865	2066866	2066867	2066868	2066869
		.Si	ample ID	F-TP115	F-TP115	F-TP117	F-TP119	F-TP119
		••••	Depth	0.30	2.30	1.50	0.70	2.70
			Other ID					
		Sam	ple Type	ES	ES	ES	ES	ES
		Samp	ing Date	27/09/2022	27/09/2022	27/09/2022	27/09/2022	27/09/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units	· * 1	·	·	<u> </u>	i
Preparation								
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y	Y	Y	Y	Y
Metals	I	·		<u> </u>	. <u> </u>	<u> </u>	<u> </u>	
Aluminium, Dissolved	DETSC 2306	10	ug/l	570	670	51	330	1200
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	1.6	3.6	5.7	1.5	0.96
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	29	46	81	23	14
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Chromium III, Dissolved	DETSC 2306*	1	ug/l	< 1.0	< 1.0	17	3.9	12
Chromium, Hexavalent	DETSC 2203	0.007	mg/l	< 0.007	< 0.007	0.020	0.019	< 0.007
Copper, Dissolved	DETSC 2306	0.4	ug/l	2.3	2.6	2.2	3.7	8.1
Iron, Dissolved	DETSC 2306	5.5	ug/l	9.9	14	< 5.5	< 5.5	< 5.5
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.53	1.3	6.7	0.29	1.4
Manganese, Dissolved	DETSC 2306	0.22	ug/l	0.54	0.36	1.1	0.25	< 0.22
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.02	0.08	< 0.01	0.06	0.03
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	< 1.1	1.4	1.2	6.8	2.5
Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phosphorus as P, Dissolved	DETSC 2306	18	ug/l	< 18	46	140	< 18	< 18
Selenium, Dissolved	DETSC 2306	0.25	ug/l	0.60	0.98	0.97	0.55	1.1
Tin, Dissolved	DETSC 2306*	0.4	ug/l	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	36	89	120	72	49
Zinc, Dissolved	DETSC 2306	1.3	ug/l	2.2	2.9	< 1.3	2.2	< 1.3
Inorganics	1	<u>. </u>		I	I	ı	ı	
pH	DETSC 2008		pН	8.4	9.7	9.0	10.6	11.6
Cyanide, Total Low Level	DETSC 2131	0.1	ug/l	< 0.1	1.0	0.1	0.3	< 0.1
Cyanide, Free Low Level	DETSC 2131	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Thiocyanate	DETSC 2130	20	ug/l	27	28	< 20	29	< 20
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	57.6	82.4	79.7	80.9	143
Ammoniacal Nitrogen as NH4	DETSC 2207	0.015	mg/l	0.06	0.06	0.06	0.06	0.07
Ammoniacal Nitrogen as NH3	DETSC 2207	0.015	mg/l	0.057	0.061	0.052	0.061	0.068
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	0.047	0.050	0.043	0.050	0.056
Chloride	DETSC 2055	0.1	mg/l	12	2.4	38	14	9.2
Fluoride	DETSC 2055*	0.1	mg/l	0.11	0.20	< 0.10	0.22	0.41
Nitrate as NO3	DETSC 2055	0.1	mg/l	0.40	0.35	3.4	1.6	0.99
Nitrite as NO2	DETSC 2055	0.1	mg/l	0.14	< 0.10	0.35	0.21	0.34
Ortho Phosphate as P	DETSC 2205	0.01	mg/l	0.03	0.03	0.09	0.04	0.01
Sulphate as SO4	DETSC 2055	0.1	mg/l	40	31	82	27	17
Total Organic Carbon	DETSC 2085	1	mg/l	3.9	4.3	3.4	1500	11

Leachate Samples

			Lab No	2066865	2066866	2066867	2066868	2066869
		.Sa	ample ID	F-TP115	F-TP115	F-TP117	F-TP119	F-TP119
			Depth	0.30	2 30	1 50	0.70	2 70
			Other ID	0.50	2.50	1.50	0.70	2.70
		Sam	ple Type	ES	ES	ES	ES	ES
		Samp	ing Date	27/09/2022	27/09/2022	27/09/2022	27/09/2022	27/09/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units			-		
Petroleum Hydrocarbons								
Aliphatic C5-C6: HS 1D AL	DETSC 3322	0.1	ug/l				< 0.1	
Aliphatic C6-C8: HS 1D AL	DETSC 3322	0.1	ug/l				< 0.1	
Aliphatic C8-C10: HS 1D AL	DETSC 3322	0.1	ug/l				< 0.1	
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072*	1	ug/l				< 1.0	
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072*	1	ug/l				< 1.0	
Aliphatic C16-C21: EH CU 1D AL	DETSC 3072*	1	ug/l				4.9	
Aliphatic C21-C35: EH CU 1D AL	DETSC 3072*	1	ug/l				10	
Aliphatic C5-C35: EH_CU+HS_1D_AL	DETSC 3072*	10	ug/l				16	
Aromatic C5-C7: HS 1D AR	DETSC 3322	0.1	ug/l				< 0.1	
Aromatic C7-C8: HS_1D_AR	DETSC 3322	0.1	ug/l				< 0.1	
Aromatic C8-C10: HS 1D AR	DETSC 3322	0.1	ug/l				< 0.1	
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072*	1	ug/l				< 1.0	
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072*	1	ug/l				< 1.0	
Aromatic C16-C21: EH CU 1D AR	DETSC 3072*	1	ug/l				< 1.0	
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072*	1	ug/l				< 1.0	
Aromatic C5-C35: EH_CU+HS_1D_AR	DETSC 3072*	10	ug/l				< 10	
TPH Ali/Aro Total C5-C35: EH_CU+HS_1D_Total	DETSC 3072*	10	ug/l				16	
Benzene	DETSC 3322	1	ug/l				< 1.0	
Toluene	DETSC 3322	1	ug/l				< 1.0	
Ethylbenzene	DETSC 3322	1	ug/l				< 1.0	
Xylene	DETSC 3322	1	ug/l				< 1.0	
PAHs								
Acenaphthene	DETSC 3304	0.01	ug/l	0.05	0.02	0.02	0.02	0.39
Acenaphthylene	DETSC 3304	0.01	ug/l	0.03	0.02	< 0.01	< 0.01	0.02
Anthracene	DETSC 3304	0.01	ug/l	0.04	0.06	0.04	0.05	0.20
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	0.06	0.04	< 0.01	< 0.01	0.05
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	0.06	0.03	< 0.01	< 0.01	0.03
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	0.11	0.06	< 0.01	< 0.01	0.05
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	0.05	0.03	< 0.01	< 0.01	0.02
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	0.04	0.02	< 0.01	< 0.01	0.02
Chrysene	DETSC 3304	0.01	ug/l	0.07	0.04	< 0.01	< 0.01	0.05
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	0.10	0.06	0.02	0.04	0.18
Fluorene	DETSC 3304	0.01	ug/l	0.05	0.04	0.04	0.04	0.11
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	0.04	0.02	< 0.01	< 0.01	0.02
Naphthalene	DETSC 3304	0.05	ug/l	0.07	0.06	< 0.05	0.06	0.90
Phenanthrene	DETSC 3304	0.01	ug/l	0.17	0.14	0.12	0.14	0.52
Pyrene	DETSC 3304	0.01	ug/l	0.13	0.08	0.02	0.03	0.16

Leachate Samples

			Lab No	2066865	2066866	2066867	2066868	2066869
		.Sa	ample ID	F-TP115	F-TP115	F-TP117	F-TP119	F-TP119
			Depth	0.30	2.30	1.50	0.70	2.70
			Other ID					
		Sam	ple Type	ES	ES	ES	ES	ES
		Sampl	ing Date	27/09/2022	27/09/2022	27/09/2022	27/09/2022	27/09/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
PAH Total	DETSC 3304	0.2	ug/l	1.1	0.71	0.28	0.37	2.7
PCBs	I.							
PCB 28 + PCB 31	DETSC 3402	0.3	ug/l				< 0.3	
PCB 52	DETSC 3402	0.2	ug/l				< 0.2	
PCB 77	DETSC 3402	0.3	ug/l				< 0.3	
PCB 81	DETSC 3402	0.2	ug/l				< 0.2	
PCB 101	DETSC 3402	0.3	ug/l				< 0.3	
PCB 105	DETSC 3402	0.2	ug/l				< 0.2	
PCB 114	DETSC 3402	0.3	ug/l				< 0.3	
PCB 118 + PCB 123	DETSC 3402	0.6	ug/l				< 0.6	
PCB 126	DETSC 3402	0.5	ug/l				< 0.5	
PCB 138	DETSC 3402	0.2	ug/l				< 0.2	
PCB 153	DETSC 3402	0.2	ug/l				< 0.2	
PCB 156	DETSC 3402	0.3	ug/l				< 0.3	
PCB 157	DETSC 3402	0.2	ug/l				< 0.2	
PCB 167	DETSC 3402	0.3	ug/l				< 0.3	
PCB 169	DETSC 3402	0.2	ug/l				< 0.2	
PCB 180	DETSC 3402	0.2	ug/l				< 0.2	
PCB 189	DETSC 3402	0.3	ug/l				< 0.3	
PCB 12	DETSC 3402	1	ug/l				< 1.0	
PCB 7 Total	DETSC 3402	1	ug/l				< 1.0	
Phenols								
Phenol	DETSC 3451*	0.1	ug/l				< 0.10	
4-Chloro-3-methylphenol	DETSC 3451*	0.1	ug/l				< 0.10	
2,4-Dichlorophenol	DETSC 3451*	0.1	ug/l				< 0.10	
2,4-Dimethylphenol	DETSC 3451*	0.1	ug/l				< 0.10	
p-cresol	DETSC 3451*	0.1	ug/l				< 0.10	
2,6-Dimethylphenol	DETSC 3451*	0.1	ug/l				< 0.10	
2,6-Dichlorophenol	DETSC 3451*	0.1	ug/l				< 0.10	
2,4,6-Trichlorophenol	DETSC 3451*	0.1	ug/l				< 0.10	
Subcontracted Analysis								
Hexavalent Chromium	\$*	<2	ug/kg		<2			

I DETS

Summary of Asbestos Analysis

Soil Samples

Our Ref 22-19762 Client Ref 60678042 Contract Title NZT FEED GI

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2066853	F-TP115 0.30	SOIL	Chrysotile	Bundles of Chrysotile fibres	Darryl Fletcher
2066854	F-TP115 1.50	SOIL	Chrysotile Amosite	Bundles of Chrysotile & Amosite fibres	Darryl Fletcher
2066855	F-TP115 2.30	SOIL	Amosite Chrysotile	Bundles of Amosite & Chrysotile fibres	Darryl Fletcher
2066856	F-TP117 0.50	SOIL	NAD	none	Darryl Fletcher
2066857	F-TP117 1.50	SOIL	NAD	none	Darryl Fletcher
2066858	F-TP117 2.50	SOIL	NAD	none	Darryl Fletcher
2066859	F-TP119 0.20	SOIL	Chrysotile	Chrysotile fibres present in microscopic Loose Fibrous Asbestos Debris	Darryl Fletcher
2066860	F-TP119 0.70	SOIL	NAD	none	Darryl Fletcher
2066861	F-TP119 1.70	SOIL	Chrysotile Amosite	Bundles of Chrysotile fibres & Chrysotile & Amosite fibres present in microscopic Loose Fibrous Asbestos Debris	Darryl Fletcher
2066862	F-TP119 2.70	SOIL	NAD	none	Darryl Fletcher

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * -not included in laboratory scope of accreditation.

Summary of Asbestos Quantification Analysis Soil Samples

Our Ref 22-19762 *Client Ref* 60678042 *Contract Title* NZT FEED GI

		Lab No	2066853	2066854	2066855	2066859
		Sample ID	F-TP115	F-TP115	F-TP115	F-TP119
		Depth	0.30	1.50	2.30	0.20
		Other ID				
	Sar	nple Type	ES	ES	ES	ES
	Sam	oling Date	27/09/2022	27/09/2022	27/09/2022	27/09/2022
	Samp	oling Time				
Test	Method	Units				
Total Mass% Asbestos (a+b+c)	DETSC 1102	Mass %	0.003	0.003	0.003	0.004
Gravimetric Quantification (a)	DETSC 1102	Mass %	na	na	na	0.004
Detailed Gravimetric Quantification (b)	DETSC 1102	Mass %	0.003	0.003	0.003	na
Quantification by PCOM (c)	DETSC 1102	Mass %	na	na	na	na
Potentially Respirable Fibres (d)	DETSC 1102	Fibres/g	na	na	na	na
Breakdown of Gravimetric Analysis (a)						
Mass of Sample		g	50.95	1539.47	855.21	1710.47
ACMs present*		type				LFAD
Mass of ACM in sample		g				0.07
% ACM by mass		%				0.00
% asbestos in ACM		%				85
% asbestos in sample		%				0.004
Breakdown of Detailed Gravimetric Analysis (b)						
% Amphibole bundles in sample		Mass %	na	0.001	0.001	na
% Chrysotile bundles in sample		Mass %	0.003	0.002	0.002	na
Breakdown of PCOM Analysis (c)						
% Amphibole fibres in sample		Mass %	na	na	na	na
% Chrysotile fibres in sample		Mass %	na	na	na	na
Breakdown of Potentially Respirable Fibre Analysis (d)						
Amphibole fibres		Fibres/g	na	na	na	na
Chrysotile fibres		Fibres/g	na	na	na	na

* Denotes test or material description outside of UKAS accreditation. % asbestos in Asbestos Containing Materials (ACMs) is determined by by reference to HSG 264. Recommended sample size for quantification is approximately 1kg # denotes deviating sample

Summary of Asbestos Quantification Analysi Soil Samples

Our Ref 22-19762 *Client Ref* 60678042 *Contract Title* NZT FEED GI

		Lab No	2066861
	.:	Sample ID	F-TP119
		Depth	1.70
		Other ID	
	Sar	nple Type	ES
	Samj	oling Date	27/09/2022
	Samp	oling Time	
Test	Method	Units	
Total Mass% Asbestos (a+b+c)	DETSC 1102	Mass %	0.015
Gravimetric Quantification (a)	DETSC 1102	Mass %	0.003
Detailed Gravimetric Quantification (b)	DETSC 1102	Mass %	0.011
Quantification by PCOM (c)	DETSC 1102	Mass %	na
Potentially Respirable Fibres (d)	DETSC 1102	Fibres/g	na
Breakdown of Gravimetric Analysis (a)			
Mass of Sample		g	1472.84
ACMs present*		type	LFAD
Mass of ACM in sample		g	0.06
% ACM by mass		%	0.00
% asbestos in ACM		%	85
% asbestos in sample		%	0.003
Breakdown of Detailed Gravimetric Analysis (b)			
% Amphibole bundles in sample		Mass %	na
% Chrysotile bundles in sample		Mass %	0.011
Breakdown of PCOM Analysis (c)			
% Amphibole fibres in sample		Mass %	na
% Chrysotile fibres in sample		Mass %	na
Breakdown of Potentially Respirable Fibre Analysis (d)			
Amphibole fibres		Fibres/g	na
Chrysotile fibres		Fibres/g	na

 * Denotes test or material description outside of UKAS accreditation.
% asbestos in Asbestos Containing Materials (ACMs) is determined by by reference to HSG 264.
Recommended sample size for quantification is approximately 1kg # denotes deviating sample

Inappropriate

Information in Support of the Analytical Results

Our Ref 22-19762 *Client Ref* 60678042 *Contract* NZT FEED GI

Containers Received & Deviating Samples

container for Date Sampled Containers Received Holding time exceeded for tests Lab No Sample ID tests 2066853 F-TP115 0.30 SOIL GJ 250ml, GJ 60ml, PT 1L 27/09/22 Ammonia (3 days) 2066854 F-TP115 1.50 SOIL 27/09/22 GJ 250ml, GJ 60ml, PT 1L 2066855 F-TP115 2.30 SOIL 27/09/22 GJ 250ml, GJ 60ml, PT 1L Ammonia (3 days) Ammonia (3 days) 2066856 F-TP117 0.50 SOIL 27/09/22 GJ 250ml. GJ 60ml. PT 1L 2066857 F-TP117 1.50 SOIL 27/09/22 GJ 250ml, GJ 60ml, PT 1L Ammonia (3 days) 2066858 F-TP117 2.50 SOIL 27/09/22 GJ 250ml, GJ 60ml, PT 1L Ammonia (3 days) 2066859 F-TP119 0.20 SOIL 27/09/22 GJ 250ml, GJ 60ml, PT 1L Ammonia (3 days) 2066860 F-TP119 0.70 SOIL 27/09/22 GJ 250ml, GJ 60ml, PT 1L 2066861 F-TP119 1.70 SOIL 27/09/22 GJ 250ml, GJ 60ml, PT 1L F-TP119 2.70 SOIL 2066862 27/09/22 GJ 250ml, GJ 60ml, PT 1L Ammonia (3 days) 2066863 F-TP119 3.00 SOIL 27/09/22 GJ 250ml, GJ 60ml, PT 1L Ammonia (3 days) 2066864 F-TP119 4.00 SOIL 27/09/22 GJ 250ml, GJ 60ml, PT 1L Ammonia (3 days) 2066865 F-TP115 0.30 LEACHATE 27/09/22 GJ 250ml, GJ 60ml, PT 1L 2066866 F-TP115 2.30 LEACHATE 27/09/22 GJ 250ml, GJ 60ml, PT 1L 2066867 F-TP117 1.50 LEACHATE 27/09/22 GJ 250ml, GJ 60ml, PT 1L F-TP119 0.70 LEACHATE 2066868 27/09/22 GJ 250ml, GJ 60ml, PT 1L F-TP119 2.70 LEACHATE 27/09/22 GJ 250ml, GJ 60ml, PT 1L 2066869

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of $28^{\circ}C$ +/- $2^{\circ}C$.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

List of HWOL Acronyms and Operators

Det

Det	Acronym
Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic C10-C12	EH_CU_1D_AL
Aliphatic C12-C16	EH_CU_1D_AL
Aliphatic C16-C21	EH_CU_1D_AL
Aliphatic C21-C35	EH_CU_1D_AL
Aliphatic C35-C40	EH_CU_1D_AL
Aliphatic C5-C40	EH_CU+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic C10-C12	EH_CU_1D_AR
Aromatic C12-C16	EH_CU_1D_AR
Aromatic C16-C21	EH_CU_1D_AR
Aromatic C21-C35	EH_CU_1D_AR
Aromatic C35-C40	EH_CU_1D_AR
Aromatic C5-C40	EH_CU+HS_1D_AR
TPH Ali/Aro C5-C40	EH_CU+HS_1D_Total
Aliphatic C5-C35	EH_CU+HS_1D_AL
Aromatic C5-C35	EH_CU+HS_1D_AR
TPH Ali/Aro Total C5-C35	EH_CU+HS_1D_Total

Issued:

13-Oct-22

Certificate Number 22-20035

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- *Our Reference* 22-20035
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description 7 Soil samples.
 - Date Received 07-Oct-22
 - Date Started 07-Oct-22
- Date Completed 13-Oct-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logwood

Kirk Bridgewood General Manager

		Lab No		2068166	2068167	2068168	2068169	2068170	2068171	2068172
		.Sa	.Sample ID		F-BH114	F-BH114	F-BH114	F-BH114	F-BH114	F-BH114
			Depth		5.40-6.00	6.00-6.90	8.30-9.00	9.00-9.70	11.40-12.00	12.93-13.45
			Other ID							
		Sam	Sample Type		В	В	В	В	В	В
		Sampl	ing Date	03/10/2022	03/10/2022	03/10/2022	03/10/2022	03/10/2022	20/09/2022	03/10/2022
		Sampl	Sampling Time		n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units							
Inorganics										
рН	DETSC 2008#		рН	10.6		8.6				
Organic matter	DETSC 2002#	0.1	%		1.2		< 0.1		0.7	3.5
Carbonate (as CO2)	DETSC 2005	1	%			4.8		3.6		
Chloride Aqueous Extract	DETSC 2055	1	mg/l	25		17				
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	960		240				
Sulphur as S, Total	DETSC 2320	0.01	%	0.14		0.05				
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.25		0.09				

Information in Support of the Analytical Results

Our Ref 22-20035 *Client Ref* 60678042 *Contract* NZT Feed GI

Containers Received & Deviating Samples

		•		Holding time	Inappropriate
		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2068166	F-BH114 3.00-3.70 SOIL	03/10/22	PT 1L		
2068167	F-BH114 5.40-6.00 SOIL	03/10/22	PT 1L		
2068168	F-BH114 6.00-6.90 SOIL	03/10/22	PT 1L		
2068169	F-BH114 8.30-9.00 SOIL	03/10/22	PT 1L		
2068170	F-BH114 9.00-9.70 SOIL	03/10/22	PT 1L		
2068171	F-BH114 11.40-12.00 SOIL	20/09/22	PT 1L		
2068172	F-BH114 12.93-13.45 SOIL	03/10/22	PT 1L		

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Issued:

Certificate Number 22-20036

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- *Our Reference* 22-20036
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description 3 Soil samples.
 - Date Received 07-Oct-22
 - Date Started 07-Oct-22
- Date Completed 13-Oct-22
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

hurod

Kirk Bridgewood General Manager

Derwentside Environmental Testing Services Limited Unit 2, Park Road Industrial Estate South, Consett, Co Durham, DH8 5PY Tel: 01207 582333 • email: info@dets.co.uk • www.dets.co.uk 13-Oct-22

			Lab No	2068173	2068174	2068175
		.S	ample ID	F-BH102	F-BH102	F-BH102
			Depth	6.75-7.15	8.27-9.00	11.44-12.00
			Other ID			
		Sam	ple Type	В	В	В
		Samp	ling Date	03/10/2022	03/10/2022	03/10/2022
		Samp	ling Time	n/s	n/s	n/s
Test	Method	LOD	Units			
Inorganics						
рН	DETSC 2008#		рН	11.1		10.3
Organic matter	DETSC 2002#	0.1	%		0.1	
Carbonate (as CO2)	DETSC 2005	1	%		2.8	6.8
Chloride Aqueous Extract	DETSC 2055	1	mg/l	12		14
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	530		230
Sulphur as S, Total	DETSC 2320	0.01	%	0.23		0.04
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.54		0.17

I la lalin a tima Inanana na siata

Information in Support of the Analytical Results

Our Ref 22-20036 *Client Ref* 60678042 *Contract* NZT Feed GI

Containers Received & Deviating Samples

		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2068173	F-BH102 6.75-7.15 SOIL	03/10/22	PT 1L		
2068174	F-BH102 8.27-9.00 SOIL	03/10/22	PT 1L		
2068175	F-BH102 11.44-12.00 SOIL	03/10/22	PT 1L		

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Issued: 02-Nov-22

Certificate Number 22-20306 Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- Our Reference 22-20306
- Client Reference 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - *Description* 9 Soil samples, 3 Leachate samples.
 - Date Received 11-Oct-22

Date Started 11-Oct	t-22
---------------------	------

- *Date Completed* 02-Nov-22
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logwood.

Kirk Bridgewood General Manager

				2000000	222220	2262522	2252522	2252522	2252522	200000
				2069597 F-TP104	2069598 F-TP104	2069599 F-TP104	2069600 F-TP104	2069602 E-TP105	2069603 F-TP105	2069604 E-TP105
		.58	Donth	0.50	1-11-104	1-11-104	1-11-104	1-11-105	1-11103	1-11/103
			Depth	0.50	1.50	2.40	3.40	0.50	1.80	2.80
		Sam	Juner ID	FC	50					
		Sampl	ing Data	ES	ES	ES	ES	ES	ES	ES
		Sampli	ng Timo	05/10/2022	05/10/2022	05/10/2022	05/10/2022	05/10/2022	05/10/2022	05/10/2022
Test	Method		lig inne	11/5	11/5	11/5	11/5	11/5	11/5	11/5
Preparation	Wiethou	100	Onits							
Moisture Content	DETSC 1004	0.1	%	83	13	17	20	8 8	71	17
Metals	DL13C 1004	0.1	70	0.5	15	17	20	0.0	/.1	17
Aluminium	DFTSC 2301*	1	mg/kg	67000	64000	6800	3500	37000	2500	880
Arsenic	DETSC 2301#	0.2	mg/kg	79	6.9	6000	5500	37000	2300	4.8
Beryllium	DETSC 2301#	0.2	mg/kg	5.6	6.2	0.0	0.0	3.7	0.3	< 0.2
Boron Water Soluble	DETSC 2301#	0.2	mg/kg	2.8	2.8	1 3	0.4	1.9	1.2	1 4
Cadmium	DETSC 2301#	0.1	mg/kg	< 0.1	0.2	< 0.1	< 0.1	0.3	0.1	< 0.1
Chromium III	DETSC 2301*	0.15	mg/kg	24	17	5.6	4.4	130	3.5	2.3
Chromium Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	9.5	10	5.2	3.1	24	7.3	3.1
Iron	DETSC 2301	25	mg/kg	12000	6700	7300	6300	79000	7100	4000
Lead	DETSC 2301#	0.3	mg/kg	3.8	12	22	11	19	30	18
Manganese	DETSC 2301#	20	mg/kg	3800	3700	470	280	3500	230	100
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Molvbdenum	DETSC 2301#	0.4	mg/kg	1.1	1.0	0.4	0.9	3.0	0.5	< 0.4
Nickel	DETSC 2301#	1	mg/kg	5.1	2.2	3.7	2.5	9.8	3.7	2.3
Phosphorus	DETSC 2301*	1	mg/kg	230	150	140	160	610	130	100
Selenium	DETSC 2301#	0.5	mg/kg	3.0	3.3	0.8	< 0.5	2.3	< 0.5	< 0.5
Tin	DETSC 2301	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	1.3	1.3	< 1.0
Vanadium	DETSC 2301#	0.8	mg/kg	83	81	20	13	120	12	7.7
Zinc	DETSC 2301#	1	mg/kg	20	37	55	32	120	65	28
Inorganics	· · · · · ·		<u>.</u>							
рН	DETSC 2008#		pН	9.8	10.7	10.1	8.7	11.4	8.1	8.2
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	0.1	< 0.1	0.3	19	16
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
Organic matter	DETSC 2002#	0.1	%	2.7	0.1	0.1	< 0.1	< 0.1	0.3	0.1
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg	2.3	0.91	1.2	0.73	0.55	0.73	0.53
Chloride	DETSC 2055	1	mg/kg	< 100.0	26.4	152	< 50.0	27.6	10.3	107
Fluoride	DETSC 2055	1	mg/kg	15	25	11	< 50.00	8.6	6.0	2.3
Nitrate as NO3	DETSC 2055	1	mg/kg	3.1	8.1	1.8	< 50.00	4.3	4.3	1.3
Ortho Phosphate as P	DETSC 2205*	0.1	mg/kg	0.37	< 0.10	< 0.10	< 0.10	< 0.10	0.36	0.82
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	1600	800	310	140	460	150	150
Sulphide	DETSC 2024*	10	mg/kg	1800	1900	26	100	590	52	36
Sulphur (free)	DETSC 3049#	0.75	mg/kg	18	1.8	4.0	< 0.75	1.7	2.3	3.4
Sulphur as S, Total	DETSC 2320	0.01	%	0.45	0.39	0.07	0.04	0.25	0.03	0.03
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.68	0.59	0.17	0.10	0.76	0.09	0.07
Petroleum Hydrocarbons	· · · · ·									
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	0.30	< 0.01	0.44	0.44	0.39	0.41
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

			Lah No	2060507	2060508	2060500	2069600	2069602	2069602	2069604
		S	ample ID	F-TP104	F-TP104	F-TP104	F-TP104	F-TP105	F-TP105	F-TP105
			Depth	0.50	1.50	2.40	3.40	0.50	1.80	2.80
			Other ID	0.50	1.50	2.10	5.10	0.50	1.00	2.00
		Sam	ple Type	ES	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	05/10/2022	05/10/2022	05/10/2022	05/10/2022	05/10/2022	05/10/2022	05/10/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units	· · · · ·			· · · · ·			
Aliphatic C10-C12: EH CU 1D AL	DETSC 3072#	1.5	mg/kg	2.8	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16: EH CU 1D AL	DETSC 3072#	1.2	mg/kg	44	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21: EH CU 1D AL	DETSC 3072#	1.5	mg/kg	86	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072#	3.4	mg/kg	36	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C35-C40: EH_CU_1D_AL	DETSC 3072*	3.4	mg/kg	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C5-C40: EH_CU+HS_1D_AL	DETSC 3072*	10	mg/kg	170	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072#	0.5	mg/kg	12	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072#	0.6	mg/kg	38	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072#	1.4	mg/kg	13	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Aromatic C35-C40: EH_CU_1D_AR	DETSC 3072*	1.4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Aromatic C5-C40: EH_CU+HS_1D_AR	DETSC 3072*	10	mg/kg	62	< 10	< 10	< 10	< 10	< 10	< 10
TPH Ali/Aro C5-C40: EH_CU+HS_1D_Total	DETSC 3072*	10	mg/kg	230	< 10	< 10	< 10	< 10	< 10	< 10
PAHs										
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.03	< 0.03	0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.03	< 0.03	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.07	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.04	< 0.03	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.03	< 0.03	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.07	0.04	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	0.03	< 0.03	< 0.03	0.08	0.13	0.12
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.03	< 0.03	< 0.03
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.07	0.54	0.36
Phenanthrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.04	0.05	0.10
Pyrene	DETSC 3303#	0.03	mg/kg	0.04	0.04	< 0.03	< 0.03	0.09	0.11	0.10
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	< 0.10	< 0.10	< 0.10	< 0.10	0.52	0.86	0.68
PCBs										
PCB 28 + PCB 31	DETSC 3401#	0.01	mg/kg	< 0.01		< 0.01				
PCB 52	DETSC 3401#	0.01	mg/kg	< 0.01		< 0.01				
PCB 101	DETSC 3401#	0.01	mg/kg	< 0.01		< 0.01				
PCB 118	DETSC 3401#	0.01	mg/kg	< 0.01		< 0.01				
PCB 153	DETSC 3401#	0.01	mg/kg	< 0.01		< 0.01				
PCB 138	DETSC 3401#	0.01	mg/kg	< 0.01		< 0.01				
PCB 180	DETSC 3401#	0.01	mg/kg	< 0.01		< 0.01				

			Lab No	2069597	2069598	2069599	2069600	2069602	2069603	2069604
		.Sa	ample ID	F-TP104	F-TP104	F-TP104	F-TP104	F-TP105	F-TP105	F-TP105
			Depth	0.50	1.50	2.40	3.40	0.50	1.80	2.80
			Other ID							
		Sam	ple Type	ES	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	05/10/2022	05/10/2022	05/10/2022	05/10/2022	05/10/2022	05/10/2022	05/10/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units							
PCB 77	DETSC 3401*	0.01	mg/kg	< 0.01		< 0.01				
PCB 81	DETSC 3401*	0.01	mg/kg	< 0.01		< 0.01				
PCB 105	DETSC 3401*	0.01	mg/kg	< 0.01		< 0.01				
PCB 114	DETSC 3401*	0.01	mg/kg	< 0.01		< 0.01				
PCB 118	DETSC 3401*	0.01	mg/kg	< 0.01		< 0.01				
PCB 123	DETSC 3401*	0.01	mg/kg	< 0.01		< 0.01				
PCB 126	DETSC 3401*	0.01	mg/kg	< 0.01		< 0.01				
PCB 156	DETSC 3401*	0.01	mg/kg	< 0.01		< 0.01				
PCB 157	DETSC 3401*	0.01	mg/kg	< 0.01		< 0.01				
PCB 167	DETSC 3401*	0.01	mg/kg	< 0.01		< 0.01				
PCB 169	DETSC 3401*	0.01	mg/kg	< 0.01		< 0.01				
PCB 189	DETSC 3401*	0.01	mg/kg	< 0.01		< 0.01				
PCB 7 Total	DETSC 3401#	0.01	mg/kg	< 0.01		< 0.01				
Phenols										
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Phenol	DETSC 3451*	0.01	mg/kg	< 0.01		< 0.01				
4-Chloro-3-methylphenol	DETSC 3451*	0.01	mg/kg	< 0.01		< 0.01				
2,4-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01		< 0.01				
2,4-Dimethylphenol	DETSC 3451*	0.01	mg/kg	< 0.01		< 0.01				
p-cresol	DETSC 3451*	0.01	mg/kg	< 0.01		< 0.01				
2,6-Dimethylphenol	DETSC 3451*	0.01	mg/kg	< 0.01		< 0.01				
2,6-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01		< 0.01				
2,4,6-Trichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01		< 0.01				
Acid Herbicides										
Mecoprop	DETSC 3447	35	ug/kg					< 35		
2,4-D	DETSC 3447	35	ug/kg					< 35		
Bentazone	DETSC 3447	35	ug/kg					< 35		
Picloram	DETSC 3447	35	ug/kg					< 35		
MCPA	DETSC 3447	35	ug/kg					< 35		
Clopyralid	DETSC 3447	35	ug/kg					< 35		
Dicamba	DETSC 3447	35	ug/kg					< 35		
2,3,6-TBA	DETSC 3447	35	ug/kg					< 35		
Dichlorprop	DETSC 3447	35	ug/kg					< 35		
Bromoxynil	DETSC 3447	35	ug/kg					< 35		
Triclopyr	DETSC 3447	35	ug/kg					< 35		
Fenoprop	DETSC 3447	35	ug/kg					< 35		
МСРВ	DETSC 3447*	35	ug/kg					< 35		
2,4,5-T	DETSC 3447	35	ug/kg					< 35		
Fluroxypyr	DETSC 3447	35	ug/kg					< 35		
2,4-DB	DETSC 3447	35	ug/kg					< 35		
loxynil	DETSC 3447	35	ug/kg					< 35		
Benazolin	DETSC 3447	35	ug/kg					< 35		

								1		
		-	Lab No	2069597	2069598	2069599	2069600	2069602	2069603	2069604
		.Sa	imple ID	F-1P104	F-1P104	F-1P104	F-1P104	F-1P105	F-1P105	F-TP105
			Depth	0.50	1.50	2.40	3.40	0.50	1.80	2.80
		(Other ID							
		Sam	ple Type	ES	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	05/10/2022	05/10/2022	05/10/2022	05/10/2022	05/10/2022	05/10/2022	05/10/2022
Test	N A - A b - A	Sampli	ng Time	n/s						
lest		LOD	Units					. 25		
	DETSC 3447*	35	ug/kg					< 35		
		0.1						.0.1		
alpha-BHC	DETSC 3441*	0.1	mg/kg					< 0.1		
gamma-BHC (Lindane)	DETSC 3441*	0.1	mg/kg					< 0.1		
Deta-BHC	DETSC 3441*	0.1	mg/kg					< 0.1		
delta-BHC	DETSC 3441*	0.1	mg/kg					< 0.1		
Heptachlor	DETSC 3441*	0.1	mg/kg					< 0.1		
Aldrin	DETSC 3441*	0.1	mg/kg					< 0.1		
Heptachlor epoxide	DETSC 3441*	0.1	mg/kg					< 0.1		
gamma-Chlordane	DETSC 3441*	0.1	mg/kg					< 0.1		
Endosulphan I & Alpha-chlorodane	DETSC 3441*	0.1	mg/kg					< 0.1		
4,4-DDE	DETSC 3441*	0.1	mg/kg					< 0.1		
Dieldrin	DETSC 3441*	0.1	mg/kg					< 0.1		
Endrin	DETSC 3441*	0.1	mg/kg					< 0.1		
Endosulphan II & 4,4-DDD	DETSC 3441*	0.1	mg/kg					< 0.1		
Endrin aldehyde	DETSC 3441*	0.1	mg/kg					< 0.1		
4,4-DD1	DETSC 3441*	0.1	mg/kg					< 0.1		
Endosulphan sulphate	DETSC 3441*	0.1	mg/kg					< 0.1		
Methoxychlor	DETSC 3441*	0.1	mg/kg					< 0.1		
Endrin ketone	DETSC 3441*	0.1	mg/kg					< 0.1		
OPPs				r					1	
Dichlorvos	DETSC 3433*	0.1	mg/kg					< 0.1		
Mevinphos	DETSC 3433*	0.1	mg/kg					< 0.1		
Demeton-O	DETSC 3433*	0.1	mg/kg					< 0.1		
Ethoprop	DETSC 3433*	0.1	mg/kg					< 0.1		
Naled	DETSC 3433*	0.1	mg/kg					< 0.1		
Phorate	DETSC 3433*	0.1	mg/kg					< 0.1		
Demeton-S	DETSC 3433*	0.1	mg/kg					< 0.1		
Diazinon	DETSC 3433*	0.1	mg/kg					< 0.1		
Disulfoton	DETSC 3433*	0.1	mg/kg					< 0.1		
Methylparathion	DETSC 3433*	0.1	mg/kg					< 0.1		
Ronnel	DETSC 3433*	0.1	mg/kg					< 0.1		
Fenthion	DETSC 3433*	0.1	mg/kg					< 0.1		
Chlopyrifos	DETSC 3433*	0.1	mg/kg					< 0.1		
Trichlorinate	DETSC 3433*	0.1	mg/kg					< 0.1		
Merphos	DETSC 3433*	0.1	mg/kg					< 0.1		
Stirofos	DETSC 3433*	0.1	mg/kg					< 0.1		
Tokuthion	DETSC 3433*	0.1	mg/kg					< 0.1		
Fensulfothion	DETSC 3433*	0.1	mg/kg					< 0.1		
Bolstar	DETSC 3433*	0.1	mg/kg					< 0.1		
Azinphos methyl	DETSC 3433*	0.1	mg/kg					< 0.1		
Coumaphos	DETSC 3433*	0.1	mg/kg					< 0.1		

			Lab No	2069597	2069598	2069599	2069600	2069602	2069603	2069604
		.Sa	ample ID	F-TP104	F-TP104	F-TP104	F-TP104	F-TP105	F-TP105	F-TP105
			Depth	0.50	1.50	2.40	3.40	0.50	1.80	2.80
		(Other ID							
		Sam	ple Type	ES	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	05/10/2022	05/10/2022	05/10/2022	05/10/2022	05/10/2022	05/10/2022	05/10/2022
		Sampli	ing Time	n/s	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units							
Subcontracted Analysis										
Benzene	\$*	<2	ug/kg	<2		<2		<2		5
Toluene	\$*	<5	ug/kg	<5		<5		<5		<5
Ethylbenzene	\$*	<2	ug/kg	<2		<2		<2		<2
p & m-xylene	\$*	<2	ug/kg	<2		<2		<2		<2
o-xylene	\$*	<2	ug/kg	<2		<2		<2		<2
MTBE	\$*	<5	ug/kg	<5		<5		<5		<5
TAME	\$*	< 5	ug/kg	< 5		< 5		< 5		< 5

			Lab No	2069597
		.Sa	ample ID	F-TP104
			Depth	0.50
			Other ID	
		Sam	ple Type	ES
		Sampl	ing Date	05/10/2022
		Sampli	ing Time	n/s
Test	Method	LOD	Units	
VOCs				
Vinyl Chloride	DETSC 3431	0.01	mg/kg	< 0.01
1,1 Dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01
Trans-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01
1,1-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01
Cis-1.2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01
2.2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01
Bromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01
Chloroform	DETSC 3431	0.01	mg/kg	< 0.01
1,1,1-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01
1.1-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01
Carbon tetrachloride	DETSC 3431	0.01	mg/kg	< 0.01
Benzene	DETSC 3431	0.01	mg/kg	< 0.01
1.2-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01
Trichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01
1.2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01
Dibromomethane	DETSC 3431	0.01	mg/kg	< 0.01
Bromodichloromethane	DETSC 3431	0.01	mg/kg	< 0.01
cis-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01
Toluene	DETSC 3431	0.01	mg/kg	< 0.01
trans-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01
1,1,2-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01
Tetrachloroethylene	DETSC 3431	0.01	mg/kg	< 0.01
1,3-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01
Dibromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01
1,2-dibromoethane	DETSC 3431	0.01	mg/kg	< 0.01
Chlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01
1,1,1,2-tetrachloroethane	DETSC 3431	0.01	mg/kg	< 0.01
Ethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01
m+p-Xylene	DETSC 3431	0.01	mg/kg	< 0.01
o-Xylene	DETSC 3431	0.01	mg/kg	< 0.01
Styrene	DETSC 3431*	0.01	mg/kg	< 0.01
Bromoform	DETSC 3431	0.01	mg/kg	< 0.01
Isopropylbenzene	DETSC 3431	0.01	mg/kg	< 0.01
Bromobenzene	DETSC 3431	0.01	mg/kg	< 0.01
1,2,3-trichloropropane	DETSC 3431	0.01	mg/kg	< 0.01
n-propylbenzene	DETSC 3431	0.01	mg/kg	< 0.01
2-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01
1,3,5-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01
4-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01
Tert-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01
1,2,4-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01

			Lab No	2069597
		.Sa	ample ID	F-TP104
			Depth	0.50
			Other ID	
		Sam	ple Type	ES
		Sampl	ing Date	05/10/2022
		Sampl	ing Time	n/s
Test	Method	LOD	Units	
sec-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01
p-isopropyltoluene	DETSC 3431	0.01	mg/kg	< 0.01
1,3-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01
1,4-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01
n-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01
1,2-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01
1,2-dibromo-3-chloropropane	DETSC 3431	0.01	mg/kg	< 0.01
1,2,4-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01
Hexachlorobutadiene	DETSC 3431	0.01	mg/kg	< 0.01
1,2,3-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01
MTBE	DETSC 3431*	0.01	mg/kg	< 0.01
SVOCs				
Aniline	DETSC 3433*	0.1	mg/kg	< 0.1
2-Chlorophenol	DETSC 3433	0.1	mg/kg	< 0.1
Benzyl Alcohol	DETSC 3433	0.1	mg/kg	< 0.1
2-Methylphenol	DETSC 3433	0.1	mg/kg	< 0.1
Bis(2-chloroisopropyl)ether	DETSC 3433	0.1	mg/kg	< 0.1
3&4-Methylphenol	DETSC 3433	0.1	mg/kg	< 0.1
Bis-(dichloroethoxy)methane	DETSC 3433	0.1	mg/kg	< 0.1
1,2,4-Trichlorobenzene	DETSC 3433	0.1	mg/kg	< 0.1
2-Methylnaphthalene	DETSC 3433	0.1	mg/kg	< 0.1
Hexachlorocyclopentadiene	DETSC 3433*	0.1	mg/kg	< 0.1
2,4,5-Trichlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1
2-Chloronaphthalene	DETSC 3433	0.1	mg/kg	< 0.1
2-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1
2,4-Dinitrotoluene	DETSC 3433*	0.1	mg/kg	< 0.1
3-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1
4-Nitrophenol	DETSC 3433*	0.1	mg/kg	< 0.1
Dibenzofuran	DETSC 3433	0.1	mg/kg	< 0.1
2,6-Dinitrotoluene	DETSC 3433	0.1	mg/kg	< 0.1
2,3,4,6-Tetrachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1
Diethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1
4-Chlorophenylphenylether	DETSC 3433*	0.1	mg/kg	< 0.1
4-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1
2-Methyl-4,6-Dinitrophenol	DETSC 3433*	0.1	mg/kg	< 0.1
Diphenylamine	DETSC 3433	0.1	mg/kg	< 0.1
4-Bromophenylphenylether	DETSC 3433	0.1	mg/kg	< 0.1
Hexachlorobenzene	DETSC 3433	0.1	mg/kg	< 0.1
Pentachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1
Di-n-butylphthalate	DETSC 3433	0.1	mg/kg	< 0.1
Butylbenzylphthalate	DETSC 3433*	0.1	mg/kg	< 0.1
Bis(2-ethylhexyl)phthalate	DETSC 3433	0.1	mg/kg	< 0.1

Summary of Chemical Analysis Soil VOC/SVOC Samples

			Lab No	2069597
		.Sa	ample ID	F-TP104
			Depth	0.50
			Other ID	
		Sam	ple Type	ES
		Sampl	ing Date	05/10/2022
		Sampl	ing Time	n/s
Test	Method	LOD	Units	
Di-n-octylphthalate	DETSC 3433*	0.1	mg/kg	< 0.1
1,4-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1
Dimethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1
1,3-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1
1,2-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1
2,3,5,6-Tetrachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1
Azobenzene	DETSC 3433	0.1	mg/kg	< 0.1
Carbazole	DETSC 3433*	0.1	mg/kg	< 0.1

			Lab No	2069605	2069606	2069607
		.Sa	ample ID	F-TP104	F-TP104	F-TP105
			Depth	0.50	2.40	0.50
			Other ID			
		Sam	ple Type	ES	ES	ES
		Samp	ling Date	05/10/2022	05/10/2022	05/10/2022
		Sampl	ing Time	n/s	n/s	n/s
Test	Method	LOD	Units			
Preparation						
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y	Y	Y
Metals						
Aluminium, Dissolved	DETSC 2306	10	ug/l	62	120	1300
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.52	2.0	0.50
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1	< 0.1	< 0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	30	45	28
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	0.06	< 0.03	< 0.03
Chromium III, Dissolved	DETSC 2306*	1	ug/l	< 1.0	1.4	1.1
Chromium, Hexavalent	DETSC 2203	0.007	mg/l	< 0.007	< 0.007	< 0.007
Copper, Dissolved	DETSC 2306	0.4	ug/l	3.0	1.6	3.5
Iron, Dissolved	DETSC 2306	5.5	ug/l	18	22	7.9
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.57	15	24
Manganese, Dissolved	DETSC 2306	0.22	ug/l	12	10	1.7
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.03	< 0.01	0.02
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	2.4	3.4	1.7
Nickel, Dissolved	DETSC 2306	0.5	ug/l	0.6	< 0.5	< 0.5
Phosphorus as P, Dissolved	DETSC 2306	18	ug/l	< 18	26	< 18
Selenium, Dissolved	DETSC 2306	0.25	ug/l	1.6	6.3	1.6
Tin, Dissolved	DETSC 2306*	0.4	ug/l	< 0.4	< 0.4	< 0.4
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	4.5	2.1	5.0
Zinc, Dissolved	DETSC 2306	1.3	ug/l	2.3	4.7	8.2
Inorganics						
рН	DETSC 2008		pН	6.3	6.9	10.4
Cyanide, Total Low Level	DETSC 2131	0.1	ug/l	< 0.1	0.4	< 0.1
Cyanide, Free Low Level	DETSC 2131	0.1	ug/l	< 0.1	0.1	< 0.1
Thiocyanate	DETSC 2130	20	ug/l	< 20	< 20	< 20
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	78.1	44.9	59.0
Ammoniacal Nitrogen as NH4	DETSC 2207	0.015	mg/l	< 0.02	< 0.02	< 0.02
Ammoniacal Nitrogen as NH3	DETSC 2207	0.015	mg/l	< 0.015	< 0.015	< 0.015
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	< 0.015	< 0.015	< 0.015
Chloride	DETSC 2055	0.1	mg/l	2.0	12	9.3
Fluoride	DETSC 2055*	0.1	mg/l	0.34	0.21	< 0.10
Nitrate as NO3	DETSC 2055	0.1	mg/l	0.13	0.19	0.25
Nitrite as NO2	DETSC 2055	0.1	mg/l	< 0.10	0.31	0.29
Ortho Phosphate as P	DETSC 2205	0.01	mg/l	< 0.01	< 0.01	< 0.01
Sulphate as SO4	DETSC 2055	0.1	mg/l	120	36	37
Total Organic Carbon	DETSC 2085	1	mg/l	3.5	3.8	5.2
Petroleum Hydrocarbons						
Aliphatic C5-C6: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	
Aliphatic C6-C8: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	
Aliphatic C8-C10: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	

			Lab No	2069605	2069606	2069607
		.Sa	ample ID	F-TP104	F-TP104	F-TP105
			Depth	0.50	2.40	0.50
			Other ID			
		Sam	ple Type	ES	ES	ES
		Samp	ing Date	05/10/2022	05/10/2022	05/10/2022
		Sampl	ing Time	n/s	n/s	n/s
Test	Method	LOD	Units	P		
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0	
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0	
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0	
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0	
Aliphatic C5-C35: EH_CU+HS_1D_AL	DETSC 3072*	10	ug/l	< 10	< 10	
Aromatic C5-C7: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	
Aromatic C7-C8: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	
Aromatic C8-C10: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	1.4	
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072*	1	ug/l	7.4	3.2	
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072*	1	ug/l	13	3.0	
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072*	1	ug/l	5.8	5.2	
Aromatic C5-C35: EH_CU+HS_1D_AR	DETSC 3072*	10	ug/l	27	13	
TPH Ali/Aro Total C5-C35: EH_CU+HS_1D_Total	DETSC 3072*	10	ug/l	27	13	
Benzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	
Toluene	DETSC 3322	1	ug/l	< 1.0	< 1.0	
Ethylbenzene	DETSC 3322	1	ug/l	< 1.0	< 1.0	
Xylene	DETSC 3322	1	ug/l	< 1.0	< 1.0	
PAHs						
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	0.01
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01
Anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01	0.01	0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	< 0.01	0.01	0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	0.02	0.02
Fluorene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01
Naphthalene	DETSC 3304	0.05	ug/l	0.10	0.14	0.15
Phenanthrene	DETSC 3304	0.01	ug/l	< 0.01	0.01	0.02
Pyrene	DETSC 3304	0.01	ug/l	< 0.01	0.02	0.02
PAH Total	DETSC 3304	0.2	ug/l	< 0.20	0.21	0.25
PCBs						
PCB 28 + PCB 31	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	
PCB 52	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	
PCB 77	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	
PCB 81	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	

			Lab No	2069605	2069606	2069607
		.S	ample ID	F-TP104	F-TP104	F-TP105
			Depth	0.50	2.40	0.50
			Other ID			
		Sam	ple Type	ES	ES	ES
		Samp	ling Date	05/10/2022	05/10/2022	05/10/2022
		Sampl	ing Time	n/s	n/s	n/s
Test	Method	LOD	Units			
PCB 101	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	
PCB 105	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	
PCB 114	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	
PCB 118 + PCB 123	DETSC 3402	0.6	ug/l	< 0.6	< 0.6	
PCB 126	DETSC 3402	0.5	ug/l	< 0.5	< 0.5	
PCB 138	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	
PCB 153	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	
PCB 156	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	
PCB 157	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	
PCB 167	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	
PCB 169	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	
PCB 180	DETSC 3402	0.2	ug/l	< 0.2	< 0.2	
PCB 189	DETSC 3402	0.3	ug/l	< 0.3	< 0.3	
PCB 12	DETSC 3402	1	ug/l	< 1.0	< 1.0	
PCB 7 Total	DETSC 3402	1	ug/l	< 1.0	< 1.0	
Phenols						
Phenol	DETSC 3451*	0.1	ug/l	< 0.10	< 0.10	
4-Chloro-3-methylphenol	DETSC 3451*	0.1	ug/l	< 0.10	< 0.10	
2,4-Dichlorophenol	DETSC 3451*	0.1	ug/l	< 0.10	< 0.10	
2,4-Dimethylphenol	DETSC 3451*	0.1	ug/l	< 0.10	< 0.10	
p-cresol	DETSC 3451*	0.1	ug/l	< 0.10	< 0.10	
2,6-Dimethylphenol	DETSC 3451*	0.1	ug/l	< 0.10	< 0.10	
2,6-Dichlorophenol	DETSC 3451*	0.1	ug/l	< 0.10	< 0.10	
2,4,6-Trichlorophenol	DETSC 3451*	0.1	ug/l	< 0.10	< 0.10	
Acid Herbicides						
Mecoprop	DETSC 3448	0.02	ug/l			< 0.02
2,4-D	DETSC 3448*	0.02	ug/l			< 0.02
Bentazone	DETSC 3448	0.02	ug/l			< 0.02
Picloram	DETSC 3448*	0.02	ug/l			< 0.02
МСРА	DETSC 3448	0.02	ug/l			< 0.02
Clopyralid	DETSC 3448	0.02	ug/l			< 0.02
Dicamba	DETSC 3448	0.02	ug/l			< 0.02
2,3,6-ТВА	DETSC 3448	0.02	ug/l			< 0.02
Dichlorprop	DETSC 3448	0.02	ug/l			< 0.02
Bromoxynil	DETSC 3448	0.02	ug/l			< 0.02
Trichlopyr	DETSC 3448*	0.02	ug/l			< 0.02
Fenoprop	DETSC 3448	0.02	ug/l			< 0.02
МСРВ	DETSC 3448	0.02	ug/l			< 0.02
2,4,5-T	DETSC 3448	0.02	ug/l			< 0.02
Fluroxypyr	DETSC 3448	0.02	ug/l			< 0.02
2,4-DB	DETSC 3448	0.02	ug/l			< 0.02
loxvnil	DFTSC 3448	0.02	ug/l			< 0.02

			Lab No	2069605	2069606	2069607
		.Sa	ample ID	F-TP104	F-TP104	F-TP105
			Depth	0.50	2.40	0.50
			Other ID			
		Sam	ple Type	ES	ES	ES
		Samp	ing Date	05/10/2022	05/10/2022	05/10/2022
		Sampl	ing Time	n/s	n/s	n/s
Test	Method	LOD	Units		, -	7-
Benazolin	DETSC 3448*	0.02	ug/l			< 0.02
Pentachlorophenol	DETSC 3448*	0.02	ug/l			< 0.02
OCPs	1		0,			
alpha-BHC	DETSC 3434*	1	ug/l			< 3.0
gamma-BHC (Lindane)	DETSC 3434*	1	ug/l			< 3.0
beta-BHC	DETSC 3434*	1	ug/l			< 3.0
delta-BHC	DETSC 3434*	1	ug/l			< 3.0
Heptachlor	DETSC 3434*	1	ug/l			< 3.0
Aldrin	DETSC 3434*	1	ug/l			< 3.0
Heptachlor epoxide	DETSC 3434*	1	ug/l			< 3.0
gamma-Chlordane	DETSC 3434*	1	ug/l			< 3.0
Endosulphan I	DETSC 3434*	1	ug/l			< 3.0
4.4-DDE	DETSC 3434*	1	ug/l			< 3.0
Dieldrin	DETSC 3434*	1	ug/l			< 3.0
Endrin	DETSC 3434*	1	ug/l			< 3.0
Endosulphan II	DETSC 3434*	1	ug/l			< 3.0
Endrin aldehvde	DETSC 3434*	1	ug/l			< 3.0
4.4-DDT	DETSC 3434*	1	ug/l			< 3.0
Endosulphan sulphate	DETSC 3434*	1	ug/l			< 3.0
Methoxychlor	DETSC 3434*	1	ug/l			< 3.0
Endrin ketone	DETSC 3434*	1	ug/l			< 3.0
OPPs			,0 -			
Dichlorvos	DETSC 3434*	1	ug/l			< 3.0
Mevinphos	DETSC 3434*	1	ug/l			< 3.0
Demeton-O	DETSC 3434*	1	ug/l			< 3.0
Ethoprop	DETSC 3434*	1	ug/l			< 3.0
Naled	DETSC 3434*	1	ug/l			< 3.0
Phorate	DETSC 3434*	1	ug/l			< 3.0
Demeton-S	DETSC 3434*	1	ug/l			< 3.0
Diazinon	DETSC 3434*	1	ug/l			< 3.0
Disulfoton	DETSC 3434*	1	ug/l			< 3.0
Methylparathion	DETSC 3434*	1	ug/l			< 3.0
Ronnel	DETSC 3434*	1	ug/l			< 3.0
Fenthion	DETSC 3434*	1	ug/l			< 3.0
Chlopyrifos	DETSC 3434*	1	ug/l			< 3.0
Trichlorinate	DETSC 3434*	1	ug/l			< 3.0
Merphos	DETSC 3434*	1	ug/l			< 3.0
Stirofos	DETSC 3434*	1	ug/l			< 3.0
Tokuthion	DETSC 3434*	1	ug/l			< 3.0
Fensulfothion	DETSC 3434*	1	ug/l			< 3.0
Bolstar	DETSC 3434*	1	ug/l			< 3.0
Azinphos methyl	DETSC 3434*	1	ug/l			< 3.0

			Lab No	2069605	2069606	2069607
		.Sa	ample ID	F-TP104	F-TP104	F-TP105
			Depth	0.50	2.40	0.50
			Other ID			
		ple Type	ES	ES	ES	
	Sampling Date			05/10/2022	05/10/2022	05/10/2022
		Sampl	ing Time	n/s	n/s	n/s
Test	Method	LOD	Units			
Coumaphos	DETSC 3434*	1	ug/l			< 3.0
Subcontracted Analysis						
Hexavalent Chromium	\$*	<2	ug/kg	<2	<2	

I DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 22-20306 Client Ref 60678042 Contract Title NZT Feed GI

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2069596	F-TP104	SOIL	NAD	none	Steven Lambert
2069597	F-TP104 0.50	SOIL	NAD	none	Steven Lambert
2069598	F-TP104 1.50	SOIL	NAD	none	Steven Lambert
2069601	F-TP105	SOIL	NAD	none	Steven Lambert
2069602	F-TP105 0.50	SOIL	NAD	none	Steven Lambert
2069603	F-TP105 1.80	SOIL	NAD	none	Steven Lambert

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Inappropriate

Information in Support of the Analytical Results

Our Ref 22-20306 *Client Ref* 60678042 *Contract* NZT Feed GI

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2069596	F-TP104 SOIL	05/10/22	GJ 250ml, GJ 60ml, PT 1L		
2069597	F-TP104 0.50 SOIL	05/10/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2069598	F-TP104 1.50 SOIL	05/10/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2069599	F-TP104 2.40 SOIL	05/10/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2069600	F-TP104 3.40 SOIL	05/10/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2069601	F-TP105 SOIL	05/10/22	GJ 250ml, GJ 60ml, PT 1L		
2069602	F-TP105 0.50 SOIL	05/10/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2069603	F-TP105 1.80 SOIL	05/10/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2069604	F-TP105 2.80 SOIL	05/10/22	GJ 250ml, GJ 60ml, PT 1L	Ammonia (3 days)	
2069605	F-TP104 0.50 LEACHATE	05/10/22	GJ 250ml, GJ 60ml, PT 1L		
2069606	F-TP104 2.40 LEACHATE	05/10/22	GJ 250ml, GJ 60ml, PT 1L		
2069607	F-TP105 0.50 LEACHATE	05/10/22	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det

Det
Aliphatic C5-C6
Aliphatic C6-C8
Aliphatic C8-C10
Aliphatic C10-C12
Aliphatic C12-C16
Aliphatic C16-C21
Aliphatic C21-C35
Aliphatic C35-C40
Aliphatic C5-C40
Aromatic C5-C7
Aromatic C7-C8
Aromatic C8-C10
Aromatic C10-C12
Aromatic C12-C16
Aromatic C16-C21
Aromatic C21-C35
Aromatic C35-C40
Aromatic C5-C40
TPH Ali/Aro C5-C40
Aliphatic C5-C35
Aromatic C5-C35
TPH Ali/Aro Total C5-C35

Acronym HS_1D_AL HS_1D_AL HS_1D_AL EH_CU_1D_AL EH_CU_1D_AL EH_CU_1D_AL EH_CU_1D_AL EH_CU_1D_AL EH_CU+HS_1D_AL HS_1D_AR HS_1D_AR HS_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU+HS_1D_AR EH_CU+HS_1D_Total EH_CU+HS_1D_AL EH_CU+HS_1D_AR EH_CU+HS_1D_Total

End of Report

Issued:

21-Oct-22

Certificate Number 22-20457

Client Aecom Leeds 5th Floor 2 City Walk Leeds LS11 9AR

- Our Reference 22-20457
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description 11 Soil samples, 4 Leachate samples.
 - Date Received 12-Oct-22
- Date Started 12-Oct-22
- Date Completed 21-Oct-22
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

legenood

Kirk Bridgewood General Manager

Derwentside Environmental Testing Services Limited Unit 2, Park Road Industrial Estate South, Consett, Co Durham, DH8 5PY Tel: 01207 582333 • email: info@dets.co.uk • www.dets.co.uk

Page 1 of 17

			Lab No	2070379	2070380	2070382	2070383	2070384	2070385
		.Sa	ample ID	F-TP106A	F-TP106A	F-TP106A	F-TP106A	F-TP116	F-TP116
			Depth	0.00	0.50	2.00	2.50	0.20	0.80
		(Other ID						
		Sam	ple Type	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	07/10/2022	07/10/2022	07/10/2022	07/10/2022	06/10/2022	06/10/2022
		Sampli	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Asbestos Quantification	DETSC 1102	0.001	%	0.004					
Preparation		l l							
Moisture Content	DETSC 1004	0.1	%	6.4	7.9	15	18	4.3	7.3
Metals									
Aluminium	DETSC 2301*	1	mg/kg	15000	30000	1700	31000	22000	
Arsenic	DETSC 2301#	0.2	mg/kg	2.5	3.1	5.2	6.5	6.0	9.1
Beryllium	DETSC 2301#	0.2	mg/kg	1.6	2.8	< 0.2	4.0	2.3	2.3
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	2.6	3.0	1.0	2.4	5.3	13
Cadmium	DETSC 2301#	0.1	mg/kg	0.2	< 0.1	< 0.1	0.1	0.1	1.3
Chromium III	DETSC 2301*	0.15	mg/kg	51	8.5	2.8	7.5	120	90
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	11	4.6	3.2	7.7	11	16
Iron	DETSC 2301	25	mg/kg	44000	6900	5100	6300	11000	
Lead	DETSC 2301#	0.3	mg/kg	11	1.6	19	12	64	23
Manganese	DETSC 2301#	20	mg/kg	2500	2000	150	930	10000	
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05	< 0.05	0.09	< 0.05	< 0.05
Molybdenum	DETSC 2301#	0.4	mg/kg	1.6	0.5	1.3	0.9	0.9	
Nickel	DETSC 2301#	1	mg/kg	6.3	1.4	2.7	3.6	3.1	5.9
Phosphorus	DETSC 2301*	1	mg/kg	330	62	120	100	2700	
Selenium	DETSC 2301#	0.5	mg/kg	1.4	1.9	< 0.5	1.6	4.4	4.7
Tin	DETSC 2301	1	mg/kg	1.3	< 1.0	< 1.0	< 1.0	1.2	
Vanadium	DETSC 2301#	0.8	mg/kg	65	29	8.7	29	320	240
Zinc	DETSC 2301#	1	mg/kg	49	13	19	33	24	72
Inorganics									
рН	DETSC 2008#		pН	9.9	9.4	9.1	10.0	11.6	10.9
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.3	0.2	0.2	0.2	0.3	0.3
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
Organic matter	DETSC 2002#	0.1	%	0.5	1.0	< 0.1	1.4	1.6	0.8
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg	1.3	1.2	1.4	1.7	0.78	
Chloride	DETSC 2055	1	mg/kg	52.4	13.8	66.9	52.3	66.0	
Fluoride	DETSC 2055	1	mg/kg	9.5	7.2	5.4	15	3.4	
Nitrate as NO3	DETSC 2055	1	mg/kg	7.1	5.3	1.6	2.2	3.8	10
Ortho Phosphate as P	DETSC 2205*	0.1	mg/kg	0.26	0.34	0.85	0.17	0.39	
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	630	1100	160	410	1400	960
Sulphide	DFTSC 2024*	10	mg/kg	840	2200	160	2700	2000	1700
Sulphur (free)	DETSC 3049#	0.75	mg/kg	2.3	10	2.0	< 0.75	20	12
Sulphur as S. Total	DETSC 2320	0.01	%	0.15	0.24	0.03	0.25	0.32	0.28
Sulphate as SO4. Total	DFTSC 2321#	0.01	%	0.13	11	0 11	0.23	17	2.1
Petroleum Hydrocarbons		0.02	70	0.00		0.11	0.74	±.,	

			Lab No	2070379	2070380	2070382	2070383	2070384	2070385
		.Sa	ample ID	F-TP106A	F-TP106A	F-TP106A	F-TP106A	F-TP116	F-TP116
			Depth	0.00	0.50	2.00	2.50	0.20	0.80
			Other ID						
		Sam	ple Type	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	07/10/2022	07/10/2022	07/10/2022	07/10/2022	06/10/2022	06/10/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	0.20	0.28	0.33	0.30	0.26	0.29
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	4.2	< 1.5
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072#	3.4	mg/kg	21	< 3.4	< 3.4	< 3.4	110	14
Aliphatic C35-C40: EH_CU_1D_AL	DETSC 3072*	3.4	mg/kg	< 3.4	< 3.4	< 3.4	< 3.4	18	< 3.4
Aliphatic C5-C40: EH_CU+HS_1D_AL	DETSC 3072*	10	mg/kg	25	< 10	< 10	< 10	140	16
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072#	0.6	mg/kg	2.4	< 0.6	< 0.6	< 0.6	16	4.1
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072#	1.4	mg/kg	29	< 1.4	< 1.4	< 1.4	65	4.4
Aromatic C35-C40: EH_CU_1D_AR	DETSC 3072*	1.4	mg/kg	5.7	< 1.4	< 1.4	< 1.4	2.2	< 1.4
Aromatic C5-C40: EH_CU+HS_1D_AR	DETSC 3072*	10	mg/kg	37	< 10	< 10	< 10	84	< 10
TPH Ali/Aro C5-C40: EH_CU+HS_1D_Total	DETSC 3072*	10	mg/kg	62	< 10	< 10	< 10	220	24
PAHs									
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.05	0.05
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	0.03	< 0.03	< 0.03	0.10	0.25
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	0.11	< 0.03	< 0.03	< 0.03	0.91	0.83
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	0.06	< 0.03	< 0.03	< 0.03	0.68	0.48
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	0.15	< 0.03	< 0.03	< 0.03	0.94	0.83
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	0.05	< 0.03	< 0.03	< 0.03	0.29	0.29
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	0.06	< 0.03	< 0.03	< 0.03	0.39	0.36
Chrysene	DETSC 3303	0.03	mg/kg	0.15	< 0.03	< 0.03	< 0.03	0.82	0.75
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.07	0.05
Fluoranthene	DETSC 3303#	0.03	mg/kg	0.24	< 0.03	< 0.03	< 0.03	2.2	1.9
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	0.05	< 0.03	< 0.03	< 0.03	0.27	0.25
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	0.14	< 0.03	< 0.03	< 0.03	1.1	0.61
Pyrene	DETSC 3303#	0.03	mg/kg	0.16	< 0.03	< 0.03	< 0.03	1.5	1.6
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	1.2	< 0.10	< 0.10	< 0.10	9.4	8.3
PCBs									
PCB 28 + PCB 31	DETSC 3401#	0.01	mg/kg			< 0.01	< 0.01		< 0.01
PCB 52	DETSC 3401#	0.01	mg/kg			< 0.01	< 0.01		< 0.01

			Lab No	2070379	2070380	2070382	2070383	2070384	2070385
		.Sa	ample ID	F-TP106A	F-TP106A	F-TP106A	F-TP106A	F-TP116	F-TP116
			Depth	0.00	0.50	2.00	2.50	0.20	0.80
			Other ID						
		Sam	ple Type	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	07/10/2022	07/10/2022	07/10/2022	07/10/2022	06/10/2022	06/10/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
PCB 101	DETSC 3401#	0.01	mg/kg			< 0.01	< 0.01		< 0.01
PCB 118	DETSC 3401#	0.01	mg/kg			< 0.01	< 0.01		< 0.01
PCB 153	DETSC 3401#	0.01	mg/kg			< 0.01	< 0.01		< 0.01
PCB 138	DETSC 3401#	0.01	mg/kg			< 0.01	< 0.01		< 0.01
PCB 180	DETSC 3401#	0.01	mg/kg			< 0.01	< 0.01		< 0.01
РСВ 77	DETSC 3401*	0.01	mg/kg			< 0.01	< 0.01		< 0.01
PCB 81	DETSC 3401*	0.01	mg/kg			< 0.01	< 0.01		< 0.01
PCB 105	DETSC 3401*	0.01	mg/kg			< 0.01	< 0.01		< 0.01
PCB 114	DETSC 3401*	0.01	mg/kg			< 0.01	< 0.01		< 0.01
PCB 118	DETSC 3401*	0.01	mg/kg			< 0.01	< 0.01		< 0.01
PCB 123	DETSC 3401*	0.01	mg/kg			< 0.01	< 0.01		< 0.01
PCB 126	DETSC 3401*	0.01	mg/kg			< 0.01	< 0.01		< 0.01
PCB 156	DETSC 3401*	0.01	mg/kg			< 0.01	< 0.01		< 0.01
PCB 157	DETSC 3401*	0.01	mg/kg			< 0.01	< 0.01		< 0.01
PCB 167	DETSC 3401*	0.01	mg/kg			< 0.01	< 0.01		< 0.01
PCB 169	DETSC 3401*	0.01	mg/kg			< 0.01	< 0.01		< 0.01
PCB 189	DETSC 3401*	0.01	mg/kg			< 0.01	< 0.01		< 0.01
PCB 7 Total	DETSC 3401#	0.01	mg/kg			< 0.01	< 0.01		< 0.01
Phenols									
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Phenol	DETSC 3451*	0.01	mg/kg			< 0.01	< 0.01		< 0.01
4-Chloro-3-methylphenol	DETSC 3451*	0.01	mg/kg			< 0.01	< 0.01		< 0.01
2,4-Dichlorophenol	DETSC 3451*	0.01	mg/kg			< 0.01	< 0.01		< 0.01
2,4-Dimethylphenol	DETSC 3451*	0.01	mg/kg			< 0.01	< 0.01		< 0.01
p-cresol	DETSC 3451*	0.01	mg/kg			< 0.01	< 0.01		< 0.01
2,6-Dimethylphenol	DETSC 3451*	0.01	mg/kg			< 0.01	< 0.01		< 0.01
2,6-Dichlorophenol	DETSC 3451*	0.01	mg/kg			< 0.01	< 0.01		< 0.01
2,4,6-Trichlorophenol	DETSC 3451*	0.01	mg/kg			< 0.01	< 0.01		< 0.01
Subcontracted Analysis									
Benzene	\$*	<2	ug/kg		<2	<2	<2		<2
Toluene	\$*	<5	ug/kg		<5	<5	<5		<5
Ethylbenzene	\$*	<2	ug/kg		<2	<2	<2		<2
p & m-xylene	\$*	<2	ug/kg		<2	<2	<2		<2
o-xylene	\$*	<2	ug/kg		<2	<2	<2		<2
МТВЕ	\$*	<5	ug/kg		<5	<5	<5		<5
ТАМЕ	\$*	< 5	ug/kg		< 5	< 5	< 5		< 5

			Lab No	2070386	2070387	2070388	2070389
		.Sa	ample ID	F-TP116	F-TP116	F-TP116	F-TP116
			Depth	1.50	3.10	4.10	4.50
			Other ID				
		Sam	ple Type	ES	ES	ES	ES
		Sampl	ling Date	07/10/2022	07/10/2022	07/10/2022	07/10/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Asbestos Quantification	DETSC 1102	0.001	%				
Preparation							
Moisture Content	DETSC 1004	0.1	%	6.3	7.4	10	10
Metals							
Aluminium	DETSC 2301*	1	mg/kg	23000	19000	16000	
Arsenic	DETSC 2301#	0.2	mg/kg	21	15	20	18
Beryllium	DETSC 2301#	0.2	mg/kg	2.4	1.6	1.6	1.1
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	11	3.0	2.9	3.1
Cadmium	DETSC 2301#	0.1	mg/kg	0.2	0.6	0.5	1.0
Chromium III	DETSC 2301*	0.15	mg/kg	93	120	90	51
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	33	46	33	29
Iron	DETSC 2301	25	mg/kg	35000	51000	45000	
Lead	DETSC 2301#	0.3	mg/kg	22	95	74	82
Manganese	DETSC 2301#	20	mg/kg	37000	3900	4300	
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Molybdenum	DETSC 2301#	0.4	mg/kg	4.2	4.9	1.5	
Nickel	DETSC 2301#	1	mg/kg	19	16	17	19
Phosphorus	DETSC 2301*	1	mg/kg	1600	5000	3500	
Selenium	DETSC 2301#	0.5	mg/kg	14	2.1	1.9	1.3
Tin	DETSC 2301	1	mg/kg	2.4	3.4	3.3	
Vanadium	DETSC 2301#	0.8	mg/kg	240	430	330	220
Zinc	DETSC 2301#	1	mg/kg	31	170	340	1100
Inorganics							1
рН	DETSC 2008#		рН	11.5	11.2	11.5	10.8
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.2	0.3	1.1	0.3
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	0.2	< 0.1	< 0.1
Thiocyanate	DETSC 2130#	0.6	mg/kg	< 0.6	< 0.6	< 0.6	< 0.6
Organic matter	DETSC 2002#	0.1	%	1.0	2.9	2.5	3.4
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg	1.0	1.0	0.99	
Chloride	DETSC 2055	1	mg/kg	281	161	165	
Fluoride	DETSC 2055	1	mg/kg	9.2	33	45	
Nitrate as NO3	DETSC 2055	1	mg/kg	4.1	15	16	14
Ortho Phosphate as P	DETSC 2205*	0.1	mg/kg	0.69	0.74	0.24	
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	1600	670	520	480
Sulphide	DETSC 2024*	10	mg/kg	1700	1300	1400	780
Sulphur (free)	DETSC 3049#	0.75	mg/kg	13	13	5.2	6.7
Sulphur as S, Total	DETSC 2320	0.01	<u> </u>	0.51	0.26	0.22	0.14
Sulphate as SO4, Total	DETSC 2321#	0.01	%	2.0	0.64	0.70	0.41
Petroleum Hydrocarbons			,,,				
				-			

			Lab No	2070386	2070387	2070388	2070389
		.Sa	ample ID	F-TP116	F-TP116	F-TP116	F-TP116
			Depth	1.50	3.10	4.10	4.50
			Other ID				
		Sam	ple Type	ES	ES	ES	ES
		Samp	ing Date	07/10/2022	07/10/2022	07/10/2022	07/10/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	0.27	0.20	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	1.9	< 1.5	< 1.5	< 1.5
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072#	3.4	mg/kg	38	< 3.4	< 3.4	< 3.4
Aliphatic C35-C40: EH_CU_1D_AL	DETSC 3072*	3.4	mg/kg	4.5	< 3.4	< 3.4	< 3.4
Aliphatic C5-C40: EH_CU+HS_1D_AL	DETSC 3072*	10	mg/kg	45	< 10	< 10	< 10
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9	< 0.9	< 0.9
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072#	0.6	mg/kg	3.7	1.4	< 0.6	2.7
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072#	1.4	mg/kg	22	1.5	< 1.4	1.9
Aromatic C35-C40: EH_CU_1D_AR	DETSC 3072*	1.4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4
Aromatic C5-C40: EH_CU+HS_1D_AR	DETSC 3072*	10	mg/kg	26	< 10	< 10	< 10
TPH Ali/Aro C5-C40: EH_CU+HS_1D_Total	DETSC 3072*	10	mg/kg	71	< 10	< 10	< 10
PAHs	l.						
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	0.20
Acenaphthylene	DETSC 3303#	0.03	mg/kg	0.03	< 0.03	< 0.03	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	0.07	0.10	0.12	0.27
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	0.32	0.27	0.30	0.83
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	0.22	0.24	0.16	0.36
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	0.43	0.33	0.27	0.57
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	0.13	0.11	0.09	0.15
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	0.18	0.12	0.11	0.25
Chrysene	DETSC 3303	0.03	mg/kg	0.33	0.26	0.32	0.78
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	0.04
Fluoranthene	DETSC 3303#	0.03	mg/kg	0.62	0.65	0.86	2.4
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	0.11
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	0.14	0.10	0.06	0.12
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	0.05
Phenanthrene	DETSC 3303#	0.03	mg/kg	0.25	0.37	0.33	2.2
Pyrene	DETSC 3303#	0.03	mg/kg	0.50	0.48	0.62	1.8
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	3.2	3.0	3.2	10
PCBs					1	1	1
PCB 28 + PCB 31	DETSC 3401#	0.01	mg/kg			< 0.01	
PCB 52	DETSC 3401#	0.01	mg/kg			< 0.01	

			Lab No	2070386	2070387	2070388	2070389
		.Sa	ample ID	F-TP116	F-TP116	F-TP116	F-TP116
			Depth	1.50	3.10	4.10	4.50
			Other ID				
		Sam	ple Type	ES	ES	ES	ES
		Sampl	ing Date	07/10/2022	07/10/2022	07/10/2022	07/10/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
PCB 101	DETSC 3401#	0.01	mg/kg			< 0.01	
PCB 118	DETSC 3401#	0.01	mg/kg			< 0.01	
PCB 153	DETSC 3401#	0.01	mg/kg			< 0.01	
PCB 138	DETSC 3401#	0.01	mg/kg			< 0.01	-
PCB 180	DETSC 3401#	0.01	mg/kg			< 0.01	
PCB 77	DETSC 3401*	0.01	mg/kg			< 0.01	
PCB 81	DETSC 3401*	0.01	mg/kg			< 0.01	
PCB 105	DETSC 3401*	0.01	mg/kg			< 0.01	
PCB 114	DETSC 3401*	0.01	mg/kg			< 0.01	
PCB 118	DETSC 3401*	0.01	mg/kg			< 0.01	
PCB 123	DETSC 3401*	0.01	mg/kg			< 0.01	
PCB 126	DETSC 3401*	0.01	mg/kg			< 0.01	
PCB 156	DETSC 3401*	0.01	mg/kg			< 0.01	
PCB 157	DETSC 3401*	0.01	mg/kg			< 0.01	
PCB 167	DETSC 3401*	0.01	mg/kg			< 0.01	
PCB 169	DETSC 3401*	0.01	mg/kg			< 0.01	
PCB 189	DETSC 3401*	0.01	mg/kg			< 0.01	
PCB 7 Total	DETSC 3401#	0.01	mg/kg			< 0.01	
Phenols						I	
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
Phenol	DETSC 3451*	0.01	mg/kg			< 0.01	
4-Chloro-3-methylphenol	DETSC 3451*	0.01	mg/kg			< 0.01	
2,4-Dichlorophenol	DETSC 3451*	0.01	mg/kg			< 0.01	
2,4-Dimethylphenol	DETSC 3451*	0.01	mg/kg			< 0.01	
p-cresol	DETSC 3451*	0.01	mg/kg			< 0.01	
2,6-Dimethylphenol	DETSC 3451*	0.01	mg/kg			< 0.01	
2,6-Dichlorophenol	DETSC 3451*	0.01	mg/kg			< 0.01	
2,4,6-Trichlorophenol	DETSC 3451*	0.01	mg/kg			< 0.01	
Subcontracted Analysis							
Benzene	\$*	<2	ug/kg		<2	<2	
Toluene	\$*	<5	ug/kg		<5	<5	
Ethylbenzene	\$*	<2	ug/kg		<2	<2	
p & m-xylene	\$*	<2	ug/kg		<2	<2	
o-xylene	\$*	<2	ug/kg		<2	<2	
МТВЕ	\$*	<5	ug/kg		<5	<5	
ТАМЕ	\$*	< 5	ug/kg		< 5	< 5	

			Lab No	2070382	2070383
		.Sa	ample ID	F-TP106A	F-TP106A
			Depth	2.00	2.50
			Other ID		
		Sam	ple Type	ES	ES
		Sampl	ing Date	07/10/2022	07/10/2022
		Sampli	ing Time	n/s	n/s
Test	Method	LOD	Units		
VOCs					
Vinyl Chloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1 Dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Trans-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Cis-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
2,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Bromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Chloroform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1,1-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Carbon tetrachloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Benzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Trichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Dibromomethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Bromodichloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
cis-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Toluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
trans-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1,2-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Tetrachloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,3-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Dibromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dibromoethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Chlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1,1,2-tetrachloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Ethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
m+p-Xvlene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
o-Xvlene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Styrene	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01
Bromoform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Isopropylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Bromobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1.2.3-trichloropropane	DFTSC 3431	0.01	mg/kg	< 0.01	< 0.01
n-propylbenzene	DFTSC 3431	0.01	mg/kg	< 0.01	< 0.01
2-chlorotoluene	DETSC 3/31	0.01	8 [,] /ه mø/ka	< 0.01	< 0.01
1 3 5-trimethylbenzene	DETSC 3/31	0.01	8 ^{יי} /ةייי ma/ka	< 0.01	< 0.01
4-chlorotoluene	DETSC 3431	0.01	ma/ka	< 0.01	< 0.01
			1112/02	S 17.11	~ \ / \ /

			Lab No	2070382	2070383
		.Sa	ample ID	F-TP106A	F-TP106A
			Depth	2.00	2.50
			Other ID		
		Sam	ple Type	ES	ES
		Samp	ling Date	07/10/2022	07/10/2022
- .		Sampl	ing Time	n/s	n/s
Test	Method	LOD	Units	. 0. 04	0.04
lert-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2,4-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
sec-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
p-isopropyltoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,3-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,4-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
n-butyibenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dibromo-3-chioropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2,4-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Hexachiorobutadiene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2,3-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
INT BE	DETSC 3431*	0.01	тg/кg	< 0.01	< 0.01
Apiling		0.1	ma/ka	< 0.1	< 0.1
Annine 2 Chlorophonol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2 Mothylphonol	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Bis(2-chloroisopropyl)ether	DETSC 2422	0.1	mg/kg	< 0.1	< 0.1
28.4-Methylphenol	DETSC 2422	0.1	mg/kg	< 0.1	< 0.1
Bis-(dichloroethoxy)methane	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
1.2.4-Trichlorobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2-Methylpanhthalene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Hexachlorocyclopentadiene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2 4 5-Trichlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2-Chloronaphthalene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2.4-Dinitrotoluene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
3-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
4-Nitrophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Dibenzofuran	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2,6-Dinitrotoluene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
2,3,4,6-Tetrachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Diethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
4-Chlorophenylphenylether	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
4-Nitroaniline	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2-Methyl-4,6-Dinitrophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Diphenylamine	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
4-Bromophenylphenylether	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Hexachlorobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1

			Lab No	2070382	2070383
		.Sa	ample ID	F-TP106A	F-TP106A
			Depth	2.00	2.50
			Other ID		
		Sam	ple Type	ES	ES
		Sampl	ing Date	07/10/2022	07/10/2022
		Sampl	ing Time	n/s	n/s
Test	Method	LOD	Units		
Pentachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Di-n-butylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Butylbenzylphthalate	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Bis(2-ethylhexyl)phthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Di-n-octylphthalate	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
1,4-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Dimethylphthalate	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
1,3-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
1,2-Dinitrobenzene	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
2,3,5,6-Tetrachlorophenol	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Azobenzene	DETSC 3433	0.1	mg/kg	< 0.1	< 0.1
Carbazole	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1

Summary of Chemical Analysis

Leachate Samples

			Lab No	2070390	2070391	2070392	2070393
		.Sa	ample ID	F-TP106A	F-TP116	F-TP116	F-TP116
			Depth	2.00	1.50	3.10	4.10
			Other ID				
		Sam	ple Type	ES	ES	ES	ES
		Sampl	ing Date	07/10/2022	07/10/2022	07/10/2022	07/10/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Preparation							
Leachate 2:1 250g Non-WAC	DETSC 1009*			Y	Y	Y	Y
Metals							
Aluminium, Dissolved	DETSC 2306	10	ug/l	67	130	98	100
Arsenic, Dissolved	DETSC 2306	0.16	ug/l		9.6	3.2	3.2
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1
Boron, Dissolved	DETSC 2306*	12	ug/l		330	110	45
Cadmium, Dissolved	DETSC 2306	0.03	ug/l		< 0.03	< 0.03	< 0.03
Chromium III, Dissolved	DETSC 2306*	1	ug/l		6.1	1.8	< 1.0
Chromium, Hexavalent	DETSC 2203	0.007	mg/l		< 0.007	< 0.007	< 0.007
Copper, Dissolved	DETSC 2306	0.4	ug/l		1.9	1.4	2.6
Iron, Dissolved	DETSC 2306	5.5	ug/l		7.7	< 5.5	< 5.5
Lead, Dissolved	DETSC 2306	0.09	ug/l		0.78	0.22	0.17
Manganese, Dissolved	DETSC 2306	0.22	ug/l	32	4.8	0.97	1.2
Mercury, Dissolved	DETSC 2306	0.01	ug/l		0.04	0.02	0.02
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	7.6	17	3.7	1.9
Nickel, Dissolved	DETSC 2306	0.5	ug/l		< 0.5	< 0.5	< 0.5
Phosphorus as P, Dissolved	DETSC 2306	18	ug/l	26	250	60	50
Selenium, Dissolved	DETSC 2306	0.25	ug/l		3.3	1.6	1.1
Tin, Dissolved	DETSC 2306*	0.4	ug/l	< 0.4	< 0.4	< 0.4	< 0.4
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	5.1	27	24	9.7
Zinc, Dissolved	DETSC 2306	1.3	ug/l		< 1.3	< 1.3	< 1.3
Inorganics		<u>. </u>		<u>,</u>		<u>.</u>	
pH	DETSC 2008		pН		10.1	8.7	8.1
Cyanide, Total Low Level	DETSC 2131	0.1	ug/l		1.9	0.5	0.3
Cyanide, Free Low Level	DETSC 2131	0.1	ug/l		< 0.1	< 0.1	< 0.1
Thiocyanate	DETSC 2130	20	ug/l		51	< 20	< 20
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l		318	173	101
Ammoniacal Nitrogen as NH4	DETSC 2207	0.015	mg/l		< 0.02	< 0.02	< 0.02
Ammoniacal Nitrogen as NH3	DETSC 2207	0.015	mg/l		< 0.015	< 0.015	< 0.015
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l		< 0.015	< 0.015	< 0.015
Chloride	DETSC 2055	0.1	mg/l	8.9	55	22	8.7
Fluoride	DETSC 2055*	0.1	mg/l	0.68	0.20	1.5	0.76
Nitrate as NO3	DETSC 2055	0.1	mg/l		0.41	2.0	1.3
Nitrite as NO2	DETSC 2055	0.1	mg/l		0.47	< 0.10	0.20
Ortho Phosphate as P	DETSC 2205	0.01	mg/l	0.01	0.04	< 0.01	< 0.01
Sulphate as SO4	DETSC 2055	0.1	mg/l		63	22	12
Total Organic Carbon	DETSC 2085	1	mg/l		6.2	3.0	2.2

Summary of Chemical Analysis

Leachate Samples

			Lab No	2070390	2070391	2070392	2070393
		.Si	ample ID	F-TP106A	F-TP116	F-TP116	F-TP116
			Depth	2.00	1.50	3.10	4.10
			Other ID	-	-	-	
		Sam	ple Type	ES	ES	ES	ES
		Samp	ing Date	07/10/2022	07/10/2022	07/10/2022	07/10/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units	. <u> </u>	·		
Petroleum Hydrocarbons							
Aliphatic C5-C6: HS_1D_AL	DETSC 3322	0.1	ug/l	24		19	
Aliphatic C6-C8: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	1	< 0.1	
Aliphatic C8-C10: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1		< 0.1	
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0		< 1.0	
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	ſ	< 1.0	
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0		< 1.0	
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	ſ	< 1.0	
Aliphatic C5-C35: EH_CU+HS_1D_AL	DETSC 3072*	10	ug/l	24		19	
Aromatic C5-C7: HS 1D_AR	DETSC 3322	0.1	ug/l	< 0.1	1	< 0.1	
Aromatic C7-C8: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1		< 0.1	
Aromatic C8-C10: HS 1D AR	DETSC 3322	0.1	ug/l	< 0.1		< 0.1	
Aromatic C10-C12: EH CU 1D AR	DETSC 3072*	1	ug/l	< 1.0		< 1.0	
Aromatic C12-C16: EH CU 1D AR	DETSC 3072*	1	ug/l	< 1.0		< 1.0	
Aromatic C16-C21: EH CU 1D AR	DETSC 3072*	1	ug/l	< 1.0		< 1.0	
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0		< 1.0	
Aromatic C5-C35: EH CU+HS 1D AR	DETSC 3072*	10	ug/l	< 10		< 10	
		-					
TPH Ali/Aro Total C5-C35: EH_CU+HS_1D_Total	DETSC 3072*	10	ug/l	25		19	
Benzene	DETSC 3322	1	ug/l	< 1.0		< 1.0	
Toluene	DETSC 3322	1	ug/l	< 1.0		< 1.0	
Ethylbenzene	DETSC 3322	1	ug/l	< 1.0		< 1.0	
Xylene	DETSC 3322	1	ug/l	< 1.0	ľ	< 1.0	
PAHs							
Acenaphthene	DETSC 3304	0.01	ug/l		0.01	0.05	0.04
Acenaphthylene	DETSC 3304	0.01	ug/l		< 0.01	0.02	< 0.01
Anthracene	DETSC 3304	0.01	ug/l		0.02	0.01	< 0.01
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l		0.02	0.01	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l		< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l		< 0.01	< 0.01	< 0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l		< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l		< 0.01	< 0.01	< 0.01
Chrysene	DETSC 3304	0.01	ug/l		0.02	0.01	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l		< 0.01	< 0.01	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l		0.05	0.03	0.02
Fluorene	DETSC 3304	0.01	ug/l		< 0.01	0.02	0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l		< 0.01	< 0.01	< 0.01
Naphthalene	DETSC 3304	0.05	ug/l		0.09	0.13	0.13
Phenanthrene	DETSC 3304	0.01	ug/l		0.04	0.05	0.02
Pyrene	DETSC 3304	0.01	ug/l		0.04	0.02	0.02

Summary of Chemical Analysis

Leachate Samples

			Lab No	2070390	2070391	2070392	2070393
	.Sample ID				F-TP116	F-TP116	F-TP116
	Depth			2.00	1.50	3.10	4.10
			Other ID				
		Sam	ple Type	ES	ES	ES	ES
		Samp	ing Date	07/10/2022	07/10/2022	07/10/2022	07/10/2022
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
PAH Total	DETSC 3304	0.2	ug/l		0.29	0.35	0.24
PCBs	L						
PCB 28 + PCB 31	DETSC 3402	0.3	ug/l	< 0.3		< 0.3	
PCB 52	DETSC 3402	0.2	ug/l	< 0.2		< 0.2	
PCB 77	DETSC 3402	0.3	ug/l	< 0.3		< 0.3	
PCB 81	DETSC 3402	0.2	ug/l	< 0.2		< 0.2	
PCB 101	DETSC 3402	0.3	ug/l	< 0.3		< 0.3	
PCB 105	DETSC 3402	0.2	ug/l	< 0.2		< 0.2	
PCB 114	DETSC 3402	0.3	ug/l	< 0.3		< 0.3	
PCB 118 + PCB 123	DETSC 3402	0.6	ug/l	< 0.6		< 0.6	
PCB 126	DETSC 3402	0.5	ug/l	< 0.5		< 0.5	
PCB 138	DETSC 3402	0.2	ug/l	< 0.2		< 0.2	
PCB 153	DETSC 3402	0.2	ug/l	< 0.2		< 0.2	
PCB 156	DETSC 3402	0.3	ug/l	< 0.3		< 0.3	
PCB 157	DETSC 3402	0.2	ug/l	< 0.2		< 0.2	
PCB 167	DETSC 3402	0.3	ug/l	< 0.3		< 0.3	
PCB 169	DETSC 3402	0.2	ug/l	< 0.2		< 0.2	
PCB 180	DETSC 3402	0.2	ug/l	< 0.2		< 0.2	
PCB 189	DETSC 3402	0.3	ug/l	< 0.3		< 0.3	
PCB 12	DETSC 3402	1	ug/l	< 1.0		< 1.0	
PCB 7 Total	DETSC 3402	1	ug/l	< 1.0		< 1.0	
Phenols							
Phenol	DETSC 3451*	0.1	ug/l	< 0.10		< 0.10	
4-Chloro-3-methylphenol	DETSC 3451*	0.1	ug/l	< 0.10		< 0.10	
2,4-Dichlorophenol	DETSC 3451*	0.1	ug/l	< 0.10		< 0.10	
2,4-Dimethylphenol	DETSC 3451*	0.1	ug/l	< 0.10		< 0.10	
p-cresol	DETSC 3451*	0.1	ug/l	< 0.10		< 0.10	
2,6-Dimethylphenol	DETSC 3451*	0.1	ug/l	< 0.10		< 0.10	
2,6-Dichlorophenol	DETSC 3451*	0.1	ug/l	< 0.10		< 0.10	
2,4,6-Trichlorophenol	DETSC 3451*	0.1	ug/l	< 0.10		< 0.10	
Subcontracted Analysis							
Hexavalent Chromium	\$*	<2	ug/kg	<2	<2	<2	

I DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 22-20457 Client Ref 60678042 Contract Title NZT Feed GI

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2070379	F-TP106A 0.00	SOIL	Chrysotile	Chrysotile present as fibre bundles	Josh Best
2070380	F-TP106A 0.50	SOIL	NAD	none	Josh Best
2070381	F-TP106A 1.00	SOIL	NAD	none	Josh Best
2070384	F-TP116 0.20	SOIL	NAD	none	Josh Best
2070385	F-TP116 0.80	SOIL	NAD	none	Josh Best
2070386	F-TP116 1.50	SOIL	NAD	none	Josh Best
2070387	F-TP116 3.10	SOIL	NAD	none	Josh Best

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * -not included in laboratory scope of accreditation.

Summary of Asbestos Quantification Analysis Soil Samples

Our Ref 22-20457 *Client Ref* 60678042 *Contract Title* NZT Feed GI

		Lab No	2070379
	.:	Sample ID	F-TP106A
		Depth	0.00
		Other ID	
	Sar	nple Type	ES
	Samj	oling Date	07/10/2022
	Samp	oling Time	
Test	Method	Units	
Total Mass% Asbestos (a+b+c)	DETSC 1102	Mass %	0.004
Gravimetric Quantification (a)	DETSC 1102	Mass %	na
Detailed Gravimetric Quantification (b)	DETSC 1102	Mass %	0.004
Quantification by PCOM (c)	DETSC 1102	Mass %	na
Potentially Respirable Fibres (d)	DETSC 1102	Fibres/g	na
Breakdown of Gravimetric Analysis (a)			
Mass of Sample		g	1482.03
ACMs present*		type	
Mass of ACM in sample		g	
% ACM by mass		%	
% asbestos in ACM		%	
% asbestos in sample		%	
Breakdown of Detailed Gravimetric Analysis (b)			
% Amphibole bundles in sample		Mass %	na
% Chrysotile bundles in sample		Mass %	0.004
Breakdown of PCOM Analysis (c)			
% Amphibole fibres in sample		Mass %	na
% Chrysotile fibres in sample		Mass %	na
Breakdown of Potentially Respirable Fibre Analysis (d)		
Amphibole fibres		Fibres/g	na
Chrysotile fibres		Fibres/g	na
* Denotes test or material description outside of UKA	S accreditation.		

% asbestos in Asbestos Containing Materials (ACMs) is determined by by reference to HSG 264. Recommended sample size for quantification is approximately 1kg # denotes deviating sample

Inappropriate

Information in Support of the Analytical Results

Our Ref 22-20457 Client Ref 60678042 Contract NZT Feed GI

Containers Received & Deviating Samples

container for Date Sampled Containers Received Holding time exceeded for tests Lab No Sample ID tests 2070379 F-TP106A 0.00 SOIL GJ 250ml, GJ 60ml, PT 1L 07/10/22 Ammonia (3 days) 2070380 F-TP106A 0.50 SOIL 07/10/22 GJ 250ml, GJ 60ml, PT 1L Ammonia (3 days) 2070381 F-TP106A 1.00 SOIL 07/10/22 GJ 250ml, GJ 60ml, PT 1L 2070382 Ammonia (3 days) F-TP106A 2.00 SOIL 07/10/22 GJ 250ml. GJ 60ml. PT 1L Ammonia (3 days) 2070383 F-TP106A 2.50 SOIL 07/10/22 GJ 250ml, GJ 60ml, PT 1L 2070384 F-TP116 0.20 SOIL GJ 250ml, GJ 60ml, PT 1L 06/10/22 Ammonia (3 days) 2070385 F-TP116 0.80 SOIL 06/10/22 GJ 250ml, GJ 60ml, PT 1L F-TP116 1.50 SOIL 2070386 07/10/22 GJ 250ml, GJ 60ml, PT 1L Ammonia (3 days) 2070387 F-TP116 3.10 SOIL 07/10/22 GJ 250ml, GJ 60ml, PT 1L Ammonia (3 days) F-TP116 4.10 SOIL 2070388 07/10/22 GJ 250ml, GJ 60ml, PT 1L Ammonia (3 days) 2070389 F-TP116 4.50 SOIL 07/10/22 GJ 250ml, GJ 60ml, PT 1L 2070390 F-TP106A 2.00 LEACHATE 07/10/22 GJ 250ml, GJ 60ml, PT 1L 2070391 F-TP116 1.50 LEACHATE 07/10/22 GJ 250ml, GJ 60ml, PT 1L 2070392 F-TP116 3.10 LEACHATE 07/10/22 GJ 250ml, GJ 60ml, PT 1L 2070393 F-TP116 4.10 LEACHATE 07/10/22 GJ 250ml, GJ 60ml, PT 1L

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-

Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

List of HWOL Acronyms and Operators

Det

Det	Acronym
Aliphatic C5-C6	HS_1D_AL
Aliphatic C6-C8	HS_1D_AL
Aliphatic C8-C10	HS_1D_AL
Aliphatic C10-C12	EH_CU_1D_AL
Aliphatic C12-C16	EH_CU_1D_AL
Aliphatic C16-C21	EH_CU_1D_AL
Aliphatic C21-C35	EH_CU_1D_AL
Aliphatic C35-C40	EH_CU_1D_AL
Aliphatic C5-C40	EH_CU+HS_1D_AL
Aromatic C5-C7	HS_1D_AR
Aromatic C7-C8	HS_1D_AR
Aromatic C8-C10	HS_1D_AR
Aromatic C10-C12	EH_CU_1D_AR
Aromatic C12-C16	EH_CU_1D_AR
Aromatic C16-C21	EH_CU_1D_AR
Aromatic C21-C35	EH_CU_1D_AR
Aromatic C35-C40	EH_CU_1D_AR
Aromatic C5-C40	EH_CU+HS_1D_AR
TPH Ali/Aro C5-C40	EH_CU+HS_1D_Total
Aliphatic C5-C35	EH_CU+HS_1D_AL
Aromatic C5-C35	EH_CU+HS_1D_AR
TPH Ali/Aro Total C5-C35	EH_CU+HS_1D_Total

Issued:

Certificate Number 22-22032

Client Aecom Nottingham 12 Regan Way Chetwynd Business Park Chilwell Nottingham NG9 6RZ

- *Our Reference* 22-22032
- *Client Reference* 60678042
 - Order No (not supplied)
 - Contract Title NZT Feed GI
 - Description One Soil sample.
 - Date Received 31-Oct-22
 - Date Started 31-Oct-22
- Date Completed 04-Nov-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lopmood

Kirk Bridgewood General Manager

04-Nov-22

			Lab No	2078777
		.Sa	ample ID	F-TP112
			Depth	4.00-4.50
			Other ID	
		Sam	ple Type	В
		Sampl	ing Date	26/09/2022
		Sampl	ing Time	n/s
Test	Method	LOD	Units	
Metals				
Magnesium Aqueous Extract	DETSC 2076*	10	mg/l	< 10
Inorganics				
рН	DETSC 2008#		pН	11.2
Chloride Aqueous Extract	DETSC 2055	1	mg/l	13
Nitrate Aqueous Extract as NO3	DETSC 2055	1	mg/l	4.2
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	42
Sulphur as S, Total	DETSC 2320	0.01	%	0.09
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.22

Information in Support of the Analytical Results

Our Ref 22-22032 *Client Ref* 60678042 *Contract* NZT Feed GI

Containers Received & Deviating Samples

		Date			Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2078777	F-TP112 4.00-4.50 SOIL	26/09/22	PT 1L	Anions 2:1 (30 days), Total Sulphur ICP (7 days), Total Sulphate ICP (30 days), pH + Conductivity (7 days)	
Key: P-Plast	ic T-Tub		•		

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Five samples were received for analysis on 12th October, 2022 of which five were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

5.6000

Simon Gomery BSc Project Manager

Please include all sections of this report if it is reproduced

Element Materials Technology

Client Name:	Arcadis					Report :	Liquid					
Reference:	10047374	Ļ										
Location:	Redcar											
Contact:	Andy Smi	th				Liquids/pr	oducts: V=	40ml vial, G	G=glass bott	le, P=plastic	bottle	
EMT Job No:	22/16637					H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN=	=HN0 ₃			
EMT Sample No	1_7	8-14	15-21	22-28	20.35							
EMT Sample No.	1-7	0-14	13-21	22-20	29-33							
Sample ID	01S2- BHA04S05102 2WG1125	02F- BH102D05102 2WG1235	03F- BH102S05102 2WG1400	04MS/BH13S0 51022WG1500	05MS/BH13D0 51022WG1600							
Depth										D		
COC No / mino										abbrevi	e attached n ations and a	cronyms
COC NO / MISC												
Containers	V H HN N P G	V H HN N P G	V H HN N P G	V H HN N P G	V H HN N P G							
Sample Date	05/10/2022 11:25	05/10/2022 11:35	05/10/2022 14:00	05/10/2022 15:00	05/10/2022 16:00							
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water							
Batch Number	1	1	1	1	1							
Baton Nambor										LOD/LOR	Units	Method No.
Date of Receipt	12/10/2022	12/10/2022	12/10/2022	12/10/2022	12/10/2022							
Dissolved Arsenic [#]	3.7	5.0	<2.5	8.6	4.5					<2.5	ug/l	TM30/PM1
Dissolved Barium [#]	186	88	96	39	53					<3	ug/l	TM30/PM14
Dissolved Beryllium	<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	ug/l	TM30/PM1
Dissolved Boron	46	287	70	821	1341					<12	ug/l	TM30/PM1
Dissolved Cadmium [#]	<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	ug/l	TM30/PM1
Total Dissolved Chromium [#]	9.6	9.1	12.2	3.2	3.2					<1.5	ug/l	TM30/PM14
Dissolved Copper [#]	<7	<7	<7	<7	<7					<7	ug/l	TM30/PM14
Dissolved Lead [#]	<5	<5	<5	<5	<5					<5	ug/l	TM30/PM1
Dissolved Manganese [#]	3	<2	<2	107	1607					<2	ug/l	TM30/PM1
Dissolved Mercury [#]	<1	<1	<1	<1	<1					<1	ug/l	TM30/PM1
Dissolved Nickel [#]	6	2	3	<2	4					<2	ug/l	TM30/PM14
Dissolved Selenium [#]	4	9	7	<3	<3					<3	ug/l	TM30/PM14
Dissolved Vanadium [#]	51.3	9.6	<1.5	<1.5	<1.5					<1.5	ug/l	TM30/PM14
Dissolved Zinc [#]	3	<3	<3	<3	<3					<3	ug/l	TM30/PM14
		1	1	1		1						1

Element Materials Technology

Client Name:	Arcadis
Reference:	10047374
Location:	Redcar

Contact: Andy Smith

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason						
	No deviating sample report results for job 22/16637											

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.
NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 22/16637

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C. Ash samples are dried at 37°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ос	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 22/16637

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified				
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes			

Method Code Appendix

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Five samples were received for analysis on 12th October, 2022 of which five were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

5.60 20

Simon Gomery BSc Project Manager

Please include all sections of this report if it is reproduced

Client Name: Reference:	Arcadis 10047374 Redcar	Ļ				Report :	Liquid					
Location:	Andy Smit	th				1. 1		10		D	h = 441 =	
	Anuy Shi	uı					oducts: V=	40mi viai, G	=glass bott	ie, P=plastic	bottle	
EMI JOD NO:	22/1003/					п-п ₂ 50 ₄ , л	Z-ZNAC, N-		-ΠΝU3			
EMT Sample No.	1-7	8-14	15-21	22-28	29-35							
Sample ID	01S2- BHA04S05102 2WG1125	02F- BH102D05102 2WG1235	03F- BH102S05102 2WG1400	04MS/BH13S0 51022WG1500	05MS/BH13D0 51022WG1600							
Depth										Diagon an	o ottoobod n	otoo for all
COC No / misc										abbrevia	ations and a	cronyms
Containan												
Containers	VEENINFG	VIIINNEG	VEENNEG	VITININEG	VENNEG							
Sample Date	05/10/2022 11:25	05/10/2022 11:35	05/10/2022 14:00	05/10/2022 15:00	05/10/2022 16:00							
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water							
Batch Number	1	1	1	1	1						Units	Method
Date of Receipt	12/10/2022	12/10/2022	12/10/2022	12/10/2022	12/10/2022					LOBILOIT	onito	No.
PAH MS												
Naphthalene [#]	0.1	<0.1	<0.1	0.1	0.1					<0.1	ug/l	TM4/PM30
Acenaphthylene #	<0.005	<0.005	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Acenaphthene [#]	0.050	<0.005	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Fluorene #	<0.005	<0.005	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Phenanthrene [#]	0.140	<0.005	0.084	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Anthracene [#]	0.043	<0.005	0.019	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Fluoranthene [#]	0.141	0.048	0.209	<0.005	0.016					<0.005	ug/l	TM4/PM30
Pyrene#	0.111	0.047	0.185	<0.005	0.018					<0.005	ug/l	TM4/PM30
Benzo(a)anthracene [#]	<0.005	<0.005	0.078	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Chrysene [#]	<0.005	<0.005	0.108	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Benzo(bk)fluoranthene [#]	<0.008	<0.008	0.205	<0.008	<0.008					<0.008	ug/l	TM4/PM30
Benzo(a)pyrene [#]	<0.005	<0.005	0.103	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Indeno(123cd)pyrene#	<0.005	<0.005	0.069	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Dibenzo(ah)anthracene [#]	<0.005	<0.005	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Benzo(ghi)perylene [#]	<0.005	<0.005	0.065	<0.005	<0.005					<0.005	ug/l	TM4/PM30
PAH 16 Total [#]	0.585	<0.173	1.125	<0.173	<0.173					<0.173	ug/l	TM4/PM30
Benzo(b)fluoranthene	<0.008	<0.008	0.148	<0.008	<0.008					<0.008	ug/l	TM4/PM30
Benzo(k)fluoranthene	<0.008	<0.008	0.057	<0.008	<0.008					<0.008	ug/l	TM4/PM30
PAH Surrogate % Recovery	85	81	82	86	80					<0	%	TM4/PM30
Methyl Tertiary Butyl Ether #	<0.1	<0.1	<0.1	<0.1	<0.1					<0.1	ug/l	TM15/PM10
Benzene [#]	<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	ug/l	TM15/PM10
Toluene [#]	<5	<5	10	<5	<5					<5	ug/l	TM15/PM10
Ethylbenzene [#]	<1	<1	<1	<1	<1					<1	ug/l	TM15/PM10
m/p-Xylene [#]	<2	<2	<2	<2	<2					<2	ug/l	TM15/PM10
o-Xylene [#]	<1	<1	<1	<1	<1					<1	ug/l	TM15/PM10
Surrogate Recovery Toluene D8	100	102	104	104	108					<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	105	102	102	105	107					<0	%	TM15/PM10
TPH CWG												
Aliphatics												
>C5-C6 [#]	<10	24	98	<10	<10					<10	ug/l	TM36/PM12
>C6-C8 [#]	<10	64	184	<10	<10					<10	ug/l	TM36/PM12
>C8-C10 [#]	<10	304	989	<10	<10					<10	ug/l	TM36/PM12
>C10-C12 [#]	<5	<5	<5	<5	<5					<5	ug/l	TM5/PM16/PM3
>C12-C16#	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM16/PM3
>C16-C21#	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM16/PM3
>C21-C35#	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM16/PM3
Total aliphatics C5-35 [#]	<10	392	1271	<10	<10					<10	ug/l	TM5/TM36/PM12/PM16/PM0

Client Name:	Arcadis					Report :	Liquid					
Reference:	10047374 Redear	Ļ										
Contact:	Andv Smi	th				Liquids/pr	oducts: V=	40ml vial	eqlass bott	le P=plastic	bottle	
EMT Job No:	22/16637					H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN=	=giass bott =HN0 ₃	ic, i -piastic	bottie	
			15.04		00.05	2 40			Ĵ			
EMT Sample No.	1-7	8-14	15-21	22-28	29-35							
Sample ID	01S2- BHA04S05102 2WG1125	02F- BH102D05102 2WG1235	03F- BH102S05102 2WG1400	04MS/BH13S0 51022WG1500	05MS/BH13D0 51022WG1600							
Depth										Disesses		
COC No / miss										abbrevi	ations and a	cronyms
COC NO7 misc												
Containers	V H HN N P G	V H HN N P G	V H HN N P G	V H HN N P G	V H HN N P G							
Sample Date	05/10/2022 11:25	05/10/2022 11:35	05/10/2022 14:00	05/10/2022 15:00	05/10/2022 16:00							
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water							
Batch Number	1	1	1	1	1							Mothod
Date of Receipt	12/10/2022	12/10/2022	12/10/2022	12/10/2022	12/10/2022					LOD/LOR	Units	No.
	12/10/2022	12/10/2022	12/10/2022	12/10/2022	12/10/2022							
IPH CWG												
Aromatics	<10	<10	<10	<10	<10					<10	ug/l	TM26/DM12
>00-E07	<10	<10	11	<10	<10					<10	ug/l	TM36/PM12
>EC8-EC10#	<10	20	52	<10	<10					<10	ug/l	TM36/PM12
>EC10-EC12 [#]	<5	<5	<5	<5	<5					<5	ug/l	TM5/PM16/PM30
>EC12-EC16 [#]	<10	<10	10	<10	<10					<10	ug/l	TM5/PM16/PM30
>EC16-EC21#	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM16/PM30
>EC21-EC35#	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM16/PM30
Total aromatics C5-35 [#]	<10	20	73	<10	<10					<10	ug/l	TM5/TM36/PM12/PM16/PM3
Total aliphatics and aromatics(C5-35)#	<10	412	1344	<10	<10					<10	ug/l	TM5/TM36/PM12/PM16/PM3
Phenol [#]	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	mg/l	TM26/PM0
Nitrate as NO3 [#]	<0.2	<0.2	<0.2	<0.2	<0.2					<0.2	mg/l	TM38/PM0
Nitrite as NO2 [#]	0.22	<0.02	<0.02	<0.02	<0.02					<0.02	mg/l	TM38/PM0
Free Cyanide [#]	0.09	0.01	<0.01	0.02	<0.01					<0.01	mg/l	TM89/PM0
Ammoniacal Nitrogen as N [#]	2.64	0.30	0.37	4.64	5.74					<0.03	mg/l	TM38/PM0
Hexavalent Chromium	<6	<6	<6	<6	<6					<6	ug/l	TM38/PM0
Thiocyanate	0.20	0.11	0.04	9.54 _{AA}	<0.02					<0.02	mg/l	TM107/PM0
		1				1						1

 Client Name:
 Arcadis

 Reference:
 10047374

 Location:
 Redcar

 Contact:
 Andy Smith

SVOC Report : Liquid

EMT Job No:	22/16637									
EMT Sample No.	1-7	8-14	15-21	22-28	29-35			Ì		
		0.05	0.05							
Sample ID	01S2- BHA04S05102	02F- BH102D05102	03F- BH102S05102	04MS/BH13S0	05MS/BH13D0					
	2WG1125	2WG1235	2WG1400	510220031500	510227031000					
Depth								Please se	e attached r	otes for all
COC No / misc								abbrevi	ations and a	cronyms
Containers	V H HN N P G	V H HN N P G	V H HN N P G	V H HN N P G	V H HN N P G					
Sample Date	05/10/2022 11:25	05/10/2022 11:35	05/10/2022 14:00	05/10/2022 15:00	05/10/2022 16:00					
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water					
Batch Number	1	1	1	1	1			LOD/LOR	Units	Method
Date of Receipt	12/10/2022	12/10/2022	12/10/2022	12/10/2022	12/10/2022					No.
SVOC MS										
Phenols					0					TH 4 0 / D 4 00
2-Chlorophenol"	<1	<1	<1	<1	2			<1	ug/i	TM16/PM30
2-Methylphenol	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/i	TM16/PM30
2.4-Dichlorophenol [#]	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
2.4-Dimethylphenol	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
2.4.5-Trichlorophenol [#]	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
2,4,6-Trichlorophenol	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
4-Chloro-3-methylphenol#	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
4-Methylphenol	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
4-Nitrophenol	<10	<10	<10	<10	<10			<10	ug/l	TM16/PM30
Pentachlorophenol	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Phenol	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
PAHs										
2-Chloronaphthalene*	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
2-Methylnaphthalene "	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Prinalates	~5	-5	~5	-5	-5			~5		TM16/DM20
Butylbenzyl phthalate	<1	<1	<0	<1	<j <1</j 			<1	ug/l	TM16/PM30
Di-n-butyl phthalate #	<1.5	<1.5	<1.5	<1.5	<1.5			<1.5	ug/l	TM16/PM30
Di-n-Octyl phthalate	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Diethyl phthalate #	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Dimethyl phthalate	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Other SVOCs										
1,2-Dichlorobenzene#	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
1,2,4-Trichlorobenzene #	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
1,3-Dichlorobenzene#	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
1,4-Dichlorobenzene [#]	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
2-Nitroaniline	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
2,4-Dinitrotoluene	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
3-Nitroaniline	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
4-Bromonhenvinhenviether [#]	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
4-Chloroaniline	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
4-Chlorophenylphenylether#	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
4-Nitroaniline	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
Azobenzene [#]	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
Bis(2-chloroethoxy)methane#	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
Bis(2-chloroethyl)ether#	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Carbazole [#]	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
Dibenzofuran "	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	1 M16/PM30
riexachiorobenzene"	<1	<1	<1	<1	<1			<1	ug/I	TM16/PM30
Hexachlorocyclopentodiopo	~1	~1	~1	~1	<1 21			<1 21	ug/I	TM16/PM20
Hexachloroethane #	<1	<1	<1	<1	<1			<1	ug/i	TM16/PM30
Isophorone [#]	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ua/l	TM16/PM30
N-nitrosodi-n-propylamine [#]	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
Nitrobenzene [#]	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Surrogate Recovery 2-Fluorobiphenyl	113	104	119	112	110			<0	%	TM16/PM30
Surrogate Recovery p-Terphenyl-d14	115	107	119	110	110			<0	%	TM16/PM30
		1	1							1

Client Name: Reference: Location: Contact:

Arcadis 10047374 Redcar Andy Smith VOC Report : Liquid

EMT Job No:	22/16637									
EMT Sample No.	1-7	8-14	15-21	22-28	29-35					
	0400	005	005							
Sample ID	BHA04S05102	02F- BH102D05102	BH102S05102	04MS/BH13S0 51022WG1500	05MS/BH13D0					
	2WG1125	2WG1235	2WG1400	510220031500	510220031000					
Depth								Please se	e attached n	otes for all
COC No / misc								abbrevi	ations and ad	cronyms
Containers	V H HN N P G	V H HN N P G	V H HN N P G	V H HN N P G	V H HN N P G					
Sample Date	05/10/2022 11:25	05/10/2022 11:35	05/10/2022 14:00	05/10/2022 15:00	05/10/2022 16:00					
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water					
Batch Number	1	1	1	1	1			LOD/LOR	Units	Method
Date of Receipt	12/10/2022	12/10/2022	12/10/2022	12/10/2022	12/10/2022				-	NO.
VOC MS	-		-	-				-		
Dichlorodifluoromethane	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Methyl Tertiary Butyl Ether"	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	ug/i	TM15/PM10
Vinyl Chloride [#]	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	ug/i	TM15/PM10
Bromomethane	<1	<1	<1	<1	<1			<1	ug/i	TM15/PM10
Chloroethane [#]	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Trichlorofluoromethane #	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,1-Dichloroethene (1,1 DCE)#	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Dichloromethane (DCM) #	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
trans-1-2-Dichloroethene #	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,1-Dichloroethane #	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
cis-1-2-Dichloroethene #	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
2,2-Dichloropropane	<1	<1	<1	<1	<1			<1	ug/l	TM15/PM10
Bromochloromethane *	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Chloroform "	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,1,1-Trichloroethane	<2	<2	<2	<2	<2			<2	ug/i	TM15/PM10
Carbon tetrachloride [#]	<2	<2	<2	<2	<2			<2	ug/i	TM15/PM10
1.2-Dichloroethane [#]	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Benzene [#]	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM15/PM10
Trichloroethene (TCE)#	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,2-Dichloropropane [#]	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Dibromomethane [#]	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Bromodichloromethane #	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
cis-1-3-Dichloropropene	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Toluene [#]	<5	<5	10	<5	<5			<5	ug/l	TM15/PM10
trans-1-3-Dichloropropene	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,1,2-I richloroethane "	<2	<2	<2	<2	<2			<2	ug/i	TM15/PM10
1 3 Dichloropropano [#]	<2	<2	<2	<2	<2			<2	ug/i	TM15/PM10
Dibromochloromethane #	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1.2-Dibromoethane [#]	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Chlorobenzene [#]	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,1,1,2-Tetrachloroethane#	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Ethylbenzene [#]	<1	<1	<1	<1	<1			<1	ug/l	TM15/PM10
m/p-Xylene [#]	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
o-Xylene [#]	<1	<1	<1	<1	<1			<1	ug/l	TM15/PM10
Styrene #	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Bromoform "	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1 1 2 2 Totrachloroothano	<3	<3	<3	<3	<3			<3	ug/i	TM15/PM10
Bromobenzene [#]	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1.2.3-Trichloropropane [#]	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Propylbenzene [#]	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
2-Chlorotoluene #	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,3,5-Trimethylbenzene [#]	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
4-Chlorotoluene #	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
tert-Butylbenzene#	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,2,4-Trimethylbenzene [#]	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
sec-Butylbenzene "	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
4-isopropyiloluene"	< 3 < 2	< 3 < 2	< 3 < 2	< 3 < 2	<.) 22			<.3 23	ug/l	TM15/PM10
1,3-Dichlorobenzene	<3	<3	<3	<3	<3			<3	ug/I un/I	TM15/PM10
n-Butvlbenzene [#]	<3	<3	<3	<3	<3			<3	ua/l	TM15/PM10
1.2-Dichlorobenzene [#]	<3	<3	<3	<3	<3			<3	ua/l	TM15/PM10
1,2-Dibromo-3-chloropropane	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,2,4-Trichlorobenzene	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Hexachlorobutadiene	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Naphthalene	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,2,3-Trichlorobenzene	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Surrogate Recovery Toluene D8	100	102	104	104	108			<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	105	102	102	105	107			<0	%	[1M15/PM10

Client Name:	Arcadis
Reference:	10047374
Location:	Redcar

Contact: Andy Smith

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 22/16637	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 22/16637

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$. Ash samples are dried at $37^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16/PM30	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE/Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5/TM36	please refer to TM5 and TM36 for method details	PM12/PM16/PM30	please refer to PM16/PM30 and PM12 for method details	Yes			
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.				
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.	Yes			
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			

EMT Job No: 22/16637

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.				
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes			
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM0	No preparation is required.	Yes			
TM107	Determination of Sulphide/Thiocyanate by Skalar Continuous Flow Analyser	PM0	No preparation is required.				

Method Code Appendix

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Five samples were received for analysis on 8th November, 2022 of which five were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Paul Boden BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name:	Arcadis						Report :	Liquid					
Reference:	10035117	7											
Location:	Redcar L	WoW											
Contact:	Olivia Gra	ace					Liquids/pr	oducts: V=	40ml vial, G	=glass bottl	e, P=plastic	bottle	
EMT Job No:	22/18344						H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN=	HN0 ₃			
EMT Sample No.	1-11	12-22	23-33	34-44	45-55								
Sample ID	MS-BH13S	F-BH101D	F-BH101M	F-BH102D	F-BH102M								
Depth	7.00	25.00	8.00	28.00	10.00						Disesses		
COC No / misc											abbrevia	ations and a	cronyms
Out in a													
Containers	V H HN N P G	V H HN N P G	VHHNNPG	V H HN N P G	V H HN N P G								
Sample Date	09/11/2022 13:30	09/11/2022 11:30	09/11/2022 10:30	09/11/2022 16:30	09/11/2022 15:15								
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water								
Batch Number	1	1	1	1	1						LOD/LOR	Units	Method
Date of Receipt	08/11/2022	08/11/2022	08/11/2022	08/11/2022	08/11/2022						LODILOIT	onno	No.
Dissolved Aluminium [#]	-	356.8	556.7 _{AB}	-	38.4						<1.5	ug/l	TM170/PM14
Dissolved Arsenic [#]	NDP	5.8	4.9	NDP	5.1						<0.9	ug/l	TM170/PM14
Dissolved Boron [#]	NDP	114	111	NDP	339						<12	ug/l	TM170/PM14
Dissolved Cadmium [#]	NDP	0.07	0.08	NDP	0.07						<0.03	ug/l	TM170/PM14
Total Dissolved Chromium [#]	NDP	1.3	0.5	NDP	0.7						<0.2	ug/l	TM170/PM14
Dissolved Copper [#]	NDP	<1	<1	NDP	<1						<1	ug/l	TM170/PM14
Total Dissolved Iron #	NDP	26.2	24.6	NDP	11.1						<4.7	ug/l	TM170/PM14
Dissolved Lead #	NDP	<0.4	<0.4	NDP	<0.4						<0.4	ug/l	TM170/PM14
Dissolved Manganese #	NDP	<1.5	<1.5	NDP	<1.5						<1.5	ua/l	TM170/PM14
Dissolved Molvbdenum [#]	-	227.0	260.5	-	225.9						<0.2	ua/l	TM170/PM14
Dissolved Nickel [#]	NDP	1.4	1.4	NDP	1.5						<0.2	ua/l	TM170/PM14
Dissolved Zinc [#]	NDP	1.6	1.5	NDP	<1.5						<1.5	ua/l	TM170/PM14
												5	
Dissolved Aluminium [#]	2.7	-	-	92.3	-						<1.5	ug/l	TM30/PM14
Dissolved Arsenic [#]	8.4	-	-	1.9	-						<0.9	ug/l	TM30/PM14
Dissolved Boron	803	-	-	168	-						<12	ug/l	TM30/PM14
Dissolved Cadmium [#]	<0.03	-	-	< 0.03	-						<0.03	ug/l	TM30/PM14
Dissolved Calcium [#]	79.8	317.4 _{AB}	323.2AB	537.5AB	182.1						<0.2	mg/l	TM30/PM14
Total Dissolved Chromium [#]	<0.2	-	-	0.9	-						<0.2	ug/l	TM30/PM14
Dissolved Copper [#]	<3	-	-	<3	-						<3	ua/l	TM30/PM14
Total Dissolved Iron [#]	835.5	-	-	20.9	-						<4.7	ua/l	TM30/PM14
Dissolved Lead #	<0.4	-	-	<0.4	-						<0.4	ua/l	TM30/PM14
Dissolved Magnesium [#]	59.4	0.1	0.2	<0.1	0.3						<0.1	ma/l	TM30/PM14
Dissolved Manganese #	91.4	_		<1.5	-						<1.5	ug/l	TM30/PM14
Dissolved Molybdenum [#]	11.0	-	-	248.0	-						<0.2	ua/l	TM30/PM14
Dissolved Nickel [#]	0.2	-	-	3.9	-						<0.2	ua/l	TM30/PM14
Dissolved Potassium#	100.2	40.2	30.9	88.4	53.7						<0.1	ma/l	TM30/PM14
Dissolved Silicon	3164	5725	5267	896	5219						<100	ug/l	TM30/PM14
Dissolved Sodium [#]	1018.540	202.9	155.5	903.948	132.4						<0.1	mg/l	TM30/PM14
Dissolved Zinc#	<1.5	-	-	<1.5	-						<1.5	ug/l	TM30/PM14
Mercury Dissolved by CVAF [#]	<0.01	<0.01	<0.01	0.34	<0.01						<0.01	g.	TM61/PM0
Total Dissolved Sulphur as S	130565	167646	120440	113135	156417.0						<10	ug/l	TM30/PM14
	TOUCOUAC	TOTOTOAC	120440AC	TICIOCAC	TOOTTAC						-10	ugn	
		1	1	1	1								1

Client Name: Reference:	Arcadis 10035117	,				Report :	Liquid					
Location:	Redcar L	WoW										
Contact:	Olivia Gra	ace				Liquids/pr	oducts: V=	40ml vial, G	=glass bottl	le, P=plastic	bottle	
EMT Job No:	22/18344					H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN=	HN0 ₃	_		
EMT Sample No.	1-11	12-22	23-33	34-44	45-55							
Sample ID	MS-BH13S	F-BH101D	F-BH101M	F-BH102D	F-BH102M							
Depth	7.00	25.00	8.00	28.00	10.00					Please se	o ottochod n	otos for all
COC No / misc										abbrevi	ations and a	cronyms
Containers	V H HN N P G	V H HN N P G	VHHNNPG	V H HN N P G	V H HN N P G							
Sample Date	09/11/2022 13:30	09/11/2022 11:30	09/11/2022 10:30	09/11/2022 16:30	09/11/2022 15:15							
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water							
Batch Number	1	1	1	1	1							Method
Date of Receipt	08/11/2022	08/11/2022	08/11/2022	08/11/2022	08/11/2022					LOD/LOR	Units	No.
PAH MS												
Nanhthalene [#]	0.1	0.1	<0.1	<0.1	<0.1					<0.1	ua/l	TM4/PM30
Acenanbthylene #	<0.005	<0.005	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Aconophthono [#]	<0.000	<0.005	0.014	0.010	0.010					<0.000	ug/l	TM4/PM30
Eluorono #	0.005	<0.005	0.012	<0.005	0.007					<0.005	ug/l	TM4/PM30
Phononthrono [#]	<0.005	<0.005	<0.005	<0.005	<0.007					<0.005	ug/l	TM4/PM30
Anthrasons [#]	<0.005	<0.005	<0.005	<0.005	<0.005					<0.005	ug/l	TM4/PM30
Anunacene	0.005	<0.003	<0.003	<0.003	<0.003					<0.005	ug/l	TM4/PM30
Putorantinerie	0.000	0.006	0.006	0.017	0.050					<0.005	ug/l	TM4/DM30
Ponzo(a)anthracana [#]	<0.005	<0.007	<0.007	0.015	0.048					<0.005	ug/l	TM4/PM30
Christian #	<0.005	<0.005	<0.005	0.000	0.020					<0.005	ug/l	TM4/PM30
Chrysene Bonze/bk/fluoronthone#	<0.003	<0.003	<0.003	0.016	0.024					<0.003	ug/l	TM4/PM30
Benzo(bk)iluorantinene	<0.000	<0.000	<0.000	<0.005	<0.005					<0.000	ug/l	TM4/PM30
Indono(123cd)pyrono#	<0.005	<0.005	<0.005	0.007	0.013					<0.005	ug/l	TM4/PM30
Dibenze(ab)enthreenee#	<0.005	<0.005	<0.005	<0.007	<0.005					<0.005	ug/l	TM4/PM30
Bonzo(ahi)pon/ono [#]	<0.000	<0.005	<0.005	0.000	0.013					<0.005	ug/l	TM4/PM30
	<0.173	<0.173	<0.173	<0.000	0.238					<0.173	ug/l	TM4/PM30
Benzo(h)fluoranthene	<0.008	<0.008	<0.008	0.012	0.034					<0.008	ug/l	TM4/PM30
Benzo(k)fluoranthene	<0.008	<0.008	<0.008	<0.008	0.004					<0.008	ug/l	TM4/PM30
PAH Surrogate % Recovery	88	81	84	79	89					<0	%	TM4/PM30
	00	01	04	10	00					-0	,,,	
VOC TICs	ND	ND	ND	See Attached	ND						None	TM15/PM10
Methyl Tertiary Butyl Ether #	<0.1	<0.1	<0.1	<0.1	<0.1					<0.1	ug/l	TM15/PM10
Benzene [#]	<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	ug/l	TM15/PM10
Toluene [#]	<5	<5	<5	<5	<5					<5	ug/l	TM15/PM10
Ethylbenzene #	<1	<1	<1	<1	<1					<1	ug/l	TM15/PM10
m/p-Xylene #	<2	<2	<2	<2	<2					<2	ug/l	TM15/PM10
o-Xylene [#]	<1	<1	<1	<1	<1					<1	ug/l	TM15/PM10
Surrogate Recovery Toluene D8	87	92	95	100	94					<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	92	94	97	97	95					<0	%	TM15/PM10
SVOC TICs	ND	ND	ND	See Attached	ND						None	TM16/PM30

Client Name: Reference: Location:	Arcadis 10035117 Redcar L\	, NoW				Report :	Liquid					
Contact:	Olivia Gra	ice				Liquids/pr	oducts: V=	40ml vial, G	=glass bottl	e, P=plastic	bottle	
EMT Job No:	22/18344					 $H=H_2SO_4$, A	Z=ZnAc, N=	NaOH, HN=	HN0 ₃			
EMT Sample No.	1-11	12-22	23-33	34-44	45-55							
Sample ID	MS-BH13S	F-BH101D	F-BH101M	F-BH102D	F-BH102M							
Depth	7.00	25.00	8.00	28.00	10.00					Please se	e attached n	otes for all
COC No / misc										abbrevi	ations and a	cronyms
Containers	V H HN N P G	V H HN N P G	V H HN N P G	V H HN N P G	V H HN N P G							
Sample Date	09/11/2022 13:30	09/11/2022 11:30	09/11/2022 10:30	09/11/2022 16:30	09/11/2022 15:15							
Sample Tune	Cround Water	Cround Water	Cround Water	Cround Water	Cround Water							
Sample Type	Ground water	Ground water	Ground water	Ground Water	Ground water							
Batch Number	1	1	1	1	1					LOD/LOR	Units	Method
Date of Receipt	08/11/2022	08/11/2022	08/11/2022	08/11/2022	08/11/2022							NO.
TPH CWG												
Aliphatics	10	10	10							10		
>C5-C6 *	<10	13	<10	71	24					<10	ug/l	TM36/PM12
>C6-C8"	<10	104	66	087	57 77					<10	ug/l	TM36/PM12
>C10-C12#	<5	<5	<5	<5	<5					<5	ug/l	TM5/PM16/PM30
>C12-C16 [#]	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM16/PM30
>C16-C21#	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM16/PM30
>C21-C35#	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM16/PM30
>C35-C44	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM16/PM30
Total aliphatics C5-35 [#]	<10	147	81	1253	158					<10	ug/l	TM5/TM36/PM12/PM16/PM30
Total aliphatics C5-44	<10	147	81	1253	158					<10	ug/l	TM5/TM36/PM12/PM16/PM30
Aromatics	.10	.40	.10	.10								TN00/DN440
>C5-EC7"	<10	<10	<10	<10	<10					<10	ug/I	TM36/PM12
>EC7-EC8	<10	13	14	68	14					<10	ug/l	TM36/PM12
>EC10-EC12 [#]	<5	<5	<5	<5	<5					<5	ug/l	TM5/PM16/PM30
>EC12-EC16#	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM16/PM30
>EC16-EC21#	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM16/PM30
>EC21-EC35 [#]	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM16/PM30
>EC35-EC44	<10	<10	<10	<10	<10					<10	ug/l	TM5/PM16/PM30
Total aromatics C5-35 [#]	<10	13	14	68	14					<10	ug/l	TM5/TM36/PM12/PM16/PM30
Total aliphatics and aromatics(C5-35)#	<10	160	95	1321	172					<10	ug/l	TM5/TM36/PM12/PM16/PM30
Total alionatics and aromatics(C5-44)	<10	160	14 95	1321	14					<10	ug/l	TM5/TM56/PM12/PM16/PM30
	-10	100		1921						-10	agn	
Resorcinol	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	mg/l	TM26/PM0
Catechol	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	mg/l	TM26/PM0
Phenol [#]	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	mg/l	TM26/PM0
m/p-cresol	<0.02	<0.02	<0.02	0.04	<0.02					<0.02	mg/l	TM26/PM0
o-cresol	<0.01	<0.01	<0.01	0.02	<0.01					<0.01	mg/l	TM26/PM0
Total cresols [#]	<0.03	<0.03	<0.03	0.06	<0.03					<0.03	mg/l	TM26/PM0
Xylenols [#]	<0.06	< 0.06	< 0.06	< 0.06	<0.06					<0.06	mg/l	TM26/PM0
1-naphthol	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	mg/i	TM26/PM0
2-isopropylphenol	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	ma/l	TM26/PM0
Total Speciated Phenols HPLC	<0.1	<0.1	<0.1	<0.1	<0.1					<0.1	mg/l	TM26/PM0
											<u> </u>	
Sulphate as SO4 [#]	366.6	480.4	359.3	343.4	463.2					<0.5	mg/l	TM38/PM0
Chloride [#]	1346.1	342.5	262.7	982.0	144.8					<0.3	mg/l	TM38/PM0
Nitrate as NO3 [#]	<0.2	<0.2	<0.2	<0.2	<0.2					<0.2	mg/l	TM38/PM0
Nitrite as NO2 [#]	0.19	0.03	0.08	0.12	<0.02					<0.02	mg/l	TM38/PM0
Ortho Phosphate as PO4 *	0.06	<0.06	<0.06	<0.06	<0.06					<0.06	mg/l	TM38/PM0
	1	1	1	1	1		1		1	1		1

Client Name: Reference:	Arcadis 10035117	,				Report :	Liquid					
Location:	Redcar L	NoW					- d	10		- Dlti-	h - 441 -	
Contact:	Olivia Gra	ice				H=H_SO	oducts: V= 7=7nAc N=	40ml vial, G NaOH_HN=	i=glass bottl :HNΩ₀	e, P=plastic	bottle	
	22,10011									1		
EMT Sample No.	1-11	12-22	23-33	34-44	45-55							
Sample ID	MS-BH13S	F-BH101D	F-BH101M	F-BH102D	F-BH102M							
Depth	7.00	25.00	8.00	28.00	10.00					Please se	e attached n	otes for all
COC No / misc										abbrevi	ations and a	cronyms
Containers												
Containers	VIIIININFG	VIIIINNEG	VIIIINNEG	VIIIININEG	VIIIININFO							
Sample Date	09/11/2022 13:30	09/11/2022 11:30	09/11/2022 10:30	09/11/2022 16:30	09/11/2022 15:15							
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water							1
Batch Number	1	1	1	1	1					LOD/LOR	Units	Method
Date of Receipt	08/11/2022	08/11/2022	08/11/2022	08/11/2022	08/11/2022							NO.
Free Cyanide	0.019	0.003	0.008	0.008 _{AB}	0.033 _{AC}					<0.001	mg/l	TM89/PM0
Total Cyanide	0.052	0.017	0.015	0.023 _{AB}	0.064 _{AC}					<0.001	mg/l	TM89/PM0
Complex Cyanide	0.033	0.014	0.007	0.015 _{AB}	0.031 _{AC}					<0.001	mg/l	TM89/PM0
Ammoniacal Nitrogen as N [#]	5.00	2.02	1.70	1.48	0.07					<0.03	mg/l	TM38/PM0
	470	(70										
Total Alkalinity as CaCO3"	170	172	198	1118	142					<1	mg/i	TM75/PM0
Sulphide	<0.01	< 0.01	<0.01	0.02	<0.01					<0.01	ma/l	TM107/PM0
Thiocyanate	0.07	0.07	0.02	0.04	0.07					<0.02	mg/l	TM107/PM0
Dissolved Organic Carbon [#]	5	107	67	699	67					<2	mg/l	TM60/PM0
Dissolved Inorganic Carbon #	38	<2	<2	<2	<2					<2	mg/l	TM60/PM0
рН *	8.05	11.55	11.73	12.41	11.44					<0.01	pH units	TM73/PM0
Total Suspended Solids #	<10	82	41	21	58					<10	mg/l	TM37/PM0
Total Cations	55.73	25.70	23.70	68.40	16.24					<0.00	mmolc/l	TM30/PM14
Total Anions	49.00	23.10	18.85	57.20	16.57					<0.00	mmolc/l	TM0/PM0
% Cation Excess	6.43	5.33	11.40	8.92	-1.01						%	TM0/PM0

Client Name: Reference: Location: Contact: EMT Job No: Arcadis 10035117 Redcar LWoW Olivia Grace 22/18344

SVOC Report : Liquid

EMT Sample No.	1-11	12-22	23-33	34-44	45-55					
		ĺ								
Sample ID	MS-BH13S	F-BH101D	F-BH101M	F-BH102D	F-BH102M					
Durith	7.00	05.00	0.00	00.00	10.00			 		
Depth COC No / misc	7.00	25.00	8.00	28.00	10.00			 Please se abbrevia	e attached no ations and ac	otes for all cronvms
Containers	V H HN N P G			 						
Sample Date	09/11/2022 13:30	09/11/2022 11:30	09/11/2022 10:30	09/11/2022 16:30	09/11/2022 15:15					
Sample Type	Ground Water									
Batch Number	1	1	1	1	1			LOD/LOR	Units	Method
Date of Receipt	08/11/2022	08/11/2022	08/11/2022	08/11/2022	08/11/2022			LOBILOIT	onno	No.
SVOC MS										
2-Chlorophenol [#]	<1	<1	<1	<1	<1			<1	ua/l	TM16/PM30
2-Methylphenol [#]	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
2-Nitrophenol	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
2,4-Dichlorophenol [#]	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
2,4-Dimethylphenol	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
2,4,5-Trichlorophenol [#]	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
2,4,6-Trichlorophenol	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
4-Chioro-3-methylphenol	<0.5	<0.5 <1	<0.5	<0.5 <1	<0.5			<0.5 <1	ug/i	TM16/PM30
4-Nitrophenol	<10	<10	<10	<10	<10			<10	ug/l	TM16/PM30
Pentachlorophenol	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Phenol	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
PAHs										
2-Chloronaphthalene#	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
2-Methylnaphthalene *	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Primalates Bis(2-ethylbeyyl) phthalate	<5	<5	<5	<5	<5			<5	ua/l	TM16/PM30
Butvlbenzvl phthalate	<1	<5 <1	<1	<5 <1	<1			 <1	ug/i	TM16/PM30
Di-n-butyl phthalate #	<1.5	<1.5	<1.5	<1.5	<1.5			<1.5	ug/l	TM16/PM30
Di-n-Octyl phthalate	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Diethyl phthalate [#]	<1	<1*	<1+	<1*	<1+			<1	ug/l	TM16/PM30
Dimethyl phthalate	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Other SVOCs										
1,2-Dichlorobenzene *	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
1,2,4- Inchlorobenzene	<1	<1	<1	<1	<1			<1	ug/i	TM16/PM30
1,4-Dichlorobenzene [#]	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
2-Nitroaniline	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
2,4-Dinitrotoluene [#]	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
2,6-Dinitrotoluene	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
3-Nitroaniline	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
4-Bromophenylphenylether" 4-Chloroaniline	<1	<1	<1	<1	<1			<1	ug/i	TM16/PM30
4-Chlorophenvlphenvlether#	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
4-Nitroaniline	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
Azobenzene [#]	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
Bis(2-chloroethoxy)methane #	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
Bis(2-chloroethyl)ether#	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Carbazole *	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
Dipenzoluran Hexachlorobenzene [#]	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/i	TM16/PM30
Hexachlorobutadiene #	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Hexachlorocyclopentadiene	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Hexachloroethane #	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Isophorone [#]	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
N-nitrosodi-n-propylamine [#]	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM16/PM30
Nitrobenzene " Surrogate Recovery 2-Eluorobinhenyl	<1	<1	<1	<1	<1			<1	ug/l	TM16/PM30
Surrogate Recovery p-Terphenyl-d14	125	145 SV	150 SV	146 SV	142 SV			 <0	%	TM16/PM30
	.20	145	150	140	142			Ū		
		1								

Client Name: Reference: Location: Contact: EMT Job No: Arcadis 10035117 Redcar LWoW Olivia Grace 22/18344

VOC Report : Liquid

EMT Sample No.	1-11	12-22	23-33	34-44	45-55					
Sample ID	MS-BH13S	F-BH101D	F-BH101M	F-BH102D	F-BH102M					
Donth	7.00	05.00	0.00	00.00	10.00					
COC No / misc	7.00	25.00	8.00	28.00	10.00			Please sei abbrevi;	e attacned m ations and a	otes for all cronyms
Containers	V H HN N P G					-				
Sample Date	09/11/2022 13:30	09/11/2022 11:30	09/11/2022 10:30	09/11/2022 16:30	09/11/2022 15:15					
Sample Type	Ground Water			ļ,		T				
Batch Number	1	1	1	1	1			LOD/LOR	Units	Method No.
VOC MS	00/11/2022	00/11/2022	00/11/2022	00/11/2022	00/11/2022					
Dichlorodifluoromethane	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Methyl Tertiary Butyl Ether #	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	ug/l	TM15/PM10
Chloromethane [#]	<3	<3	<3	<3	<3		 	<3	ug/l	TM15/PM10
Vinyl Chloride " Bromomethane	<0.1 <1	<0.1 <1	<0.1 <1	<0.1 <1	<0.1 <1			<0.1 <1	ug/i	TM15/PM10
Chloroethane [#]	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Trichlorofluoromethane #	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,1-Dichloroethene (1,1 DCE) [#]	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Dichloromethane (DCM)*	<3	<3	<3	<3	<3		 	 <3	ug/l	TM15/PM10
trans-1-2-Dichloroetnene	<3	<3	<3	<3	<3			<3	ug/i ua/l	TM15/PM10
cis-1-2-Dichloroethene [#]	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
2,2-Dichloropropane	<1	<1	<1	<1	<1			<1	ug/l	TM15/PM10
Bromochloromethane #	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Chloroform [#]	<2	<2	<2	<2	<2		 	<2	ug/l	TM15/PM10
1,1,1-I richloroetnane 1 1-Dichloropropene [#]	<3	<3	<3	<3	<3			<2	ug/i ua/l	TM15/PM10
Carbon tetrachloride [#]	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,2-Dichloroethane [#]	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Benzene#	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM15/PM10
Trichloroethene (TCE)*	<3	<3	<3	<3	<3		 	<3	ug/l	TM15/PM10
1,2-Dicnioroproparie Dibromomethane [#]	<3	<3	<3	<3	<3			<3	ug/i	TM15/PM10
Bromodichloromethane #	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
cis-1-3-Dichloropropene	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Toluene [#]	<5	<5	<5	<5	<5		 	<5	ug/l	TM15/PM10
trans-1-3-Dichloropropene	<2	<2	<2	<2	<2		 	<2 <2	ug/i	TM15/PM10 TM15/PM10
Tetrachloroethene (PCE) [#]	<3	<3	<3	<3	<3			~ <u>~</u> <3	ug/l	TM15/PM10
1,3-Dichloropropane [#]	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Dibromochloromethane #	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,2-Dibromoethane *	<2	<2	<2	<2	<2		 	<2	ug/l	TM15/PM10
Chlorobenzene	<2	<2	<2	<2	< <u>~</u> <2			<2 <2	ug/i ua/l	TM15/PM10
Ethylbenzene [#]	<1	<1	<1	<1	<1			<1	ug/l	TM15/PM10
m/p-Xylene [#]	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
o-Xylene #	<1	<1	<1	<1	<1		 	<1	ug/l	TM15/PM10
Styrene	<2	<2	<2	<2	<2		 	<2 <2	ug/l	TM15/PM10
Bromotorm Isopropylbenzene [#]	<3	<3	<3	<3	<3			<3	ug/i	TM15/PM10
1,1,2,2-Tetrachloroethane	<4	<4	<4	<4	<4			<4	ug/l	TM15/PM10
Bromobenzene [#]	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,2,3-Trichloropropane [#]	<3	<3	<3	<3	<3		 	<3	ug/l	TM15/PM10
Propylbenzene"	<3	<3	<3	<3	<3		 	<3	ug/I	TM15/PM10
1.3.5-Trimethvlbenzene [#]	<3	<3	<3	<3	<3			 <3	ug/i	TM15/PM10
4-Chlorotoluene [#]	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
tert-Butylbenzene [#]	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,2,4-Trimethylbenzene*	<3	<3	<3	<3	<3		 	<3	ug/l	TM15/PM10
sec-Butylbenzene "	<3	<3 <3	<3 <3	<3 <3	<3 <3			<3 <3	ug/i	TM15/PM10
1.3-Dichlorobenzene [#]	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,4-Dichlorobenzene [#]	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
n-Butylbenzene [#]	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,2-Dichlorobenzene [#]	<3	<3	<3	<3	<3		 	 <3	ug/l	TM15/PM10
1,2-Dibromo-o-chloropropane 1 2 4-Trichlorobenzene	<2 <3	<2 <3	<2 <3	<2 <3	<2 <3			<2 <3	ug/i ua/l	TM15/PM10
Hexachlorobutadiene	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Naphthalene	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,2,3-Trichlorobenzene	<3	<3	<3	<3	<3	 	 	 <3	ug/l	TM15/PM10
Surrogate Recovery Toluene D8 Surrogate Recovery 4-Bromofluorobenzene	87	92	95	100	94			 <0	%	TM15/PM10

Job number:	22/18344	Method:	VOC
Sample number:	34	Matrix:	Liquid
Sample identity:	F-BH102D		
Sample depth:	28.00		
Sample Type:	Ground Water		
Units:	ug/l		
N (

Note: Only samples with TICs (if requested) are reported. If TICs were requested but no compounds found they are not reported.

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
66-25-1	Hexanal	5.429	90	105
110-43-0	2-Heptanone	6.125	91	227

Job number:	22/18344	Method:	SVOC	
Sample number:	44	Matrix:	Liquid	
Sample identity:	F-BH102D			
Sample depth:	28.00			
Sample Type:	Ground Water			
Units:	ug/l			
Notes of the the Tio				

Note: Only samples with TICs (if requested) are reported. If TICs were requested but no compounds found they are not reported.

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
111-27-3	1-Hexanol	3.024	83	139
110-43-0	2-Heptanone	3.200	90	267
3391-86-4	1-Octen-3-ol	4.187	90	132

NDP Reason Report

Matrix : Liquid

Client Name:	Arcadis
Reference:	10035117
Location:	Redcar LWoW
Contact:	Olivia Grace

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Method No.	NDP Reason
22/18344	1	MS-BH13S	7.00	1-11	TM170/PM14	Sample unsuitable for analysis by ICP-MS. Sample rescheduled for analysis by ICP-OES
22/18344	1	F-BH102D	28.00	34-44	TM170/PM14	Sample unsuitable for analysis by ICP-MS. Sample rescheduled for analysis by ICP-OES

Client Name:	Arcadis
Reference:	10035117
Location:	Redcar LWoW
Contact:	Olivia Grace

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason				
	No deviating sample report results for job 22/18344									

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 22/18344

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$. Ash samples are dried at $37^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x4 Dilution
AB	x5 Dilution
AC	x10 Dilution

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
тмо	Not available	PM0	No preparation is required.				
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16/PM30	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE/Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16/PM30	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE/Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5/TM36	please refer to TM5 and TM36 for method details	PM12/PM16/PM30	please refer to PM16/PM30 and PM12 for method details				
TM5/TM36	please refer to TM5 and TM36 for method details	PM12/PM16/PM30	please refer to PM16/PM30 and PM12 for method details	Yes			
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.				
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.				
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.	Yes			
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified				
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes			
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
ТМ37	2540D:1999 22nd Edition; VSS: USEPA 1684 (Jan 2001), USEPA 1604 (1971) and SMEWW 2540E:1999 22nd Edition. Gravimetric determination of Total Suspended Solids (TSS) and Volatile Suspended Solids (VSS). Sample is filtered through a 1.5um pore size glass fibre filter and the resulting residue is dried and weighed at 105°C for TSS and E50°C for USS.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes			
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.	Yes			
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes			

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1 (1978). Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM0	No preparation is required.				
TM107	Determination of Sulphide/Thiocyanate by Skalar Continuous Flow Analyser	PM0	No preparation is required.				
TM170	Determination of Trace Metals by ICP-MS (Inductively Coupled Plasma – Mass Spectrometry): Modified USEPA Method 200.8, Rev. 5.4, 1994; Modified EPA Method 6020A, Rev.1, Feb 2007; Modified BS EN ISO 17294-2:2016	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes			

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Three samples were received for analysis on 10th November, 2022 of which three were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

5.6000

Simon Gomery BSc Project Manager

Please include all sections of this report if it is reproduced
Client Name:	Arcadis				Report :	Liquid					
Location:	Redcar										
Contact:	Olivia Gra	ice			Liquids/pr	oducts: V=	40ml vial, G	=glass bott	e, P=plastic	bottle	
EMT Job No:	22/18471				H=H ₂ SO ₄ ,	Z=ZnAc, N=	NaOH, HN=	HN0 ₃			
EMT Sample No	1-11	12-22	23-33								
Lint oumple no.		12 22	20 00								
Sample ID	F-BH102s	MS-BH13d	MS-BH17d								
Depth	10.00	17.00	18.00						Ploase se	o attached n	otos for all
COC No / misc									abbrevia	ations and a	cronyms
Contoinoro											
Containers	VEENINFG	V H HN Z P G	VITINZEG								
Sample Date	08/11/2022	01/11/2022	01/11/2022								
Sample Type	Ground Water	Ground Water	Ground Water								
Batch Number	1	1	1							11.20	Method
Date of Receipt	10/11/2022	10/11/2022	10/11/2022						LOD/LOR	Units	No.
Dissolved Aluminium [#]	156.0	-	148.6						<1.5	ug/l	TM170/PM14
Dissolved Arsenic [#]	4.3	NDP	6.9						<0.9	ug/l	TM170/PM14
Dissolved Boron [#]	219	NDP	16						<12	ug/l	TM170/PM14
Dissolved Cadmium [#]	0.11	NDP	<0.03						<0.03	ug/l	TM170/PM14
Total Dissolved Chromium [#]	0.3	NDP	<0.2						<0.2	ug/l	TM170/PM14
Dissolved Copper [#]	<1	NDP	<1						<1	ug/l	TM170/PM14
Total Dissolved Iron #	31.3	NDP	28.4						<4.7	ug/l	TM170/PM14
Dissolved Lead #	<0.4	NDP	<0.4						<0.4	ug/l	TM170/PM14
Dissolved Manganese #	1.7	NDP	<1.5						<1.5	ug/l	TM170/PM14
Dissolved Molybdenum [#]	208.5	-	50.7						<0.2	ug/l	TM170/PM14
Dissolved Nickel [#]	2.3	NDP	1.7						<0.2	ug/l	TM170/PM14
Dissolved Zinc [#]	3.4	NDP	2.4						<1.5	ug/l	TM170/PM14
Dissolved Aluminium [#]	-	1.5	-						<1.5	ug/l	TM30/PM14
Dissolved Arsenic*	-	3.0	-						<0.9	ug/l	TM30/PM14
Dissolved Boron	-	1393	-						<12	ug/l	TM30/PM14
Dissolved Cadmium"	-	<0.03	-						<0.03	ug/i	TM30/PM14
Total Dissolved Chromium [#]	404.3AC	0.4	434.0AB						<0.2	ug/l	TM30/PM14
Dissolved Copper [#]	_	<3	_						<3	ug/l	TM30/PM14
Total Dissolved Iron #	-	1816.4	-						<4.7	ug/l	TM30/PM14
Dissolved Lead #	-	<0.4	-						<0.4	ua/l	TM30/PM14
Dissolved Magnesium [#]	<0.1	985.8AC	0.3						<0.1	mg/l	TM30/PM14
Dissolved Manganese [#]	-	1717.2	-						<1.5	ug/l	TM30/PM14
Dissolved Molybdenum [#]	-	<0.2	-						<0.2	ug/l	TM30/PM14
Dissolved Nickel#	-	2.8	-						<0.2	ug/l	TM30/PM14
Dissolved Potassium [#]	56.1	117.7 _{AC}	122.8 _{AB}						<0.1	mg/l	TM30/PM14
Dissolved Silicon	3232	2606	8961						<100	ug/l	TM30/PM14
Dissolved Sodium [#]	165.3	8236.7 _{AE}	89.1						<0.1	mg/l	TM30/PM14
Dissolved Zinc [#]	-	39.9	-						<1.5	ug/l	TM30/PM14
Mercury Dissolved by CVAF #	0.12 _{AA}	<0.01	<0.01						<0.01	ug/l	TM61/PM0
Total Dissolved Sulphur as S	339617 _{AC}	939605 _{AE}	300119 _{AD}						<10	ug/l	TM30/PM14
											1

Client Name:	Arcadis				Report :	Liquid					
Reference:	Redcar										
Contact:	Olivia Gra	ice			l iquids/pr	oducts: V=	40ml vial G	alass hott	e P=plastic	bottle	
EMT Job No:	22/18471				H=H ₂ SO ₄ .	Z=ZnAc. N=	NaOH. HN=	-giass botti :HN0₃	e, i -piastic	Dottie	
						1					
EMT Sample No.	1-11	12-22	23-33								
Sample ID	F-BH102s	MS-BH13d	MS-BH17d								
Depth	10.00	17.00	18.00						Diaman		
									Please se abbrevia	e attached n ations and ac	otes for all cronyms
COC NO / MISC											
Containers	V H HN N P G	V H HN Z P G	V H HN Z P G								
Sample Date	08/11/2022	01/11/2022	01/11/2022								
Sample Type	Ground Water	Ground Water	Ground Water								
Batch Number	1	1	1								
Baton Humber									LOD/LOR	Units	Method No.
Date of Receipt	10/11/2022	10/11/2022	10/11/2022								
PAH MS											
Naphthalene *	<0.1	0.1	<0.1						<0.1	ug/l	TM4/PM30
Acenaphthylene #	<0.005	< 0.005	0.037						< 0.005	ug/l	TM4/PM30
Acenaphthene *	0.011	0.006	0.224						<0.005	ug/l	TM4/PM30
Fluorene *	<0.005	< 0.005	0.052						< 0.005	ug/l	TM4/PM30
Phenanthrene "	0.018	< 0.005	0.069						<0.005	ug/l	TM4/PM30
Anthracene "	<0.005	<0.005	0.005						<0.005	ug/l	TM4/PM30
Fluoranthene "	0.024	0.005	0.021						<0.005	ug/l	TM4/PM30
Pyrene"	0.018	0.007	0.020						<0.005	ug/I	TM4/PM30
Benzo(a)anthracene "	0.006	< 0.005	<0.005						<0.005	ug/l	TM4/PM30
Chrysene "	0.008	< 0.005	< 0.005						<0.005	ug/l	TM4/PM30
Benzo(bk)fluoranthene"	0.008	<0.008	<0.008						<0.008	ug/i	TM4/PM30
Benzo(a)pyrene *	<0.005	< 0.005	<0.005						<0.005	ug/l	TM4/PM30
Indeno(123cd)pyrene "	<0.005	< 0.005	<0.005						<0.005	ug/l	TM4/PM30
Dibenzo(ah)anthracene"	<0.005	< 0.005	<0.005						<0.005	ug/l	TM4/PM30
Benzo(ghi)perylene	<0.005	<0.005	<0.005						<0.005	ug/i	TM4/PM30
PAH 16 Total"	<0.173	<0.173	0.428						<0.173	ug/i	TM4/PM30
Benzo(b)liuoranthene	<0.008	<0.008	<0.008						<0.008	ug/i	TM4/PM30
	<0.000 01	<0.000	<0.000						<0.000	ug/i	TM4/PM30
PAR Surrogate % Recovery	01	02	02						~0	70	11014/1710130
VOC TICs	ND	ND	ND							None	TM15/PM10
Methyl Tertiary Butyl Ether#	<0.1	<0.1	<0.1						<0.1	ug/l	TM15/PM10
Benzene [#]	<0.5	<0.5	<0.5						<0.5	ug/l	TM15/PM10
Toluene [#]	<5	<5	<5						<5	ug/l	TM15/PM10
Ethylbenzene #	<1	<1	<1						<1	ug/l	TM15/PM10
m/p-Xylene #	<2	<2	<2						<2	ug/l	TM15/PM10
o-Xylene [#]	<1	<1	<1						<1	ug/l	TM15/PM10
Surrogate Recovery Toluene D8	91	93	101						<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	99	94	105						<0	%	TM15/PM10
SVOC TICs	ND	ND	ND							None	TM16/PM30

Client Name: Reference:	Arcadis					Report :	Liquid					
Location:	Redcar											
Contact:	Olivia Gra	ice				Liquids/pr	oducts: V=	40ml vial, G	=glass bottl	e, P=plastic	bottle	
EMT Job No:	22/18471					H=H ₂ SO ₄ ,	Z=ZnAc, N=	NaOH, HN=	HN0 ₃			
EMT Sample No.	1-11	12-22	23-33									
Sample ID	F-BH102s	MS-BH13d	MS-BH17d									
Depth	10.00	17.00	18.00							Please se	e attached n	otes for all
COC No / misc										abbrevi	ations and a	cronyms
Containers	V H HN N P G	V H HN Z P G	V H HN Z P G									
Sample Date	08/11/2022	01/11/2022	01/11/2022									
Sample Type	Ground Water	Ground Water	Ground Water									
Sample Type	Ground water	Giound Water	Giburia Water									
Batch Number	1	1	1							LOD/LOR	Units	Method
Date of Receipt	10/11/2022	10/11/2022	10/11/2022									110.
TPH CWG												
Aliphatics	20	-10	-10							-10		TNOCIDNAG
>C5-C6"	39	<10	<10							<10	ug/i	TM36/PM12
>C6-C8	98	<10	<10							<10	ug/l	TM36/PM12
>C10-C12 [#]	<5	<5	<5							<5	ug/l	TM5/PM16/PM30
>C12-C16 [#]	<10	<10	<10							<10	ug/l	TM5/PM16/PM30
>C16-C21#	<10	<10	<10							<10	ug/l	TM5/PM16/PM30
>C21-C35#	<10	<10	<10							<10	ug/l	TM5/PM16/PM30
>C35-C44	<10	<10	<10							<10	ug/l	TM5/PM16/PM30
Total aliphatics C5-35 [#]	148	<10	<10							<10	ug/l	TM5/TM36/PM12/PM16/PM3
Total aliphatics C5-44	148	<10	<10							<10	ug/l	TM5/TM36/PM12/PM16/PM3
Aromatics	<10	<10	<10							<10	ug/l	TM36/DM12
>EC7_EC8 [#]	<10	<10	<10							<10	ug/l	TM36/PM12
>EC8-EC10 [#]	<10	<10	<10							<10	ug/l	TM36/PM12
>EC10-EC12#	<5	<5	<5							<5	ug/l	TM5/PM16/PM30
>EC12-EC16#	<10	<10	<10							<10	ug/l	TM5/PM16/PM30
>EC16-EC21#	<10	<10	<10							<10	ug/l	TM5/PM16/PM30
>EC21-EC35 [#]	<10	<10	<10							<10	ug/l	TM5/PM16/PM30
>EC35-EC44	<10	<10	<10							<10	ug/l	TM5/PM16/PM30
Total aromatics C5-35*	<10	<10	<10							<10	ug/l	TM5/TM36/PM12/PM16/PM3
Total aliphatics and aromatics(C5-35)*	<10	<10	<10							<10	ug/i	TM5/TM38/PM12/PM16/PM3
Total aliphatics and aromatics(C5-44)	148	<10	<10							<10	ug/l	TM5/TM36/PM12/PM16/PM3
	-	_	-							-		
Resorcinol	<0.01	<0.01	<0.01							<0.01	mg/l	TM26/PM0
Catechol	<0.01	<0.01	<0.01							<0.01	mg/l	TM26/PM0
Phenol [#]	<0.01	<0.01	<0.01							<0.01	mg/l	TM26/PM0
m/p-cresol	0.03	<0.02	<0.02							<0.02	mg/l	TM26/PM0
o-cresol	<0.01	<0.01	<0.01							<0.01	mg/l	TM26/PM0
Total cresols *	0.03	<0.03	< 0.03							<0.03	mg/l	TM26/PM0
Xylenols"	<0.06	<0.06	<0.06							<0.06	mg/l	TM26/PM0
2.3.5-trimethyl phenol	<0.01	<0.01	<0.01							<0.01	mg/l	TM26/PM0
2-isopropylphenol	<0.01	<0.01	<0.01							<0.01	mg/l	TM26/PM0
Total Speciated Phenols HPLC	<0.1	<0.1	<0.1							<0.1	mg/l	TM26/PM0
Sulphate as SO4 [#]	633.7	3433.1	1176.4							<0.5	mg/l	TM38/PM0
Chloride [#]	178.5	13236.6 _{AD}	82.4							<0.3	mg/l	TM38/PM0
Nitrate as NO3 [#]	<0.2	<0.2	<0.2							<0.2	mg/l	TM38/PM0
Nitrite as NO2 [#]	<0.02	<0.02	<0.02							<0.02	mg/l	TM38/PM0
Ortho Phosphate as PO4 *	<0.06	<0.06	<0.06							<0.06	mg/l	1M38/PM0
		I		1								

Client Name:	Arcadis				Report :	Liquid					
Location:	Redcar										
Contact:	Olivia Gra	ice			Liquids/pr	oducts: V=	40ml vial, G	G=glass bottl	e, P=plastic	bottle	
EMT Job No:	22/18471				H=H ₂ SO ₄ ,	Z=ZnAc, N=	NaOH, HN=	=HN0 ₃			
EMT Sample No.	1-11	12-22	23-33								
Sample ID	F-BH102s	MS-BH13d	MS-BH17d								
Depth	10.00	17.00	18.00						Please se	e attached n	otes for all
COC No / misc									abbrevi	ations and a	cronyms
Containers	VHHNNPG	V H HN Z P G	V H HN Z P G								
Sample Date	08/11/2022	01/11/2022	01/11/2022								
Sample Type	Ground Water	Ground Water	Ground Water								
Datab Namber ye	Cround Water										
Batch Number	1	1	1						LOD/LOR	Units	Method No.
Date of Receipt	10/11/2022	10/11/2022	10/11/2022								
Free Cyanide	<0.100 _{AF}	0.001	<0.005 _{AB}						<0.001	mg/l	TM89/PM0
Total Cyanide	0.114 _{AF}	0.020	0.055						<0.001	mg/l	TM89/PM0
Complex Cyanide	0.114 _{AF}	0.019	0.054						<0.001	mg/l	TM89/PM0
Ammoniacal Nitrogen as N [#]	0.11	5.86	4.25						<0.03	mg/l	TM38/PM0
Total Alkalinity as CaCO3 [#]	322	350	114						<1	mg/l	TM75/PM0
	0.70								0.01		THEOTEDIA
Sulphiae	0.76	<0.01	<0.01						<0.01	mg/i	TM107/PM0
mocyanate	0.14	-0.02	0.15						40.02	mg/r	
Dissolved Organic Carbon [#]	80	<2	6						<2	mg/l	TM60/PM0
Dissolved Inorganic Carbon #	<2	87	<2						<2	mg/l	TM60/PM0
рН #	11.88	7.07	11.17						<0.01	pH units	TM73/PM0
Total Suspended Solids [#]	19	64	42						<10	mg/l	TM37/PM0
Total Cations	28.81	509.64 _{AC}	28.73						<0.00	mmolc/l	TM30/PM14
Total Anions	24.67	451.86	29.10						<0.00	mmolc/l	TM0/PM0
% Cation Excess	7.74	6.01	-0.64							%	TM0/PM0

Client Name:	Arcadis				SVOC Re	port :	Liquid
Reference:	Podear						
		~~					
		ice					
EMT Job No:	22/18471						
EMT Sample No.	1-11	12-22	23-33				
Sample ID	F-BH102s	MS-BH13d	MS-BH17d				
Denth	10.00	17.00	18.00				
COC No / misc	10.00	17.00	10.00				
Containers	VHHNNPG	V H HN Z P G	V H HN Z P G				
Sample Date	08/11/2022	01/11/2022	01/11/2022				
Sample Type	Ground Water	Ground Water	Ground Water				
Batch Number	1	1	1				
Date of Receipt	10/11/2022	10/11/2022	10/11/2022				
SVOC MS							
Phenols					 		
-Chlorophenol [#]	<1	1	<1				
-Methylphenol *	<0.5	<0.5	<0.5				
-Nitrophenol	<0.5	<0.5	< 0.5				
	<0.5 <1	<0.0 <1	<0.0 <1				
4 5-Trichlorophenol [#]	<0.5	<0.5	<0.5				
.4.6-Trichlorophenol	<1	<1	<1				
-Chloro-3-methvlphenol [#]	<0.5	<0.5	<0.5				
-Methylphenol	<1	<1	<1				
-Nitrophenol	<10	<10	<10				
entachlorophenol	<1	<1	<1				
Phenol	<1	<1	<1				
PAHs							
-Chloronaphthalene#	<1	<1	<1				
-Methylnaphthalene*	<1	<1	<1				
Phthalates							
ois(∠-etnyinexyi) phthalate	<5	<5	<5 <1				
Ni-n-butyl philialale	<1.5	<1.5	<15				
)i-n-Octyl philialate	<1	<1	<1				
Diethyl phthalate [#]	<1	2	<1				
Dimethyl phthalate	<1	<1	<1				
Other SVOCs							
,2-Dichlorobenzene#	<1	<1	<1				
,2,4-Trichlorobenzene #	<1+	<1*	<1+				
,3-Dichlorobenzene#	<1	<1	<1				
,4-Dichlorobenzene#	<1	<1	<1				
-Nitroaniline	<1	<1	<1				
4-Dinitrotoluene	<0.5	<0.5	<0.5				
	<1	<1	<1				
-Nu daniine -Bromonhenylnhonylothor [#]	<1	<1	<1				
-Chloroaniline	<1	<1	<1				
-Chlorophenylphenylether#	<1+	<1+	<1 ⁺				
-Nitroaniline	<0.5	<0.5	<0.5				
zobenzene #	<0.5	<0.5	<0.5				
Bis(2-chloroethoxy)methane #	<0.5	<0.5	<0.5				
Bis(2-chloroethyl)ether#	<1	<1	<1				
Carbazole #	<0.5	<0.5	<0.5				
libenzofuran [#]	<0.5	<0.5	<0.5				
exachlorobenzene#	<1	<1	<1				

4-Chlorophenylphenylether#	<1+	<1+	<1+				<1	ug/l	TM16/PM30
4-Nitroaniline	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Azobenzene #	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Bis(2-chloroethoxy)methane [#]	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Bis(2-chloroethyl)ether #	<1	<1	<1				<1	ug/l	TM16/PM30
Carbazole [#]	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Dibenzofuran [#]	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Hexachlorobenzene [#]	<1	<1	<1				<1	ug/l	TM16/PM30
Hexachlorobutadiene#	<1+	<1+	<1+				<1	ug/l	TM16/PM30
Hexachlorocyclopentadiene	<1	<1	<1				<1	ug/l	TM16/PM30
Hexachloroethane #	<1	<1	<1				<1	ug/l	TM16/PM30
Isophorone #	<0.5+	<0.5+	<0.5+				<0.5	ug/l	TM16/PM30
N-nitrosodi-n-propylamine [#]	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Nitrobenzene [#]	<1+	<1+	<1+				<1	ug/l	TM16/PM30
Surrogate Recovery 2-Fluorobiphenyl	111	111	110				<0	%	TM16/PM30
Surrogate Recovery p-Terphenyl-d14	122	115	116				<0	%	TM16/PM30

Please see attached notes for all abbreviations and acronyms

Units

ug/l

LOD/LOR

<1

<0.5

<0.5

<0.5

<1

<0.5

<1

<0.5

<1

<10

<1

<1

<1

<1

<5

<1

<1.5

<1

<1

<1

<1

<1

<1

<1

<1

<0.5

<1

<1

<1

<1

Method

No.

TM16/PM30

M16/PM30

TM16/PM30

M16/PM30

TM16/PM30

TM16/PM30

TM16/PM30

TM16/PM30

TM16/PM30

Client Name: Reference: Location: Contact: EMT Job No:	Arcadis Redcar Olivia Gra 22/18471	ice			
EMT Sample No.	1-11	12-22	23-33		
Sample ID	F-BH102s	MS-BH13d	MS-BH17d		
Depth	10.00	17.00	18.00		
COC No / misc					
Containers	V H HN N P G	V H HN Z P G	V H HN Z P G		
Sample Date	08/11/2022	01/11/2022	01/11/2022		
Sample Type	Ground Water	Ground Water	Ground Water		

Containers	00/11/0000	04/44/2020	04/44/0000	!		'	I'			 			
Sample Date	08/11/2022	01/11/2022	01/11/2022				!			 	1		
Sample Type	Ground Water	Ground Water	Ground Water	1			'		'				
Batch Number	1	1	1	'			'	!	'		LOD/LOR	Units	Method
Date of Receipt	10/11/2022	10/11/2022	10/11/2022				<u> </u>				200,200		No.
VOC MS	Γ	[!	[['		['	Γ '	Γ '	Г !		Г !		
Dichlorodifluoromethane	<2	<2	<2				'				<2	ug/l	TM15/PM10
Methyl Tertiary Butyl Ether #	<0.1	<0.1	<0.1				· · · · ·		'		<0.1	ug/l	TM15/PM10
Chloromethane #	<3	<3	<3	1			'	!	1		<3	ug/l	TM15/PM10
Vinvl Chloride [#]	<0.1	<0.1	<0.1	1 1			'		1 1		<0.1	ug/l	TM15/PM10
Bromomethane	<1	<1	<1	'			'	'	'		<1	ug/l	TM15/PM10
Chloroethane [#]	<3	<3	<3			1					<3	ug/l	TM15/PM10
T-i-blorofluoromothono [#]	<3	<3	<3				'	!			<3	ug,i	TM15/PM10
Irichlorofluoromeunarie		~ ~	~ ~	<u>⊢</u> !		'	├ ───'	└─── ′	<u>├</u>			ug/i	TIVITO/FIVITO
1,1-Dichloroethene (1,1 DCE)	<3	<3	<3	'			ļ!	!			<3	ug/i	
Dichloromethane (DCM)"	<3	<3	<3	└─── ′			ļ'	<u> </u>	└─── ′	!	<3	ug/I	TM15/PM10
trans-1-2-Dichloroethene"	<3	<3	<3	Ļ!		ļ	ļ'	<u> </u>	Ļ!		<3	ug/I	TM15/PM10
1,1-Dichloroethane #	<3	<3	<3	ļ'		'	<u> '</u>	<u> </u> '	<u>ا</u> ــــــــــــــــــــــــــــــــــــ	<u> </u>	<3	ug/l	TM15/PM10
cis-1-2-Dichloroethene #	<3	<3	<3	<u>ا</u>		'	<u> '</u>	'	<u>ا</u>		<3	ug/l	TM15/PM10
2,2-Dichloropropane	<1	<1	<1	<u> </u>			'	[!	<u> </u>		<1	ug/l	TM15/PM10
Bromochloromethane #	<2	<2	<2	!			'	!	'		<2	ug/l	TM15/PM10
Chloroform [#]	<2	<2	<2	'			'		'		<2	ug/l	TM15/PM10
1,1,1-Trichloroethane#	<2	<2	<2	['		· · · · ·		<2	ug/l	TM15/PM10
1.1-Dichloropropene#	<3	<3	<3	1			'	'	1		<3	ug/l	TM15/PM10
Carbon tetrachloride #	<2	<2	<2	1 1			'		1		<2	ug/l	TM15/PM10
1.2 Dichloroethane [#]	<2	<2	<2				'				<2	ug/l	TM15/PM10
Panzono#	<0.5	<0.5	<0.5				!	!			<0.5	ug,.	TM15/PM10
Titlessethers (TCE)#	~0.0	-0.0	-0.0								-2	ug/i	TM15/DM10
Trichloroetnene (TCE)	< <u>-</u>	50 -0	50 -0	<u> </u> !		'	↓ ′	!	<u> </u> !		50 -0	ug/i	
1,2-Dichloropropane "	<2	<2	<2	└─── ′			↓ '	ļ!	└─── ′	!	<2	ug/i	TM15/PM10
Dibromomethane "	<3	<3	<3	Ļ'			ļ'	<u>ا</u> ا	Ļ'	!	<3	ug/l	ТМ15/РМ10
Bromodichloromethane *	<2	<2	<2	ļ'		'	<u> </u>	<u> </u> !	ļ'	L!	<2	ug/l	TM15/PM10
cis-1-3-Dichloropropene	<2	<2	<2	<u>ا</u>			<u> '</u>	'	'		<2	ug/l	TM15/PM10
Toluene [#]	<5	<5	<5	<u> </u>			'	!	<u> </u>	<u> </u>	<5	ug/l	TM15/PM10
trans-1-3-Dichloropropene	<2	<2	<2								<2	ug/l	TM15/PM10
1,1,2-Trichloroethane#	<2	<2	<2	1			'		1		<2	ug/l	TM15/PM10
Tetrachloroethene (PCE)#	<3	<3	<3	1			· · · ·		1		<3	ug/l	TM15/PM10
1.3-Dichloropropane#	<2	<2	<2	1 1			'		1		<2	ug/l	TM15/PM10
Dibromochloromethane [#]	<2	<2	<2	1 1			'		1		<2	ua/l	TM15/PM10
1.2 Dibromoethane [#]	<2	<2	<2								<2	ug/l	TM15/PM10
Chierobonzono [#]	<2	<2	<2				'	!			<2	ug,i	TM15/PM10
Chlorobenzene	-2	-2	-2				'	!	'		-2	ug/i	TM15/DM10
1,1,1,2-Tetrachioroethane	52 (1	5 <u>2</u>	5 <u>2</u>	<u> </u>		'	├ ───'	├ ───'	<u> </u> !		<u>~2</u>	ug/i	TIVITO/FIVITO
Ethylbenzene "	<1	<1	<1	ļ!			ļ'	!	ļ!		<1	ug/i	TM15/PM10
m/p-Xylene "	<2	<2	<2	└─── ′		ļ	<u>ا</u> ــــــــــــــــــــــــــــــــــــ	<u>ا</u> ا	└─── ′		<2	ug/i	TM15/PM10
o-Xylene#	<1	<1	<1	ļ!		'	ļ'	ļ!	ļ!	!	<1	ug/l	ТМ15/РМ10
Styrene	<2	<2	<2	L'		'	<u> '</u>	<u> </u>	L'		<2	ug/l	TM15/PM10
Bromoform [#]	<2	<2	<2	<u> </u>			'	<u> </u> '	<u> </u>		<2	ug/l	TM15/PM10
lsopropylbenzene [#]	<3	<3	<3	!			'	!	!		<3	ug/l	TM15/PM10
1,1,2,2-Tetrachloroethane	<4	<4	<4				!				<4	ug/l	TM15/PM10
Bromobenzene#	<2	<2	<2	1			'		1		<2	ug/l	TM15/PM10
1.2.3-Trichloropropane #	<3	<3	<3	1 1			'		1 1		<3	ug/l	TM15/PM10
Propylhenzene [#]	<3	<3	<3	'			'	'	'		<3	110/	TM15/PM10
2 Chlorotoluene #	<3	<3	<3			1	!	!			<3	ug/l	TM15/PM10
		-3										ug/i	TM15/DM10
1,3,5-i rimetnyibenzene	< <u>-</u>	50 70	50 70	<u> </u>		'	├ ───'	└─── ′	<u> </u> !		< <u>-</u>	ug/i	TIVITO/FIVITO
4-Chlorotoluene	<3	<3	<3				ļ!	!	I		<3	ug/i	TM15/PM10
tert-Butylbenzene"	<3	<3	<3	Ļ'		ļ'	ļ'	<u>ا</u> ــــــــــــــــــــــــــــــــــــ	Ļ'	!	<3	ug/I	ТМ15/РМ10
1,2,4-Trimethylbenzene*	<3	<3	<3	L'		'	<u> </u>	<u> </u> !	L'	L!	<3	ug/l	TM15/PM10
sec-Butylbenzene #	<3	<3	<3	<u> </u>		'	<u> '</u>	[!	<u> </u>		<3	ug/l	TM15/PM10
4-Isopropyltoluene #	<3	<3	<3	L!			'	!	L!	<u> </u>	<3	ug/l	TM15/PM10
1,3-Dichlorobenzene#	<3	<3	<3	!			'		I!	!	<3	ug/l	TM15/PM10
1,4-Dichlorobenzene#	<3	<3	<3	· · · · ·			'	· · · ·	· · · · ·		<3	ug/l	TM15/PM10
n-Butylbenzene [#]	<3	<3	<3	1 1			'	'	1		<3	ug/l	TM15/PM10
1 2-Dichlorobenzene [#]	<3	<3	<3	1			'		1		<3	ua/l	TM15/PM10
1 2-Dibromo-3-chloropropane	<2	<2	<2	'			'	'	'		<2	<u>-</u>	TM15/PM10
1.2.4.Trichlorobenzene	<3	<3	<3				!	!			<3	ug,.	TM15/PM10
	-3	-3	-3			'	!		!		-3	ug/i	TM45/DM10
Hexachioropulaciene	< <u>-</u>	50 70	50 70	<u>⊢</u> !		'	├ ───'	└─── ′	<u>⊢</u> !		50 10	ug/i	TIVITO/FIVITO
Naphtnaiene	<2	<2	<2				ļ!	!	I		<2	ug/i	TM15/PM10
1,2,3-Trichlorobenzene	<3	<3	<3	└─── ′		ļ	ļ'	<u> </u>	└─── ′		<3	ug/I	TM15/PM10
Surrogate Recovery Toluene D8	91	93	101	ļ!	I	'	<u> '</u>	<u> </u>	ļ'	L!	<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	1 00 '	1 04 7	1 105	1 '	1	1	1 '	1 '	1 '	1 1	1 <0 '	1 %	TM15/DM10

VOC Report :

Liquid

Please see attached notes for all abbreviations and acronyms

NDP	Reason	Re	port

Matrix : Liquid

Client Name:	Arcadis
Reference:	
Location:	Redcar
Contact:	Olivia Grace

гит				гит		
Job No.	Batch	Sample ID	Depth	Sample No.	Method No.	NDP Reason
22/18471	1	MS-BH13d	17.00	12-22	TM170/PM14	Sample unsuitable for analysis by ICP-MS. Sample rescheduled for analysis by ICP-OES

Client Name: Arcadis

Reference:

Location: Redcar

Contact: Olivia Grace

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
22/18471	1	MS-BH13d	17.00	12-22	Nitrate, Nitrite	Sample holding time exceeded
22/18471	1	MS-BH17d	18.00	23-33	Nitrate, Nitrite	Sample holding time exceeded

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

Matrix : Liquid

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 22/18471

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$. Ash samples are dried at $37^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x4 Dilution
AB	x5 Dilution
AC	x10 Dilution
AD	x20 Dilution
AE	x50 Dilution
AF	x100 Dilution

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 22/18471

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
тмо	Not available	PM0	No preparation is required.				
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16/PM30	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE/Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16/PM30	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE/Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5/TM36	please refer to TM5 and TM36 for method details	PM12/PM16/PM30	please refer to PM16/PM30 and PM12 for method details				
TM5/TM36	please refer to TM5 and TM36 for method details	PM12/PM16/PM30	please refer to PM16/PM30 and PM12 for method details	Yes			
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.				
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				

EMT Job No: 22/18471

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.				
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.	Yes			
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified				
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes			
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM37	2540D:1999 22nd Edition; VSS: USEPA 1684 (Jan 2001), USEPA 160.4 (1971) and SMEWW 2540E:1999 22nd Edition. Gravimetric determination of Total Suspended Solids (TSS) and Volatile Suspended Solids (VSS). Sample is filtered through a 1.5um pore size glass fibre filter and the resulting residue is dried and weighed at 105°C for TSS and E50°C for VSS.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes			
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.	Yes			
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes			

EMT Job No: 22/18471

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1 (1978). Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM0	No preparation is required.				
TM107	Determination of Sulphide/Thiocyanate by Skalar Continuous Flow Analyser	PM0	No preparation is required.				
TM170	Determination of Trace Metals by ICP-MS (Inductively Coupled Plasma – Mass Spectrometry): Modified USEPA Method 200.8, Rev. 5.4, 1994; Modified EPA Method 6020A, Rev.1, Feb 2007; Modified BS EN ISO 17294-2:2016	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes			

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Seven samples were received for analysis on 13th January, 2023 of which seven were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

5.60-20

Simon Gomery BSc Project Manager

Please include all sections of this report if it is reproduced

Arcadis

Client Name:	Arcadis						Report :	Liquid					
Reference:	10035117	,											
Location:	Redcar L\	NoW											
Contact:	Jonathan	Miles					Liquids/pr	oducts: V=	40ml vial, G	=glass bott	le, P=plastic	bottle	
EMT Job No:	23/527						H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN=	HN0 ₃			
EMT Sample No.	1-13	14-26	27-39	40-52	53-65	66-78	79-91						
Sample ID	F-BH101D	F-BH101S	F-BH102D	F-BH102S	MS/BH14	MS/BH15D	MS/BH15S						
Depth	25.50	7.00	28.50	10.00	6.50	8.00	4.00				Please se	o attached n	otos for all
COC No / miss											abbrevia	ations and a	cronyms
COC NO7 misc													
Containers	V H HN N Z P G												
Sample Date	09/01/2023 14:30	09/01/2023 11:30	09/01/2023 16:25	10/01/2023 12:30	10/01/2023 14:30	10/01/2023 15:45	10/01/2023 17:00						
Sample Type	Ground Water												
Batch Number	1	1	1	1	1	1	1					Units	Method
Date of Receipt	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023						No.
Dissolved Aluminium	7.2	301	NDP	268	386	54.6	87.8				<1.5	ug/l	TM170/PM14
Dissolved Arsenic	7.4	2.5	NDP	13.7	19.5	14.9	5.9				<0.9	ug/l	TM170/PM14
Dissolved Boron	312	83	NDP	185	32	102	78				<12	ug/l	TM170/PM14
Dissolved Cadmium	0.05	0.06	NDP	0.03	0.05	<0.03	<0.03				<0.03	ug/l	TM170/PM14
Total Dissolved Chromium	6.9	8.3	NDP	3.2	6.3	1.2	7.8				<0.2	ug/l	TM170/PM14
Dissolved Copper	<1	4	NDP	<1	1	<1	4				<1	ug/l	TM170/PM14
Total Dissolved Iron	8.5	51.1	NDP	57.2	17.0	39.4	32.7				<4.7	ua/l	TM170/PM14
Dissolved Lead	<0.4	<0.4	NDP	<0.4	<0.4	<0.4	<0.4				<0.4	ua/l	TM170/PM14
Dissolved Manganese	<1.5	1.7	NDP	7.1	1.8	4.3	4.8				<1.5	ua/l	TM170/PM14
Dissolved Molvbdenum	220	229	NDP	113	180	39.8	39.8				<0.2	ua/l	TM170/PM14
Dissolved Nickel	0.9	3.4	NDP	1.2	5.8	1.0	1.2				<0.2	ua/l	TM170/PM14
Dissolved Zinc	<1.5	1.8	NDP	3.4	2.0	2.2	5.8				<1.5	ua/l	TM170/PM14
				-								5	
Dissolved Aluminium [#]	-	-	148	-	-	-	-				<1.5	ua/l	TM30/PM14
	-	-	4.9	-	-	-	-				<0.9	g.	TM30/PM14
Dissolved Roron	-	-	176	-	-	-	-				<12	ug/l	TM30/PM14
Dissolved Cadmium [#]	-	-	<0.03	-	-	-	-				<0.03	<u>-</u>	TM30/PM14
Dissolved Calcium	-	-	-	113	170	-	-				<0.2	ma/l	TM30/PM14
Dissolved Calcium [#]	303	514.0	424.0	-	-	377	497				<0.2	mg/l	TM30/PM14
Total Dissolved Chromium [#]	-		AB 6.5	-	-	-					<0.2	ug/l	TM30/PM14
Dissolved Coppor [#]	_	-	<3	-	-	-	-				<3	ug/l	TM30/PM14
Total Dissolved Iron #	-	-	22.6	-	-	-	-				<4 7	ug/l	TM30/PM14
Dissolved Lead #	_	-	<0.4	-	-	-	-				<0.4	ug/l	TM30/PM14
Dissolved Magnesium	3.7	<0.1	<0.4	0.4	<0.1	<0.1	0.2				<0.1	mg/l	TM30/PM14
Dissolved Magnesiam	-	-0.1	<1.5	-	-0.1	-0.1	0.2				<1.5	ug/l	TM30/PM14
Dissolved Malybdenum [#]	-	-	187	_	-		-				<0.2	ug/l	TM30/PM14
Dissolved Nickel [#]	_	-	4.2	_	_	-	-				<0.2	ug/l	TM30/PM14
Dissolved Nickel	70.9	76.2	75.0	32.7	70.1	01.7	00.7				<0.2	mg/l	TM30/PM14
Dissolved Silicon	7510	4680	1010	7640	10300	6070	6550				<100	ug/l	TM30/PM14
Dissolved Sodium	7510	4000	1310	027	54.7	64.2	53.7				<0.1	mg/l	TM30/PM14
Dissolved Sodium [#]	235	382	802	52.1	54.7	04.2					<0.1	mg/l	TM30/PM14
Dissolved Sociality	23344	JOZAB	002 AB	-	-	-	-				<0.1	ing/i	TM20/DM14
Margura Dissolved by CVAE	-0.01	- 0.01	2.5	-	-	-0.01	-0.01				<0.01	ug/i	
Total Sulphur as S	271.00	208.00	142.00	122.00	166.00	220.00	280.00				<0.01	ug/i	TM20/DM14
	271.00 AB	308.00AB	142.00 AB	122.00 AB	100.00AB	339.00AB	389.00AB				<0.01	mg/i	110130/P10114
	1	1	1	1	1								1

Client Name:	Arcadis						Report :	Liquid					
Reference:	10035117	•											
Location:	Redcar L\	NoW											
Contact:	Jonathan	Miles					Liquids/pr	oducts: V=	40ml vial, G	Geglass bott	le, P=plastic	bottle	
EMI JOD NO:	23/527	1					H=H ₂ SO ₄ , .	Z=ZnAc, N=	NaOH, HN=	=HNU ₃	-		
EMT Sample No.	1-13	14-26	27-39	40-52	53-65	66-78	79-91						
Sample ID	F-BH101D	F-BH101S	F-BH102D	F-BH102S	MS/BH14	MS/BH15D	MS/BH15S						
Depth	25.50	7.00	28.50	10.00	6.50	8.00	4.00				Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containora													
Containers	VIIIIIVIVEI O	VIIIIIVIZIO	VIIIIIVIZI	VIIIIIVIZIO	VIIIIIIIII	VIIIIIIIII	VIIIIIIIII						
Sample Date	09/01/2023 14:30	09/01/2023 11:30	09/01/2023 16:25	10/01/2023 12:30	10/01/2023 14:30	10/01/2023 15:45	10/01/2023 17:00						
Sample Type	Ground Water												
Batch Number	1	1	1	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023						NO.
PAH MS													
Naphthalene	<0.1	0.1	<0.1	<0.1	0.4	0.6	<0.1				<0.1	ug/l	TM4/PM30
Acenaphthylene	0.639	0.037	<0.005	0.034	<0.005	<0.005	0.081				<0.005	ug/l	TM4/PM30
Acenaphthene	0.394	0.035	0.026	0.051	0.594	0.343	0.285				<0.005	ug/l	TM4/PM30
Fluorene	0.720	0.048	0.026	0.038	0.187	0.007	0.112				<0.005	ug/l	TM4/PM30
Phenanthrene	4.48	0.217	0.123	0.243	0.644	0.091	0.008				<0.005	ug/l	TM4/PM30
Anthracene	1.02	0.036	0.022	0.076	0.091	0.020	0.018				< 0.005	ug/l	TM4/PM30
	2.47	0.111	0.057	0.641	0.413	0.034	0.034				<0.005	ug/i	TM4/PM30
	1.00	0.007	0.055	0.005	0.291	0.034	0.020				<0.005	ug/l	TM4/PW30
Chrysene	1.22	0.020	0.019	0.299	0.030	0.008	0.008				<0.005	ug/l	TM4/PW30
Benzo(bk)fluoranthene	0.880	0.032	0.021	0.545	0.020	<0.007	0.009				<0.003	ug/l	TM4/PM30
Benzo(a)pyrene	0.607	0.014	0.012	0.233	<0.005	< 0.005	< 0.005				< 0.005	ug/l	TM4/PM30
Indeno(123cd)pyrene	0.216	0.009	0.013	0.213	< 0.005	< 0.005	< 0.005				< 0.005	ug/l	TM4/PM30
Dibenzo(ah)anthracene	0.058	<0.005	<0.005	0.041	<0.005	<0.005	<0.005				<0.005	ug/l	TM4/PM30
Benzo(ghi)perylene	0.247	0.008	0.010	0.166	<0.005	<0.005	<0.005				<0.005	ug/l	TM4/PM30
PAH 16 Total	17.111	0.796	0.414	3.642	2.697	1.144	0.594				<0.173	ug/l	TM4/PM30
Benzo(b)fluoranthene	0.634	0.025	0.023	0.474	0.015	<0.008	<0.008				<0.008	ug/l	TM4/PM30
Benzo(k)fluoranthene	0.246	0.010	0.009	0.185	<0.008	<0.008	<0.008				<0.008	ug/l	TM4/PM30
PAH Surrogate % Recovery	75	85	84	87	88	82	85				<0	%	TM4/PM30
VOC TICs	ND	ND	See Attached	ND	ND	ND	ND					None	TM15/PM10
Methyl Tertiary Butyl Ether	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	ug/l	TM15/PM10
Benzene	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM15/PM10
Toluene	<5	<5	<5	<5	<5	<5	<5				<5	ug/l	TM15/PM10
	<1	<1	<1	<1	<1	<1	<1				<1	ug/i	TM15/PM10
	~2	~2	~2	~2	<2	~2	~2				~2	ug/l	TM15/PM10
Surrogate Recovery Toluene D8	100	102	104	102	103	103	104				<0	49/1 %	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	108	102	105	102	104	101	105				<0	%	TM15/PM10
SVOC TICs	ND	ND	See Attached	ND	ND	ND	ND					None	TM16/PM30
	1	1	1	1		1	1	1					1

Client Name:	Arcadis						Report :	Liquid					
Reference:	10035117	7											
Location:	Redcar L	WoW											
Contact:	Jonathan	Miles					Liquids/pr	oducts: V=	40ml vial, G	=glass bott	e, P=plastic	bottle	
EMT Job No:	23/527						H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN=	HN03			
EMT Sample No.	1-13	14-26	27-39	40-52	53-65	66-78	79-91						
Sample ID	F-BH101D	F-BH101S	F-BH102D	F-BH102S	MS/BH14	MS/BH15D	MS/BH15S						
Depth	25.50	7.00	28.50	10.00	6.50	8.00	4.00				Diagon on	o ottoobod n	ataa far all
COC No / miss											abbrevi	ations and a	cronyms
COC NO / IIISC													
Containers	V H HN N Z P G												
Sample Date	09/01/2023 14:30	09/01/2023 11:30	09/01/2023 16:25	10/01/2023 12:30	10/01/2023 14:30	10/01/2023 15:45	10/01/2023 17:00						
Sample Type	Ground Water												
Batch Number	1	1	1	1	1	1	1						Mathad
Date of Receipt	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023				LOD/LOR	Units	No.
Alinhatics													
	<10	<10	45	22	<10	<10	<10				<10	ug/l	TM36/DM12
>03-08	<10	<10	40	10	<10	<10	<10				<10	ug/i	
>00-08	<10	<10	60	12	<10	<10	<10				<10	ug/i	TM36/PM12
	12	21	504	42	<10	<10	<10				<10	ug/i	
>010-012	<5	<5	<5	<5	<5	<5	<5				<5	ug/i	TM5/PM16/PM30
>C12-C16	160	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
>016-021	1860	<10	<10	<10	<10	<10	<10				<10	ug/i	TM5/PM16/PM30
>C21-C35	840	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
>C35-C44	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
Total aliphatics C5-44	2872	27	697	76	<10	<10	<10				<10	ug/l	TM5/TM36/PM12/PM16/PM3
Aromatics													
>C5-EC7	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM36/PM12
>EC7-EC8	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM36/PM12
>EC8-EC10	<10	<10	57	<10	<10	<10	<10				<10	ug/l	TM36/PM12
>EC10-EC12	<5	<5	<5	<5	<5	<5	<5				<5	ug/l	TM5/PM16/PM30
>EC12-EC16	60	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
>EC16-EC21	700	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
>EC21-EC35	270	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
>EC35-EC44	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
Total aromatics C5-44	1030	<10	57	<10	<10	<10	<10				<10	ug/l	TM5/TM36/PM12/PM16/PM3
Total aliphatics and aromatics(C5-44)	3902	27	754	76	<10	<10	<10				<10	ug/l	TM5/TM56/PM12/PM16/PM3
Resorcinol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				<0.01	mg/l	TM26/PM0
Catechol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				<0.01	mg/l	TM26/PM0
Phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				<0.01	mg/l	TM26/PM0
m/p-cresol	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02				<0.02	mg/l	TM26/PM0
o-cresol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				<0.01	mg/l	TM26/PM0
Total cresols	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03				<0.03	mg/l	TM26/PM0
Xylenols	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06				<0.06	mg/l	TM26/PM0
1-naphthol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				<0.01	mg/l	TM26/PM0
2,3,5-trimethyl phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				<0.01	mg/l	TM26/PM0
2-isopropylphenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				<0.01	mg/l	TM26/PM0
Total Speciated Phenols HPLC	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	mg/l	TM26/PM0
Sulphate as SO4	622	776	367	343	430	867	1010				<0.5	mg/l	TM38/PM0
Chloride	383	504	1110	125	54.3	74.9	59.1				<0.3	mg/l	TM38/PM0
Nitrate as NO3	0.4	<0.2	<0.2	<0.2	0.3	<0.2	3.9				<0.2	mg/l	TM38/PM0
Nitrate as NO3 [#]	<0.2	-	-	-	<0.2	-	4.4				<0.2	mg/l	TM38/PM0
Nitrite as NO2	-	<0.02	0.08	<0.02	-	<0.02	-				<0.02	mg/l	TM38/PM0
Nitrite as NO2 [#]	<0.02	-	-	-	<0.02	-	2.68				<0.02	mg/l	TM38/PM0
Ortho Phosphate as PO4	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06				<0.06	mg/l	TM38/PM0
Inorganic Nitrogen	2.62	2.67	1.75	0.07	5.11	3.07	2.55				<0.05	mg/l	TM38/PM0

Client Name:	Arcadis						Report :	Liquid					
Reference:	10035117	7											
Location:	Redcar L\	WoW											
Contact:	Jonathan	Miles					Liquids/pr	oducts: V=	40ml vial, G	=glass bottl	e, P=plastic	bottle	
EMT Job No:	23/527						H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN=	HN03			
EMT Sample No.	1-13	14-26	27-39	40-52	53-65	66-78	79-91						
Sample ID	F-BH101D	F-BH101S	F-BH102D	F-BH102S	MS/BH14	MS/BH15D	MS/BH15S						
Depth	25.50	7.00	28.50	10.00	6.50	8.00	4.00				Ploase se	o attached n	otos for all
COC No / misc											abbrevi	ations and ad	cronyms
Containers													
Containers	VIIII NZT G		VIIIIWWZE G	VIIIIWWZE G	VIIII NZT G	VIIII NZ I G	VIIIIWAZI G						
Sample Date	09/01/2023 14:30	09/01/2023 11:30	09/01/2023 16:25	10/01/2023 12:30	10/01/2023 14:30	10/01/2023 15:45	10/01/2023 17:00						
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water						
Batch Number	1	1	1	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023						No.
Free Cyanide	0.156 _{AE}	0.037 _{AA}	0.064 _{AC}	0.141 _{AE}	0.036 _{AA}	0.158 _{AD}	<0.010 _{AB}				<0.001	mg/l	TM89/PM0
Total Cyanide	0.156 _{AE}	0.051 _{AA}	0.067 _{AC}	0.141 _{AE}	0.035 _{AA}	0.186 _{AD}	0.018 _{AB}				<0.001	mg/l	TM89/PM0
Complex Cyanide	<0.050AE	0.014 _{AA}	<0.015 _{AC}	<0.050AE	<0.005 _{AA}	<0.030 _{AD}	0.018 _{AB}				<0.001	mg/l	TM89/PM0
Ammoniacal Nitrogen as N	2.62	2.67	1.72	0.07	5.11	3.07	0.73				<0.03	mg/l	TM38/PM0
Total Alkalinity as CaCO3	66	228	778	144	214	58	62				<1	mg/l	TM75/PM0
												0	
Dibutyltin	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	ug/l	TM94/PM48
Tributyltin	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	ug/l	TM94/PM48
Triphenyltin	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	ug/l	TM94/PM48
												Ū	
Sulphide	<0.01	<0.01	0.01	0.01	<0.01	0.02	<0.01				<0.01	mg/l	TM107/PM0
Thiocyanate	<0.02	0.02	0.06	0.04	0.21	0.28	0.15				<0.02	mg/l	TM107/PM0
Dissolved Organic Carbon	20	62	390	99	9	6	5				<2	mg/l	TM60/PM0
Dissolved Inorganic Carbon	<2	<2	<2	2	<2	<2	<2				<2	mg/l	TM60/PM0
pН	9.92	11.4	12.1	11.2	11.3	9.90	10.2				<0.01	pH units	TM73/PM0
Total Suspended Solids	69	60	16	91	12	68	24				<10	mg/l	TM37/PM0
Total Cations	27.46	44.22	57.96	10.54	12.89	23.95	29.47				<0.00	mmolc/l	TM30/PM14
Total Anions	25.08	34.93	54.55	13.55	14.77	21.32	24.00				<0.00	mmolc/l	TM0/PM0
% Cation Excess	4.53	11.74	3.03	-12.49	-6.80	5.81	10.23					%	TM0/PM0

Client Name:	
Reference:	
Location:	
Contact:	
EMT Job No:	

Arcadis 10035117 Redcar LWoW Jonathan Miles 23/527

SVOC Report : Liquid

EMT Sample No.	1-13	14-26	27-39	40-52	53-65	66-78	79-91						
Sample ID	F-BH101D	F-BH101S	F-BH102D	F-BH102S	MS/BH14	MS/BH15D	MS/BH15S						
Depth	25.50	7.00	28.50	10.00	6.50	8.00	4.00				Please se	e attached r	notes for all
COC No / MISC Containers	V H HN N Z P G	VHHNNZPG				abbievie		cionyma					
Sample Date	09/01/2023 14:30	09/01/2023 11:30	09/01/2023 16:25	10/01/2023 12:30	10/01/2023 14:30	10/01/2023 15:45	10/01/2023 17:00						
Sample Type	Ground Water												
Batch Number	1	1	1	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023						NO.
Phenols													
2-Chlorophenol [#]	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
2-Methylphenol [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
2-Nitrophenol	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
2,4-Dichlorophenol [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
2,4-Dimetnyipnenoi	<0.5	<0.5	<0.5	<1	<1	<1	<0.5				<0.5	ug/i	TM16/PM30
2,4,6-Trichlorophenol	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Chloro-3-methylphenol#	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
4-Methylphenol	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Nitrophenol	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM16/PM30
Pentachlorophenol	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
PAHs				~1	~1	~1					~1	ug/i	110110/P1030
2-Chloronaphthalene [#]	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
2-Methylnaphthalene [#] Phthalates	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Bis(2-ethylhexyl) phthalate	<5	<5	<5	<5	<5	<5	<5				<5	ug/l	TM16/PM30
Butylbenzyl phthalate	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Di-n-butyl phthalate [#]	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5				<1.5	ug/l	TM16/PM30
Di-n-Octyl phthalate	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Dietnyl prinalate	<1	<1	<1	<1	<1	<1	<1				<1	ug/i ug/i	TM16/PM30
Other SVOCs	-												
1,2-Dichlorobenzene #	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
1,2,4-Trichlorobenzene [#]	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
1,3-Dichlorobenzene [#]	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
1,4-Dichlorobenzene "	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
2 4-Dinitrotoluene [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/i ug/i	TM16/PM30
2,6-Dinitrotoluene	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
3-Nitroaniline	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Bromophenylphenylether #	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Chloroaniline	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Chlorophenylphenylether" 4-Nitroaniline	<0.5	<0.5	<0.5	<1	<1	<1	<0.5				<0.5	ug/i	TM16/PM30
Azobenzene [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Bis(2-chloroethoxy)methane#	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Bis(2-chloroethyl)ether#	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Carbazole [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Dibenzofuran [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
HexachloropenZene *	<1	<1	<1	<1	<1	<1	<1				<1	ug/i ug/i	TM16/PM30
Hexachlorocyclopentadiene	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Hexachloroethane #	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Isophorone #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
N-nitrosodi-n-propylamine [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Nitrobenzene *	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Surrogate Recovery p-Terphenyl-d14	125	117	102	122	102	107	105				<0	%	TM16/PM30
	120		120		120	120	120				Ū	,,,	
			L	L									1

Client Name:	
Reference:	
Location:	
Contact:	
EMT Job No:	

Arcadis 10035117 Redcar LWoW Jonathan Miles 23/527

VOC Report : Liquid

EMT Sample No.	1-13	14-26	27-39	40-52	53-65	66-78	79-91					
Sample ID	F-BH101D	F-BH101S	F-BH102D	F-BH102S	MS/BH14	MS/BH15D	MS/BH15S					
Depth	25.50	7.00	28.50	10.00	6.50	8.00	4.00			Please se	e attached r	otes for all
COC No / misc										abbievi	auons anu a	cionyms
Sample Date	09/01/2023 14:30	09/01/2023 11:30	09/01/2023 16:25	10/01/2023 12:30	10/01/2023 14:30	10/01/2023 15:45	10/01/2023 17:00					
Sample Type	Ground Water											
Batch Number	1	1	1	1	1	1	1				Linite	Method
Date of Receipt	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023			LOD/LOR	Units	No.
VOC MS												
Dichlorodifluoromethane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Nethyl Tertiary Butyl Ether	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	ug/l	TM15/PM10
	<0 1	<0.1	<0.1	<0.1	<0 1	<0 1	<0.1			<0 1	ug/l	TM15/PM10
Bromomethane	<1	<1	<1	<1	<1	<1	<1			<1	ug/l	TM15/PM10
Chloroethane	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Trichlorofluoromethane	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,1-Dichloroethene (1,1 DCE)	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Dichloromethane (DCM)	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
rans-1-2-Dichloroethene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
cis-1-2-Dichloroethene	<3	<3	<3	<3	<3	<3	<3			<3	ug/i ug/i	TM15/PM10
2,2-Dichloropropane	<1	<1	<1	<1	<1	<1	<1			<1	ug/l	TM15/PM10
Bromochloromethane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Chloroform	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,1,1-Trichloroethane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,1-Dichloropropene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Carbon tetrachloride	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Renzene	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM15/PM10
Trichloroethene (TCE)	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,2-Dichloropropane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Dibromomethane	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Bromodichloromethane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
cis-1-3-Dichloropropene	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
I oluene	<5	<5	<5	<5	<5	<5	<5			<5	ug/l	TM15/PM10
1.1.2-Trichloroethane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Tetrachloroethene (PCE)	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,3-Dichloropropane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Dibromochloromethane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,2-Dibromoethane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Chlorobenzene	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
T, T, T, Z-TELIACHIOTOELHAHE	<1	<1	<1	<1	<1	<1	<1			<1	ug/l	TM15/PM10
m/p-Xylene	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
p-Xylene	<1	<1	<1	<1	<1	<1	<1			<1	ug/l	TM15/PM10
Styrene	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Bromoform	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
sopropylbenzene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
r, r,∠,∠-retrachioroethane Bromobenzene	<4 <2	<4	<4	<4	<4 <2	<4 <2	<4			<4 <2	ug/l	TM15/PM10
1.2.3-Trichloropropane	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Propylbenzene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
2-Chlorotoluene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,3,5-Trimethylbenzene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
4-Chlorotoluene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
ert-Butylbenzene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
r,2,4-mmetnyibenzene	<3	<3	<3	<3	<3	<3	<3			<3	ug/i	TM15/PM10
4-Isopropyltoluene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,3-Dichlorobenzene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,4-Dichlorobenzene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
n-Butylbenzene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,2-Dichlorobenzene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,2-Dibromo-3-chloropropane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
r,∠,+- menioropenzene Hexachlorobutadiene	<3 <3	<3	< 3 < 3	<3	<3 <3	<3 <3	<3			<3 <3	ug/i	TM15/PM10
Naphthalene	<2	<2	<2	<2	<2	6	<2			<2	ug/l	TM15/PM10
1,2,3-Trichlorobenzene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Surrogate Recovery Toluene D8	100	102	104	102	103	103	104			<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	108	103	105	102	104	101	105			<0	%	TM15/PM10

Job number:	23/527	Method:	VOC	
Sample number:	27	Matrix:	Liquid	
Sample identity:	F-BH102D			
Sample depth:	28.50			
Sample Type:	Ground Water			
Units:	ug/l			
Nata: 0 1 11 TIO				

Note: Only samples with TICs (if requested) are reported. If TICs were requested but no compounds found they are not reported.

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
110-43-0	2-Heptanone	6.199	91	236

Job number:	23/527	Method:	SVOC
Sample number:	35	Matrix:	Liquid
Sample identity:	F-BH102D		
Sample depth:	28.50		
Sample Type:	Ground Water		
Units:	ug/l		
Natas o la sul Tio			

Note: Only samples with TICs (if requested) are reported. If TICs were requested but no compounds found they are not reported.

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
111-27-3	I 1-Hexanol	3.512	83	107
110-43-0	2-Heptanone	3.692	91	178

NDP Reason Report

Matrix : Liquid

Client Name:	Arcadis
Reference:	10035117
Location:	Redcar LWoW
Contact:	Jonathan Miles

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Method No.	NDP Reason
23/527	1	F-BH102D	28.50	27-39	TM170/PM14	Sample unsuitable for analysis by ICP-MS. Sample rescheduled for analysis by ICP-OES

Client Name:	Arcadis
Reference:	10035117
Location:	Redcar LWoW
Contact:	Jonathan Miles

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason				
	No deviating sample report results for job 23/527									

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 23/527

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$. Ash samples are dried at $37^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution
AB	x10 Dilution
AC	x15 Dilution
AD	x30 Dilution
AE	x50 Dilution

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 23/527

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
тмо	Not available	PM0	No preparation is required.				
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16/PM30	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE/Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5/TM36	please refer to TM5 and TM36 for method details	PM12/PM16/PM30	please refer to PM16/PM30 and PM12 for method details				
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.				
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.				
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified				
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes			

EMT Job No: 23/527

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.				
TM37	2540D:1999 22nd Edition; VSS: USEPA 1684 (Jan 2001), USEPA 160.4 (1971) and SMEWW 2540E:1999 22nd Edition; VSS: USEPA 1684 (Jan 2001), USEPA 160.4 (1971) and SMEWW 2540E:1999 22nd Edition. Gravimetric determination of Total Suspended Solids (TSS) and Volatile Suspended Solids (VSS). Sample is filtered through a 1.5um pore size glass fibre filter and the resulting residue is dried and weighed at 105°C for TSS and E50°C for USS.	PM0	No preparation is required.				
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.				
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes			
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.				
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.				
ТМ73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.				
TM75	Modified US EPA method 310.1 (1978). Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM0	No preparation is required.				
TM94	Derivatisation and extraction of Organotins. Analysis by GC-MS	PM48	Samples are pretreated and derivatised. The derviatised organotins are then extracted using hexane.				

EMT Job No: 23/527

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM107	Determination of Sulphide/Thiocyanate by Skalar Continuous Flow Analyser	PM0	No preparation is required.				
TM170	Determination of Trace Metals by ICP-MS (Inductively Coupled Plasma – Mass Spectrometry): Modified USEPA Method 200.8, Rev. 5.4, 1994; Modified EPA Method 6020A, Rev.1, Feb 2007; Modified BS EN ISO 17294-2:2016	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified				

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Seven samples were received for analysis on 13th January, 2023 of which seven were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

5.60-20

Simon Gomery BSc Project Manager

Please include all sections of this report if it is reproduced

Arcadis

Client Name:	Arcadis						Report :	Liquid						
Reference:	10035117													
Location:	Redcar L\	NoW												
Contact:	Jonathan Miles							Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle						
EMT Job No:	23/527						H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN=	HN0 ₃				
EMT Sample No.	1-13	14-26	27-39	40-52	53-65	66-78	79-91							
Sample ID	F-BH101D	F-BH101S	F-BH102D	F-BH102S	MS/BH14	MS/BH15D	MS/BH15S							
Depth	25.50	7.00	28.50	10.00	6.50	8.00	4.00				Please se	o attached n	otos for all	
COC No / misc											abbrevia	ations and a	cronyms	
Containers	V H HN N Z P G													
Sample Date	09/01/2023 14:30	09/01/2023 11:30	09/01/2023 16:25	10/01/2023 12:30	10/01/2023 14:30	10/01/2023 15:45	10/01/2023 17:00							
Sample Type	Ground Water													
Batch Number	1	1	1	1	1	1	1					Units	Method	
Date of Receipt	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023						No.	
Dissolved Aluminium	7.2	301	NDP	268	386	54.6	87.8				<1.5	ug/l	TM170/PM14	
Dissolved Arsenic	7.4	2.5	NDP	13.7	19.5	14.9	5.9				<0.9	ug/l	TM170/PM14	
Dissolved Boron	312	83	NDP	185	32	102	78				<12	ug/l	TM170/PM14	
Dissolved Cadmium	0.05	0.06	NDP	0.03	0.05	<0.03	<0.03				<0.03	ug/l	TM170/PM14	
Total Dissolved Chromium	6.9	8.3	NDP	3.2	6.3	1.2	7.8				<0.2	ug/l	TM170/PM14	
Dissolved Copper	<1	4	NDP	<1	1	<1	4				<1	ug/l	TM170/PM14	
Total Dissolved Iron	8.5	51.1	NDP	57.2	17.0	39.4	32.7				<4.7	ua/l	TM170/PM14	
Dissolved Lead	<0.4	<0.4	NDP	<0.4	<0.4	<0.4	<0.4				<0.4	ua/l	TM170/PM14	
Dissolved Manganese	<1.5	1.7	NDP	7.1	1.8	4.3	4.8				<1.5	ua/l	TM170/PM14	
Dissolved Molvbdenum	220	229	NDP	113	180	39.8	39.8				<0.2	ua/l	TM170/PM14	
Dissolved Nickel	0.9	3.4	NDP	1.2	5.8	1.0	1.2				<0.2	ua/l	TM170/PM14	
Dissolved Zinc	<1.5	1.8	NDP	3.4	2.0	2.2	5.8				<1.5	ua/l	TM170/PM14	
												-3.		
Dissolved Aluminium [#]	-	-	148	-	-	-	-				<1.5	ua/l	TM30/PM14	
	-	-	4.9	-	-	-	-				<0.9	g.	TM30/PM14	
Dissolved Roron	-	-	176	-	-	-	-				<12	ug/l	TM30/PM14	
Dissolved Cadmium [#]	-	-	<0.03	-	-	-	-				<0.03	<u>-</u>	TM30/PM14	
Dissolved Calcium	-	-	-	113	170	-	-				<0.2	ma/l	TM30/PM14	
Dissolved Calcium [#]	303	514.0	424.0	-	-	377	497				<0.2	mg/l	TM30/PM14	
Total Dissolved Chromium [#]	-		AB 6.5	-	-	-					<0.2	ug/l	TM30/PM14	
Dissolved Coppor [#]		_	6.5	_	_		_				-0.2	ug/l	TM30/PM14	
Total Dissolved Iron #			22.6								<17	ug/l	TM30/PM14	
Dissolved Load #			<0.4				_				<0.4	ug/l	TM30/PM14	
Dissolved Leau	- 37	-01	<0.4	- 0.4	-01	-01	- 0.2				<0.4	mg/l	TM30/PM14	
Dissolved Magnesium	5.7	~0.1	<1.5	0.4	~0.1	~0.1	0.2				<1.5	ing/i	TM20/DM14	
Dissolved Malyanese	-	_	197	_	-	-	-				<0.2	ug/l	TM20/DM14	
Dissolved Molybdenum	-	-	107	-	-	-	-				<0.2	ug/i	TM20/PM14	
Dissolved Nickel	-	-	4.2	-	-	-	-				<0.2	ug/i	TM20/PM14	
Dissolved Polassium	70.8	70.3	75.0	32.7	79.1	91.7	90.7				<0.1	mg/i	TN30/PW14	
Dissolved Silicon	7510	4080	1910	7640	10300	6970	6000				<100	ug/i	TN30/PW14	
Dissolved Sodium	-	-	-	92.7	54.7	04.2	53.7				<0.1	mg/i	TM30/PM14	
Dissolved Sodium"	235AA	382 _{AB}	802 _{AB}	-	-	-	-				<0.1	mg/i	TM30/PM14	
Dissolved Zinc"	-	-	2.3	-	-	-	-				<1.5	ug/l	TM30/PM14	
Mercury Dissolved by CVAF	<0.01	0.01	<0.10 _{AB}	0.02	0.02	<0.01	<0.01				<0.01	ug/l	TM61/PM0	
Total Sulphur as S	271.00 _{AB}	308.00 _{AB}	142.00 _{AB}	122.00 _{AB}	166.00 _{AB}	339.00 _{AB}	389.00 _{AB}				<0.01	mg/l	TM30/PM14	
Client Name:	Arcadis						Report :	Liquid						
---	------------------	------------------	------------------	------------------	------------------	------------------	--------------------------------------	------------	--------------	-------------------	---------------	--------------	--------------	
Reference:	10035117	•												
Location:	Redcar L\	NoW												
Contact:	Jonathan	Miles					Liquids/pr	oducts: V=	40ml vial, G	Geglass bott	le, P=plastic	bottle		
EMI JOD NO:	23/527	1					H=H ₂ SO ₄ , .	Z=ZnAc, N=	NaOH, HN=	=HNU ₃	-			
EMT Sample No.	1-13	14-26	27-39	40-52	53-65	66-78	79-91							
Sample ID	F-BH101D	F-BH101S	F-BH102D	F-BH102S	MS/BH14	MS/BH15D	MS/BH15S							
Depth	25.50	7.00	28.50	10.00	6.50	8.00	4.00				Please se	e attached n	otes for all	
COC No / misc											abbrevi	ations and a	cronyms	
Containora														
Containers	VIIIIIVIZIO	VIIIIIVIZIO	VIIIIIVIZIO	VIIIIIVIZIO	VIIIIIIIII	VIIIIIIIII	VIIIIIIIII							
Sample Date	09/01/2023 14:30	09/01/2023 11:30	09/01/2023 16:25	10/01/2023 12:30	10/01/2023 14:30	10/01/2023 15:45	10/01/2023 17:00							
Sample Type	Ground Water													
Batch Number	1	1	1	1	1	1	1				LOD/LOR	Units	Method	
Date of Receipt	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023						NO.	
PAH MS														
Naphthalene	<0.1	0.1	<0.1	<0.1	0.4	0.6	<0.1				<0.1	ug/l	TM4/PM30	
Acenaphthylene	0.639	0.037	<0.005	0.034	<0.005	<0.005	0.081				<0.005	ug/l	TM4/PM30	
Acenaphthene	0.394	0.035	0.026	0.051	0.594	0.343	0.285				<0.005	ug/l	TM4/PM30	
Fluorene	0.720	0.048	0.026	0.038	0.187	0.007	0.112				<0.005	ug/l	TM4/PM30	
Phenanthrene	4.48	0.217	0.123	0.243	0.644	0.091	0.008				<0.005	ug/l	TM4/PM30	
Anthracene	1.02	0.036	0.022	0.076	0.091	0.020	0.018				< 0.005	ug/l	TM4/PM30	
	2.47	0.111	0.057	0.641	0.413	0.034	0.034				<0.005	ug/i	TM4/PM30	
	1.00	0.007	0.055	0.005	0.291	0.034	0.020				<0.005	ug/l	TM4/PW30	
Chrysene	1.22	0.020	0.019	0.299	0.030	0.008	0.008				<0.005	ug/l	TM4/PW30	
Benzo(bk)fluoranthene	0.880	0.032	0.021	0.545	0.020	<0.007	0.009				<0.003	ug/l	TM4/PM30	
Benzo(a)pyrene	0.607	0.014	0.012	0.233	<0.005	< 0.005	< 0.005				< 0.005	ug/l	TM4/PM30	
Indeno(123cd)pyrene	0.216	0.009	0.013	0.213	< 0.005	< 0.005	< 0.005				< 0.005	ug/l	TM4/PM30	
Dibenzo(ah)anthracene	0.058	<0.005	<0.005	0.041	<0.005	<0.005	<0.005				<0.005	ug/l	TM4/PM30	
Benzo(ghi)perylene	0.247	0.008	0.010	0.166	<0.005	<0.005	<0.005				<0.005	ug/l	TM4/PM30	
PAH 16 Total	17.111	0.796	0.414	3.642	2.697	1.144	0.594				<0.173	ug/l	TM4/PM30	
Benzo(b)fluoranthene	0.634	0.025	0.023	0.474	0.015	<0.008	<0.008				<0.008	ug/l	TM4/PM30	
Benzo(k)fluoranthene	0.246	0.010	0.009	0.185	<0.008	<0.008	<0.008				<0.008	ug/l	TM4/PM30	
PAH Surrogate % Recovery	75	85	84	87	88	82	85				<0	%	TM4/PM30	
VOC TICs	ND	ND	See Attached	ND	ND	ND	ND					None	TM15/PM10	
Methyl Tertiary Butyl Ether	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	ug/l	TM15/PM10	
Benzene	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM15/PM10	
Toluene	<5	<5	<5	<5	<5	<5	<5				<5	ug/l	TM15/PM10	
	<1	<1	<1	<1	<1	<1	<1				<1	ug/i	TM15/PM10	
	~2	~2	~2	~2	<2	~2	~2				~2	ug/l	TM15/PM10	
Surrogate Recovery Toluene D8	100	102	104	102	103	103	104				<0	49/1 %	TM15/PM10	
Surrogate Recovery 4-Bromofluorobenzene	108	102	105	102	104	101	105				<0	%	TM15/PM10	
SVOC TICs	ND	ND	See Attached	ND	ND	ND	ND					None	TM16/PM30	
	1	1	1	1		1	1	1		1			1	

Client Name:	Arcadis						Report :	Liquid					
Reference:	10035117	7											
Location:	Redcar L	WoW											
Contact:	Jonathan	Miles					Liquids/pr	oducts: V=	40ml vial, G	=glass bott	e, P=plastic	bottle	
EMT Job No:	23/527						H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN=	HN03			
EMT Sample No.	1-13	14-26	27-39	40-52	53-65	66-78	79-91						
Sample ID	F-BH101D	F-BH101S	F-BH102D	F-BH102S	MS/BH14	MS/BH15D	MS/BH15S						
Depth	25.50	7.00	28.50	10.00	6.50	8.00	4.00				Diagon on	o ottoobod n	ataa far all
COC No / miss											abbrevi	ations and a	cronyms
COC NO / IIISC													
Containers	V H HN N Z P G												
Sample Date	09/01/2023 14:30	09/01/2023 11:30	09/01/2023 16:25	10/01/2023 12:30	10/01/2023 14:30	10/01/2023 15:45	10/01/2023 17:00						
Sample Type	Ground Water												
Batch Number	1	1	1	1	1	1	1						Mathad
Date of Receipt	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023				LOD/LOR	Units	No.
Alinhatics													
>05-06	<10	<10	45	22	<10	<10	<10				<10	ug/l	TM36/DM12
>03-08	<10	<10	40	10	<10	<10	<10				<10	ug/i	
	< IU 10	< IU 07	50	12	<10 <10	< IU	<10 <10				<10 <10	ug/I	TM26/DM42
>08-010	12	2/	564	42	<10	<10	<10				<10	ug/i	11/136/P1/12
>C10-C12	<5	<5	<5	<5	<5	<5	<5				<5	ug/l	TM5/PM16/PM30
>C12-C16	160	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
>016-021	1860	<10	<10	<10	<10	<10	<10				<10	ug/i	TM5/PM16/PM30
>C21-C35	840	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
>C35-C44	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
Total aliphatics C5-44	2872	27	697	76	<10	<10	<10				<10	ug/l	TM5/TM36/PM12/PM16/PM3
Aromatics													
>C5-EC7	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM36/PM12
>EC7-EC8	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM36/PM12
>EC8-EC10	<10	<10	57	<10	<10	<10	<10				<10	ug/l	TM36/PM12
>EC10-EC12	<5	<5	<5	<5	<5	<5	<5				<5	ug/l	TM5/PM16/PM30
>EC12-EC16	60	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
>EC16-EC21	700	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
>EC21-EC35	270	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
>EC35-EC44	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
Total aromatics C5-44	1030	<10	57	<10	<10	<10	<10				<10	ug/l	TM5/TM36/PM12/PM16/PM3
Total aliphatics and aromatics(C5-44)	3902	27	754	76	<10	<10	<10				<10	ug/l	TM5/TM56/PM12/PM16/PM3
Resorcinol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				<0.01	mg/l	TM26/PM0
Catechol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				<0.01	mg/l	TM26/PM0
Phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				<0.01	mg/l	TM26/PM0
m/p-cresol	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02				<0.02	mg/l	TM26/PM0
o-cresol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				<0.01	mg/l	TM26/PM0
Total cresols	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03				<0.03	mg/l	TM26/PM0
Xylenols	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06				<0.06	mg/l	TM26/PM0
1-naphthol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				<0.01	mg/l	TM26/PM0
2,3,5-trimethyl phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				<0.01	mg/l	TM26/PM0
2-isopropylphenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				<0.01	mg/l	TM26/PM0
Total Speciated Phenols HPLC	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	mg/l	TM26/PM0
	0.5.5		0		4		4.6.1-					-	-
Sulphate as SO4	622	776	367	343	430	867	1010				<0.5	mg/l	1M38/PM0
Chloride	383	504	1110	125	54.3	74.9	59.1				<0.3	mg/l	TM38/PM0
Nitrate as NO3	-	<0.2	<0.2	<0.2	-	<0.2	-				<0.2	mg/l	TM38/PM0
Nitrate as NO3 [#]	<0.2	-	-	-	<0.2	-	4.4				<0.2	mg/l	TM38/PM0
Nitrite as NO2	-	<0.02	0.08	<0.02	-	<0.02	-				<0.02	mg/l	TM38/PM0
Nitrite as NO2 [#]	<0.02	-	-	-	<0.02	-	2.68				<0.02	mg/l	TM38/PM0
Ortho Phosphate as PO4	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06				<0.06	mg/l	TM38/PM0
Inorganic Nitrogen	2.62	2.67	1.75	0.07	5.11	3.07	2.55				<0.05	mg/l	TM38/PM0

Client Name:	Arcadis						Report :	Liquid					
Reference:	10035117	7											
Location:	Redcar L\	WoW											
Contact:	Jonathan	Miles					Liquids/pr	oducts: V=	40ml vial, G	=glass bottl	e, P=plastic	bottle	
EMT Job No:	23/527						H=H ₂ SO ₄ , 2	Z=ZnAc, N=	NaOH, HN=	HN03			
EMT Sample No.	1-13	14-26	27-39	40-52	53-65	66-78	79-91						
Sample ID	F-BH101D	F-BH101S	F-BH102D	F-BH102S	MS/BH14	MS/BH15D	MS/BH15S						
Depth	25.50	7.00	28.50	10.00	6.50	8.00	4.00				Ploase se	o attached n	otos for all
COC No / misc											abbrevi	ations and ad	cronyms
Containers													
Containers	VIIII NZT G		VIIIIWWZE G	VIIIIWWZE G	VIIII NZT G	VIIII NZ I G	VIIIIWAZI G						
Sample Date	09/01/2023 14:30	09/01/2023 11:30	09/01/2023 16:25	10/01/2023 12:30	10/01/2023 14:30	10/01/2023 15:45	10/01/2023 17:00						
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water						
Batch Number	1	1	1	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023						No.
Free Cyanide	0.156 _{AE}	0.037 _{AA}	0.064 _{AC}	0.141 _{AE}	0.036 _{AA}	0.158 _{AD}	<0.010 _{AB}				<0.001	mg/l	TM89/PM0
Total Cyanide	0.156 _{AE}	0.051 _{AA}	0.067 _{AC}	0.141 _{AE}	0.035 _{AA}	0.186 _{AD}	0.018 _{AB}				<0.001	mg/l	TM89/PM0
Complex Cyanide	<0.050AE	0.014 _{AA}	<0.015 _{AC}	<0.050AE	<0.005 _{AA}	<0.030 _{AD}	0.018 _{AB}				<0.001	mg/l	TM89/PM0
Ammoniacal Nitrogen as N	2.62	2.67	1.72	0.07	5.11	3.07	0.73				<0.03	mg/l	TM38/PM0
Total Alkalinity as CaCO3	66	228	778	144	214	58	62				<1	mg/l	TM75/PM0
												0	
Dibutyltin	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	ug/l	TM94/PM48
Tributyltin	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	ug/l	TM94/PM48
Triphenyltin	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	ug/l	TM94/PM48
												Ū	
Sulphide	<0.01	<0.01	0.01	0.01	<0.01	0.02	<0.01				<0.01	mg/l	TM107/PM0
Thiocyanate	<0.02	0.02	0.06	0.04	0.21	0.28	0.15				<0.02	mg/l	TM107/PM0
Dissolved Organic Carbon	20	62	390	99	9	6	5				<2	mg/l	TM60/PM0
Dissolved Inorganic Carbon	<2	<2	<2	2	<2	<2	<2				<2	mg/l	TM60/PM0
pН	9.92	11.4	12.1	11.2	11.3	9.90	10.2				<0.01	pH units	TM73/PM0
Total Suspended Solids	69	60	16	91	12	68	24				<10	mg/l	TM37/PM0
Total Cations	27.46	44.22	57.96	10.54	12.89	23.95	29.47				<0.00	mmolc/l	TM30/PM14
Total Anions	25.08	34.93	54.55	13.55	14.77	21.32	24.00				<0.00	mmolc/l	TM0/PM0
% Cation Excess	4.53	11.74	3.03	-12.49	-6.80	5.81	10.23					%	TM0/PM0

Client Name:	
Reference:	
Location:	
Contact:	
EMT Job No:	

Arcadis 10035117 Redcar LWoW Jonathan Miles 23/527

SVOC Report : Liquid

EMT Sample No.	1-13	14-26	27-39	40-52	53-65	66-78	79-91						
Sample ID	F-BH101D	F-BH101S	F-BH102D	F-BH102S	MS/BH14	MS/BH15D	MS/BH15S						
Depth	25.50	7.00	28.50	10.00	6.50	8.00	4.00				Please se	e attached r	notes for all
COC No / MISC Containers	V H HN N Z P G	VHHNNZPG				abbievie		cionyma					
Sample Date	09/01/2023 14:30	09/01/2023 11:30	09/01/2023 16:25	10/01/2023 12:30	10/01/2023 14:30	10/01/2023 15:45	10/01/2023 17:00						
Sample Type	Ground Water												
Batch Number	1	1	1	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023						NO.
Phenols													
2-Chlorophenol [#]	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
2-Methylphenol [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
2-Nitrophenol	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
2,4-Dichlorophenol [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
2,4-Dimetnyipnenoi	<0.5	<1	<1	<1	<1	<1	<0.5				<0.5	ug/i	TM16/PM30
2,4,6-Trichlorophenol	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Chloro-3-methylphenol#	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
4-Methylphenol	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Nitrophenol	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM16/PM30
Pentachlorophenol	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
PAHs				~1	~1	~1					~1	ug/i	110110/P1030
2-Chloronaphthalene [#]	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
2-Methylnaphthalene [#] Phthalates	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Bis(2-ethylhexyl) phthalate	<5	<5	<5	<5	<5	<5	<5				<5	ug/l	TM16/PM30
Butylbenzyl phthalate	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Di-n-butyl phthalate [#]	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5				<1.5	ug/l	TM16/PM30
Di-n-Octyl phthalate	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Dietnyl prinalate	<1	<1	<1	<1	<1	<1	<1				<1	ug/i ug/i	TM16/PM30
Other SVOCs	-												
1,2-Dichlorobenzene #	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
1,2,4-Trichlorobenzene [#]	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
1,3-Dichlorobenzene [#]	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
1,4-Dichlorobenzene "	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
2 4-Dinitrotoluene [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/i ug/i	TM16/PM30
2,6-Dinitrotoluene	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
3-Nitroaniline	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Bromophenylphenylether #	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Chloroaniline	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Chlorophenylphenylether" 4-Nitroaniline	<0.5	<0.5	<0.5	<1	<1	<1	<0.5				<0.5	ug/i	TM16/PM30
Azobenzene [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Bis(2-chloroethoxy)methane#	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Bis(2-chloroethyl)ether#	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Carbazole [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Dibenzofuran [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
HexachloropenZene *	<1	<1	<1	<1	<1	<1	<1				<1	ug/i ug/i	TM16/PM30
Hexachlorocyclopentadiene	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Hexachloroethane #	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Isophorone #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
N-nitrosodi-n-propylamine [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Nitrobenzene *	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Surrogate Recovery p-Terphenyl-d14	125	117	102	122	102	107	105				<0	%	TM16/PM30
	120		120		120	120	120				Ū	,,,	
			L	L									1

Client Name:	
Reference:	
Location:	
Contact:	
EMT Job No:	

Arcadis 10035117 Redcar LWoW Jonathan Miles 23/527

VOC Report : Liquid

EMT Sample No.	1-13	14-26	27-39	40-52	53-65	66-78	79-91					
Sample ID	F-BH101D	F-BH101S	F-BH102D	F-BH102S	MS/BH14	MS/BH15D	MS/BH15S					
Depth	25.50	7.00	28.50	10.00	6.50	8.00	4.00			Please se	e attached r	otes for all
COC No / misc										abbievi	auons anu a	cionyms
Sample Date	09/01/2023 14:30	09/01/2023 11:30	09/01/2023 16:25	10/01/2023 12:30	10/01/2023 14:30	10/01/2023 15:45	10/01/2023 17:00					
Sample Type	Ground Water											
Batch Number	1	1	1	1	1	1	1				Linite	Method
Date of Receipt	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023			LOD/LOR	Units	No.
VOC MS												
Dichlorodifluoromethane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Nethyl Tertiary Butyl Ether	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	ug/l	TM15/PM10
	<0 1	<0.1	<0.1	<0.1	<0 1	<0 1	<0.1			<0 1	ug/l	TM15/PM10
Bromomethane	<1	<1	<1	<1	<1	<1	<1			<1	ug/l	TM15/PM10
Chloroethane	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Trichlorofluoromethane	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,1-Dichloroethene (1,1 DCE)	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Dichloromethane (DCM)	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
rans-1-2-Dichloroethene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
cis-1-2-Dichloroethene	<3	<3	<3	<3	<3	<3	<3			<3	ug/i ug/i	TM15/PM10
2,2-Dichloropropane	<1	<1	<1	<1	<1	<1	<1			<1	ug/l	TM15/PM10
Bromochloromethane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Chloroform	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,1,1-Trichloroethane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,1-Dichloropropene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Carbon tetrachloride	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Renzene	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM15/PM10
Trichloroethene (TCE)	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,2-Dichloropropane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Dibromomethane	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Bromodichloromethane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
cis-1-3-Dichloropropene	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
I oluene	<5	<5	<5	<5	<5	<5	<5			<5	ug/l	TM15/PM10
1.1.2-Trichloroethane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Tetrachloroethene (PCE)	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,3-Dichloropropane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Dibromochloromethane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,2-Dibromoethane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Chlorobenzene	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
T, T, T, Z-TELIACHIOTOELHAHE	<1	<1	<1	<1	<1	<1	<1			<1	ug/l	TM15/PM10
m/p-Xylene	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
p-Xylene	<1	<1	<1	<1	<1	<1	<1			<1	ug/l	TM15/PM10
Styrene	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Bromoform	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
sopropylbenzene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
r, r,∠,∠-retrachioroethane Bromobenzene	<4 <2	<4	<4	<4	<4 <2	<4 <2	<4			<4 <2	ug/l	TM15/PM10
1.2.3-Trichloropropane	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Propylbenzene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
2-Chlorotoluene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,3,5-Trimethylbenzene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
4-Chlorotoluene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
ert-Butylbenzene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
r,2,4-mmetnyibenzene	<3	<3	<3	<3	<3	<3	<3			<3	ug/i	TM15/PM10
4-Isopropyltoluene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,3-Dichlorobenzene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,4-Dichlorobenzene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
n-Butylbenzene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,2-Dichlorobenzene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,2-Dibromo-3-chloropropane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
r,∠,+- menioropenzene Hexachlorobutadiene	<3 <3	<3	< 3 < 3	<3	<3 <3	<3 <3	<3			<3 <3	ug/i	TM15/PM10
Naphthalene	<2	<2	<2	<2	<2	6	<2			<2	ug/l	TM15/PM10
1,2,3-Trichlorobenzene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Surrogate Recovery Toluene D8	100	102	104	102	103	103	104			<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	108	103	105	102	104	101	105			<0	%	TM15/PM10

Job number:	23/527	Method:	VOC	
Sample number:	27	Matrix:	Liquid	
Sample identity:	F-BH102D			
Sample depth:	28.50			
Sample Type:	Ground Water			
Units:	ug/l			
Note: OI III TIO				

Note: Only samples with TICs (if requested) are reported. If TICs were requested but no compounds found they are not reported.

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
110-43-0	2-Heptanone	6.199	91	236

Job number:	23/527	Method:	SVOC
Sample number:	35	Matrix:	Liquid
Sample identity:	F-BH102D		
Sample depth:	28.50		
Sample Type:	Ground Water		
Units:	ug/l		
Natas o la sul Tio			

Note: Only samples with TICs (if requested) are reported. If TICs were requested but no compounds found they are not reported.

CAS No.	Tentative Compound Identification	Retention Time (minutes)	% Match	Concentration
111-27-3	I 1-Hexanol	3.512	83	107
110-43-0	2-Heptanone	3.692	91	178

NDP Reason Report

Matrix : Liquid

Client Name:	Arcadis
Reference:	10035117
Location:	Redcar LWoW
Contact:	Jonathan Miles

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Method No.	NDP Reason
23/527	1	F-BH102D	28.50	27-39	TM170/PM14	Sample unsuitable for analysis by ICP-MS. Sample rescheduled for analysis by ICP-OES

Client Name:	Arcadis
Reference:	10035117
Location:	Redcar LWoW
Contact:	Jonathan Miles

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason			
	No deviating sample report results for job 23/527								

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 23/527

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$. Ash samples are dried at $37^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.					
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa					
В	Indicates analyte found in associated method blank.					
DR	Dilution required.					
М	MCERTS accredited.					
NA	Not applicable					
NAD	No Asbestos Detected.					
ND	None Detected (usually refers to VOC and/SVOC TICs).					
NDP	No Determination Possible					
SS	Calibrated against a single substance					
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.					
W	Results expressed on as received basis.					
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.					
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.					
*	Analysis subcontracted to an Element Materials Technology approved laboratory.					
AD	Samples are dried at 35°C ±5°C					
со	Suspected carry over					
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS					
ME	Matrix Effect					
NFD	No Fibres Detected					
BS	AQC Sample					
LB	Blank Sample					
N	Client Sample					
ТВ	Trip Blank Sample					
OC	Outside Calibration Range					
AA	x5 Dilution					
AB	x10 Dilution					
AC	x15 Dilution					
AD	x30 Dilution					
AE	x50 Dilution					

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.				
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.				
CU	Clean-up - e.g. by florisil, silica gel.				
1D	GC - Single coil gas chromatography.				
Total	Aliphatics & Aromatics.				
AL	Aliphatics only.				
AR	Aromatics only.				
2D	GC-GC - Double coil gas chromatography.				
#1	EH_Total but with humics mathematically subtracted				
#2	EU_Total but with fatty acids mathematically subtracted				
_	Operator - underscore to separate acronyms (exception for +).				
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total				
MS	Mass Spectrometry.				

EMT Job No: 23/527

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
тмо	Not available	PM0	No preparation is required.				
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16/PM30	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE/Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5/TM36	please refer to TM5 and TM36 for method details	PM12/PM16/PM30	please refer to PM16/PM30 and PM12 for method details				
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.				
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.				
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified				
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes			

EMT Job No: 23/527

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.				
TM37	2540D:1999 22nd Edition; VSS: USEPA 1684 (Jan 2001), USEPA 160.4 (1971) and SMEWW 2540E:1999 22nd Edition; VSS: USEPA 1684 (Jan 2001), USEPA 160.4 (1971) and SMEWW 2540E:1999 22nd Edition. Gravimetric determination of Total Suspended Solids (TSS) and Volatile Suspended Solids (VSS). Sample is filtered through a 1.5um pore size glass fibre filter and the resulting residue is dried and weighed at 105°C for TSS and E50°C for USS.	PM0	No preparation is required.				
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.				
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes			
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.				
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.				
ТМ73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.				
TM75	Modified US EPA method 310.1 (1978). Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.				
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM0	No preparation is required.				
TM94	Derivatisation and extraction of Organotins. Analysis by GC-MS	PM48	Samples are pretreated and derivatised. The derviatised organotins are then extracted using hexane.				

EMT Job No: 23/527

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM107	Determination of Sulphide/Thiocyanate by Skalar Continuous Flow Analyser	PM0	No preparation is required.				
TM170	Determination of Trace Metals by ICP-MS (Inductively Coupled Plasma – Mass Spectrometry): Modified USEPA Method 200.8, Rev. 5.4, 1994; Modified EPA Method 6020A, Rev.1, Feb 2007; Modified BS EN ISO 17294-2:2016	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified				

Arcadis 2022 Groundwater Monitoring Summary

10035117-AUK-XX-XX-RP-ZZ-623-01-Data Gap Areas GQRA								
	Appendix F: Groundwater Monitoring Summary							
Geology Screened	Date	Location Code	Well	Reference Elevation	Depth to Water (m bgl)	Depth to Base (m bgl)	Water Level (AOD)	
MM	05/10/2022		D		6.800	29.98	2.288	
TFD	05/10/2022		S	9.088	6.420	11.3	2.668	
MM	04/11/2022		D		8.775	29.765	0.313	
TFD	04/11/2022		S		7.395	29.765	1.693	
TFD	08/11/2022	F-BH102	S		6.320	11.34	2.768	
MM	14/12/2022		D		7.400	29.992	1.688	
TFD	14/12/2022		S		6.182	11.322	2.906	
MM	09/01/2023		D		7.380	29.74	1.708	
TFD	10/01/2023		S		6.070	11.39	3.018	

Notes:

m AOD	Meters Above Ordance Datum
TFD	Tidal Flat Deposits
MM	Mercia Mudstone Group

Summary of Sample Deviations

Summary of Sample Deviations

10035117-A	AUK-XX-XX-RP-ZZ-6	23-01-Data (Gap Areas GQRA	
Appendix F:	: Summary of Sampl	e Deviations	at Environmental Testing Lat	poratory
Lab	Lab Reference	Lab No.	Sample ID	Deviation
				Holding Time Exceeded for tests
DETS	22-17093,22-17940	2052084	F-BH124 3.79-3.90 SOIL	Total Sulphur ICP (7 days), pH + Conductivity (7 days)
DETS	22-17093,22-17940	2052085	F-BH124 5.50-6.00 SOIL	Total Sulphur ICP (7 days), pH + Conductivity (7 days)
DETS	22-17093,22-17940	2052080	F-BH124 7.50-7.60 SOIL	Carbonate (28 days)
DETS	22-17093,22-17940	2052088	F-BH124 9.90-10.50 SOIL	Carbonate (28 days), Total Sulphur ICP (7 days), pH + Conductivity (7 days)
DETS	22-17093,22-17940	2052089	F-BH124 11.10-11.20 SOIL	Organic Matter (Manual) (28 days)
DETS	22-17093,22-17940	2052090	F-BH124 12.00-12.10 SOIL	Total Sulphur ICP (7 days), pH + Conductivity (7 days)
DETS	22-17093,22-17940	2052091	F-BH124 14.30-14.90 SOIL	Total Sulphur ICP (7 days), pH + Conductivity (7 days)
DETS	22-17096	2052094	F-BH120 4.10-4.50 SOIL	Total Sulphur ICP (7 days), pH + Conductivity (7 days)
DETS	22-17096	2052095	F-BH120 4.83-5.20 SOIL	Carbonate (28 days)
DETS	22-17096	2052097	F-BH120 7.50-7.60 SOIL	Total Sulphur ICP (7 days), pH + Conductivity (7 days)
DETS	22-17096	2052099	F-BH120 12.40-12.50 SOIL	Total Sulphur ICP (7 days), pH + Conductivity (7 days)
DETS	22-17096	2052101	F-BH120 30 00-31 50 SOIL	Total Sulphur ICP (7 days), pH + Conductivity (7 days)
DETS	22-17176 22-18149	2052102	E-BH125 4 50-4 80 SOIL	Total Sulphur ICP (7 days), pH + Conductivity (7 days)
DETS	22-17176 22-18149	2052475	E-BH125 9 00-9 10 SOIL	Total Sulphur ICP (7 days), pH + Conductivity (7 days)20524744 - BH125 6 50-6 90 SOIL04/08/22PT 11
	22-17176,22-18149	2052470	E BH125 11 46 11 90 SOIL	Total Sulphur ICP (7 days), pH + Conductivity (7 days)2052474F PH125 6.50 SOIL04/06/22FT 11
	22-17176,22-18149	2052478	F-BH125 11.40-11.90 SOIL	Total Sulphur ICP (7 days), pH + Conductivity (7 days)2052474F PH125 6.50-6.90 SOIL04/06/22PT 1L
	22-17170,22-18149	2052882	F-BH125 14.90-15.00 SOIL	
DETS	22-1/283	2053079	F-BH119 3.00-3.10 SOIL	Total Sulphur ICP (7 days), pH + Conductivity (7 days)2053080F-BH119 4.60-5.10 SOIL09/08/22PT 1L
DETS	22-1/283	2053081	F-BH119 8.10-8.20 SOI	Total Sulphur ICP (7 days), pH + Conductivity (7 days)2053080F-BH119 4.60-5.10 SOIL09/08/22PT 1L
DETS	22-18458	2059320	F-BH104 6.75 SOIL	Carbonate (28 days)
	22-18458	2059321	Г-ВП104 12.00-12.70 SOIL	Carponale (28 Gays)
DETS	22-18458	2059322	Г-ВП104 14.30-15.00 SOIL	Total Sulphur ICP (7 days) nH + Conductivity (7 days)
DETS	22-19275	2064390	F-BH116 9.00-9.70 SOIL	Total Sulphur ICP (7 days), pH + Conductivity (7 days)
DETS	22-19275	2064395	F-BH116 12.88-13.50 SOIL	Carbonate (28 days)
DETS	22-22032	2078777	F-TP112 4.00-4.50 SOIL	Anions 2:1 (30 days), Total Sulphur ICP (7 days), Total Sulphate ICP (30 days), pH + Conductivity (7 days)
DETS	22-16049	2046862	F-BH119 2.90 SOIL	Sulphur (free) (7 days), Total Sulphur ICP (7 days), pH + Conductivity (7 days)
DETS	22-16049	2046863	F-BH119 4.30 SOIL	Sulphur (free) (7 days), Total Sulphur ICP (7 days), pH + Conductivity (7 days)
DETS	22-17018	2051750	F-BH104 21.80 SOIL	Sulphur (free) (7 days), Total Sulphur ICP (7 days), pH + Conductivity (7 days)
DETS	22-17019	2051752	F-BH104 3.00 SOIL	Sulphur (free) (7 days), Total Sulphur ICP (7 days), pH + Conductivity (7 days)
DETS	22-17019	2051753	F-BH104 4.00 SOIL	Sulphur (free) (7 days), Total Sulphur ICP (7 days), pH + Conductivity (7 days), VOC (7 days)
DETS	22-17019	2051755	F-BH104 6.00 SOIL	Sulphur (free) (7 days), Total Sulphur ICP (7 days), pH + Conductivity (7 days)
DETS	22-17019	2051756	F-BH104 15.75 SOIL	Sulphur (free) (/ days), Total Sulphur ICP (/ days), pH + Conductivity (/ days)
DETS	22-17882	2056242	F-BH116 5 90 SOIL	Ammonia (3 days)
DETS	22-17885	2056245	F-BH116 14.00 SOIL	Ammonia (3 days)
DETS	22-18312	2058700	F-BH102 1.00 SOIL	Ammonia (3 days)
DETS	22-18373	2058947	F-BH120 3.50 SOIL	Ammonia (3 days)
DETS	22-18373	2058948	F-BH120 5.50 SOIL	Ammonia (3 days)
DETS	22-18376	2058956	F-BH125 3.80 SOIL	Ammonia (3 days)
DETS	22-18376	2058957	F-BH125 4.80 SOIL	Ammonia (3 days)
DETS	22-18376	2058958	F-BH125 5.30 SOIL	Ammonia (3 days)
DETS	22-18376	2058959	F-BH125 6.30 SOIL	Ammonia (3 days)
DETS	22-18377	2058967		Ammonia (3 days)
DETS	22-18381	2058983	F-BH119 4.30 SOIL	Ammonia (3 days)
DETS	22-18398	2059038	F-BH104 3.00 SOIL	Ammonia (3 days)
DETS	22-18398	2059039	F-BH104 4.00 SOIL	Ammonia (3 days)
DETS	22-18398	2059040	F-BH104 6.00 SOIL	Ammonia (3 days)
DETS	22-18398	2059041	F-BH104 15.75 SOIL	Ammonia (3 days)
DETS	22-18803	2061468	F-BH114 0.50 SOIL	Ammonia (3 days)
DETS	22-18803	2061469	F-BH114 1.80 SOIL	Ammonia (3 days)
DETS	22-18803	2061471	F-BH114 3.80 SOIL	Ammonia (3 days)
DETS	22-19109	2065445	F-BH114 20.30 SOIL	Ammonia (3 days), Sulphur (free) (7 days), Total Sulphur ICP (7 days), pH + Conductivity (7 days)
DETS	22-19347	2064596	F-TP114 1.00 SOIL	Ammonia (3 days)
DETS	22-19347	2064597	F-TP114 3.30 SOIL	Ammonia (3 days)
	22-1934/	2064598	F-1P114 4.00 SOIL	Ammonia (3 days)
DETS	22-19349	2064599	F-TP113 0.20 SOIL	Ammonia (3 days)
DETS	22-19349	2064604	F-TP113 2.50 SOIL	Ammonia (3 days)
DETS	22-19349	2064605	F-TP113 3.30 SOIL	Ammonia (3 days)
DETS	22-19513	2065529	F-TP112 0.30 SOIL	Ammonia (3 days)
DETS	22-19513	2065531	F-TP112 2.00 SOIL	Ammonia (3 days)
DETS	22-19513	2065532	F-TP112 3.70 SOIL	Ammonia (3 days)
DETS	22-19762	2066853	F-TP115 0.30 SOIL	Ammonia (3 days)
DETS	22-19762	2066855	F-TP115 2.30 SOIL	Ammonia (3 days)
DETS	22-19762	2066856	F-1P117 0.50 SOIL	Ammonia (3 days)
DETS	22-19762	2066857	F-TP117 1.50 SOIL	Ammonia (3 days)
DETS	22-20306	2000858	F-TP120 0.00 SOIL	Ammonia (3 days)
DETS	22-20306	2070250	F-TP120 0.50 SOIL	Ammonia (3 days)
DETS	22-20306	2070252	F-TP120 2.30 SOIL	Ammonia (3 days)
DETS	22-20306	2070253	F-TP120 3.00 SOIL	Ammonia (3 days)
DETS	22-20306	2070255	F-TP121 0.50 SOIL	Ammonia (3 days)
DETS	22-20306	2070256	F-TP121 0.80 SOIL	Ammonia (3 days)
DETS	22-20306	2070257	F-TP121 1.80 SOIL	Ammonia (3 days)
DETS	22-20306	2070258	F- FP121 3.80 SOIL	Ammonia (3 days)
	22-20457	2070384	F-1P110 U.2U SUIL	Ammonia (3 days)
DETS	22-20457	2070380	F-TP116 3.10 SOIL	Ammonia (3 days)

10035117-AUK-XX-XX-RP-ZZ-623-01-Data Gap Areas GQRA					
Appendix F: Summary of Sample Deviations at Environmental Testing Laboratory					
Lab	Lab Poforonco	Lab No.	Sample ID	Deviation	
Lab	Lab Reference			Holding Time Exceeded for tests	
DETS	22-20457	2070388	F-TP116 4.10 SOIL	Ammonia (3 days)	

10035117-A	UK-XX-XX-RP-ZZ-62	23-01-Data (Sap Areas GQRA	
Appendix F:	Summary of Sample	e Deviations	at Environmental Testing Lat	poratory
Lab	Lab Deference	Lab Na	Comula ID	Deviation
LaD	Lab Reference	Lab No.	Sample ID	Holding Time Exceeded for tests

Appendix H

Comparison of Measured Concentrations of Contaminants of Concern in Soil with Human Health GAC

Appendix H : (Comparison of Measured Concentrations of Co	C in Soil with GAC (mo	a/ka)												
			Location												
			Location ID	F-BH114	F-BH115	F-BH115	F-BH116	F-BH116	F-BH116						
Chemical	Commonweak	Redcar Remediation	Sample Depth Range	0.5	1.8	2.8	3.8	5.8	13.2	20.3	4.3	5	4.9	5.9	14
Group	Compound	Criteria - Soil	Sampled Date	16/09/2022	16/09/2022	16/09/2022	16/09/2022	16/09/2022	20/09/2022	20/09/2022	25/08/2022	25/08/2022	02/09/2022	02/09/2022	05/09/2022
			Matrix Description	GMG	GMG	GMG	GMG	TFD	TFD	RMF	GMG	TFD	SMG	TFD	TFD
				00.000	01.000		07.000			10,000			4.400	11.000	10,000
wetais		640	mg/kg	33,000	21,000	- 0.1	5.0	7.5	- 0.1	12,000	- 51	73	6.0	14,000	10,000
	Benyllium	040	mg/kg	36	24	9.1	5.9	<0.2	9.1	0.5	25	1.3	<0.9	23	14
	Boron	240000	mg/kg	77	2.3	0.2	7.6	0.8	59	2.8	1 1	0.2	0.2	1.5	6.9
	Cadmium	190	mg/kg	0.4	0.4	<0.1	<0.1	<0.1	0.1	<0.1	8.2	<0.1	<0.1	0.7	0.0
	Chromium (hexavalent)	33	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Chromium	8600	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-
	Chromium (Trivalent)		mg/kg	42	120	6.8	9.9	3.3	37	17	180	2.2	6.1	230	23
	Copper	68000	mg/kg	23	70	4.9	5	3.6	21	21	100	1.5	3.2	62	16
	Iron	-	mg/kg	19,000	42,000	-	4100	-	-	21,000	-	-	7000	110,000	32,000
	Lead	2300	mg/kg	35	67	19	8.8	19	21	5.9	1200	14	22	23	14
	Manganese	-	mg/kg	16,000	3800	-	1300	-	-	450		-	140	7600	390
	Melvedonum	58"	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Nickel	080	mg/kg	7.5	20	12	0.0	31	33	0.5	37	17	28	28	1.9
	Selenium	-	mg/kg	5.4	1.5	<0.5	3	<0.5	<0.5	<0.5	2.5	<0.5	<0.5	23	<0.5
	Tin		ma/ka	3	7.4	=	1	=	=	1	-	=	<1	3.1	<1
	Zinc	730000	mg/kg	140	130	28	8.6	19	80	24	8400	17	17	120	53
Asbestos	Asbestos Quantification Total		%	0.002			-	-		-	-	-	-	-	-
	Asbestos fibres		Detect	1	0	0	-	-	-	-	0	-	0	-	-
Inorganics	Chloride		mg/kg	363	87.6	-	9.6	-	-	75.5	-	-	32.9	251	683
	Orthophosphate as P		mg/kg	0.54	0.16	-	0.13	-	-	0.15	-	-	<0.1	<0.1	<0.1
PAH	PAH 16 Total	4000	mg/kg	5.6	3.4	<0.1	<0.1	<0.1	<0.1	<0.1	2.4	<0.1	<0.1	0.22	<0.1
		1900	mg/kg	0.04	0.04	<0.03	<0.03	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	<0.03	0.14	< 0.03
		83000**	mg/kg	<0.03	<0.05	<0.05	<0.05	<0.03	<0.03	<0.03	<0.03	<0.05	<0.05	<0.05	<0.05
	Fluoranthene	23000	mg/kg	1.5	0.73	<0.03	<0.03	<0.03	<0.03	<0.03	0.58	<0.03	<0.03	0.03	<0.03
	Phenanthrene	22000	mg/kg	0.97	0.29	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.11	< 0.03	< 0.03	0.08	< 0.03
	Fluorene	63000**	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
	Pyrene	54000	mg/kg	0.93	0.66	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.42	< 0.03	< 0.03	< 0.03	< 0.03
	Benzo(a)anthracene	170	mg/kg	0.3	0.31	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	0.14	< 0.03	<0.03	< 0.03	< 0.03
	Benzo(b)fluoranthene	44	mg/kg	0.54	0.39	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	0.35	< 0.03	<0.03	< 0.03	< 0.03
	Benzo(k)fluoranthene	1200	mg/kg	0.19	0.15	<0.03	<0.03	< 0.03	< 0.03	< 0.03	0.15	< 0.03	< 0.03	< 0.03	< 0.03
	Benzo(a)pyrene	77	mg/kg	0.17	0.25	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.18	< 0.03	< 0.03	< 0.03	< 0.03
	Dibenz(a,h)anthracene	3.5	mg/kg	0.04	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	<0.03	< 0.03	<0.03
	Indepo(1,2,3,c,d)pyrano	3900	mg/kg	0.14	0.1	<0.03	<0.03	< 0.03	< 0.03	< 0.03	0.14	<0.03	<0.03	<0.03	<0.03
TPH CWG	>C5-EC6 Alinhatics	500	mg/kg	<0.01	<0.01	<0.03	<0.03	<0.03	<0.03	<0.03	0.15	-0.05	<0.03	<0.03	<0.03
in in one	>C6-C8 Aliphatics	7800**	mg/kg	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01
	>C8-C10 Aliphatics	2000**	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	>C10-C12 Aliphatics	9700**	mg/kg	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
	>C12-C16 Aliphatics	59000**	mg/kg	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2	3.15	<1.2	<1.2	<1.2
	>C16-C21 Aliphatics		mg/kg	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	2.66	2.97	<1.5	<1.5	<1.5
	>C21-C35 Aliphatics		mg/kg	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	184.6	<3.4	<3.4	28.79	<3.4
	I OTAL >C5 - C4U Aliphatics	26000**	mg/kg	<10	<10	<10	<10	<10	<10	<10	193.3	16.44	13.78	37.72	14.15
	>EC3-EC7 Aromatics	20000**	mg/kg	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	>EC7-EC6 Aromatics	3500**	mg/kg	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	>FC10-FC12 Aromatics	16000**	mg/kg	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9
	>EC12-EC16 Aromatics	36000**	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	>EC16-EC21 Aromatics	28000	mg/kg	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	0.61	<0.6	1.4	<0.6	<0.6
	>EC21-EC35 Aromatics	28000	mg/kg	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4
	>EC35 - EC40 Aromatics		mg/kg	-	-	-	-	-	-	-	<1.4	<1.4	<1.4	<1.4	<1.4
	>EC40-EC44 Aromatics		mg/kg	-	-	-	-	-	-	-	-	-	-	-	-
	Total >EC5 - EC40 Aromatics		mg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	I OTAL Aliphatics + Aromatics (>C5 - C40)		mg/kg	<10	<10	<10	<10	<10	<10	<10	198.2	22.43	20.47	43.36	20.34
			mg/kg	<0.005	-	<0.002	-	<0.002	<0.002	-	-	<0.002	<0.002	<u><0.002</u>	-
	Fthylbenzene		ma/ka	<0.005	-	<0.005		<0.005	<0.005	-	-	<0.005	<0.000	<0.001	
	Xvlene (m & p)		ma/ka	-0.002	_	-0.002	_	-0.002	<0.01	_		=	=	=	_
	Xylene (o)		mg/kg	< 0.002	-	< 0.002	-	< 0.002	< 0.002	-	-	< 0.002	< 0.002	< 0.002	-
	Xylene Total		mg/kg	-		-	-		-		-	-	-	-	-
	МТВЕ		mg/kg	< 0.005	-	< 0.005	-	< 0.005	< 0.005	-	-	< 0.005	< 0.005	< 0.005	-

			Location ID	F-BH114	F-BH115	F-BH115	E-BH116	F-BH116	F-BH116						
Chemical		Redcar Remediation	Sample Denth Pange	0.5	1.8	2.8	2.8	5.8	13.2	20.3	/ 3	5	19	59	1/
Croup	Compound		Sampled Date	16/00/2022	16/09/2022	16/09/2022	16/09/2022	16/00/2022	20/00/2022	20.3	25/08/2022	25/08/2022	02/00/2022	02/00/2022	05/00/2022
Group		Criteria - Soli	Sampled Date	10/03/2022	10/03/2022	10/03/2022	10/03/2022	10/03/2022	20/03/2022	20/03/2022	20/00/2022	23/00/2022	02/03/2022	02/03/2022	03/03/2022
			Matrix Description	GMG	GMG	GMG	GMG	TFD	TFD	RMF	GMG	TFD	SMG	TFD	TFD
VOC	Styrene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-		-
	cis-1,3-dichloropropene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	trans-1,3-dichloropropene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	1,1,1,2-tetrachloroethane		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	1,1,1-trichloroethane		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	1,1,2-trichloroethane		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	1,1-dichloroethane		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	1,1-dichloroethene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	1,1-dichloropropene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	1,2,3-trichloropropane		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	1,2,4-trimethylbenzene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	1,2-dibromo-3-chloropropane		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	1,2-dibromoethane		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	1,2-dichloroethane		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	1,2-dichloropropane		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	1,3,5-trimethylbenzene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	1,3-dichloropropane		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	2,2-dichloropropane		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	2-chlorotoluene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	4-chlorotoluene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	Bromobenzene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	Bromochloromethane		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	Bromodichloromethane		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	Bromoform		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	Carbon tetrachloride		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	Chlorodibromomethane		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	Chloroform		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	cis-1,2-dichloroethene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	Dibromomethane		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	Isopropylbenzene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	n-butylbenzene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	n-propylbenzene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	p-isopropyltoluene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	sec-butylbenzene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	Trichloroethene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	tert-butylbenzene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	Tetrachloroethene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	trans-1,2-dichloroethene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	Vinyl chloride		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	tert-Amyl methyl ether		mg/kg	< 0.005	-	< 0.005	-	< 0.005	< 0.005	-	-	< 0.005	< 0.005	< 0.005	-
VOC/SVOC	1,2,3-trichlorobenzene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	1,2,4-trichlorobenzene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	1,2-dichlorobenzene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	1,3-dichlorobenzene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	1,4-dichlorobenzene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	Chlorobenzene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	Hexachlorobutadiene		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-

			Location ID	F-BH114	F-BH115	F-BH115	F-BH116	F-BH116	F-BH116						
Chemical		Redcar Remediation	Sample Depth Range	0.5	1.8	2.8	3.8	5.8	13.2	20.3	4.3	5	4.9	5.9	14
Group	Compound	Criteria - Soil	Sampled Date	16/09/2022	16/09/2022	16/09/2022	16/09/2022	16/09/2022	20/09/2022	20/09/2022	25/08/2022	25/08/2022	02/09/2022	02/09/2022	05/09/2022
			Matrix Description	GMG	GMG	GMG	GMG	TED	TED	RMF	GMG	TED	SMG	TED	TED
				00	Cinic	Cinc	Cinc		n e		Cinico		Child	n e	n e
SVOC	1,4-dinitrobenzene		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	Benzyl alcohol		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	4-bromophenyl phenyl ether		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	4-nitroaniline		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	4-nitrophenol		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	1,2-Dinitrobenzene		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	1,3-Dinitrobenzene		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	2,3,4,6-tetrachlorophenol		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	2,3,5,6-1 etrachlorophenol		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	2,4,5-trichlorophenol		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	2,4,6-tricnioropnenoi		mg/kg	-	-	-	-	-	<0.01	-	-	-	-	-	-
			mg/kg	-	-	-	-	-	<0.01	-	-	-	-	-	-
	2,4-dimethylphenol		mg/kg	-	-	-	-	-	<0.01	-	-	-	-	-	-
	2,4-dinitrololuene		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	2,6-dichiorophenol		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	2.6 dinitrateluene		mg/kg	-	-	-	-	-	<0.01	-	-	-	-		-
	2,0-uiiiii 0ioluene		mg/kg	-	-	-	-	-	<0.1	-	-	-	-		-
	2-chloronhenol		mg/kg	-					<0.1		_		_		
	2-methylnanhthalene		mg/kg						<0.1						
	2-methylphenol		mg/kg	_					<0.1		_				
	2-nitroaniline		mg/kg	-			_	_	<0.1	_	-	_	-	_	
	3-nitroaniline		ma/ka	-	-	-	-	-	<0.1	-	-	-	-	_	_
	4.6-Dinitro-2-methylphenol		ma/ka	-	_	_	_	_	<0.1	_	-	-	-	-	_
	4-chlorophenyl phenyl ether		ma/ka	-	-	-	-	-	<0.1	-	-	-	-	-	-
	4-methylphenol		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
	Azobenzene		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	_	-
	Bis(2-chloroethoxy) methane		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	Bis(2-chloroisopropyl) ether		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	Bis(2-ethylhexyl) phthalate		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	Butyl benzyl phthalate		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	Carbazole		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	Dibenzofuran		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	Diethylphthalate		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	Dimethyl phthalate		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	Di-n-butyl phthalate		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	Di-n-octyl phthalate		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	Diphenylamine		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	Hexachlorobenzene		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	Hexachlorocyclopentadiene		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	Pentachlorophenol		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-

			Location ID	F-BH114	F-BH114	F-BH114	F-BH114	F-BH114	F-BH114	F-BH114	F-BH115	F-BH115	F-BH116	F-BH116	F-BH116
Chemical	0	Redcar Remediation	Sample Depth Range	0.5	1.8	2.8	3.8	5.8	13.2	20.3	4.3	5	4.9	5.9	14
Group	Compound	Criteria - Soil	Sampled Date	16/09/2022	16/09/2022	16/09/2022	16/09/2022	16/09/2022	20/09/2022	20/09/2022	25/08/2022	25/08/2022	02/09/2022	02/09/2022	05/09/2022
			Matrix Description	GMG	GMG	GMG	GMG	TFD	TFD	RMF	GMG	TFD	SMG	TFD	TFD
PCB	Heptachlorobiphenyl, 2,3,3,4,4,5,5- (PCB 189)		mg/kg	< 0.01	-	-	< 0.01	-	-	-	-	-	< 0.01	-	-
	Hexachlorobiphenyl, 2,3,3,4,4,5- (PCB 156)		mg/kg	< 0.01	-	-	< 0.01	-	-	-	-	-	< 0.01	-	-
	Hexachlorobiphenyl, 2,3,4,4,5,5- (PCB 167)		mg/kg	< 0.01	-	-	< 0.01	-	-	-	-	-	< 0.01	-	-
	Hexachlorobiphenyl, 3,3,4,4,5,5- (PCB 169)		mg/kg	<0.01	-	-	<0.01	-	-	-	-	-	< 0.01	-	-
	PCB 101		mg/kg	<0.01	-	-	<0.01	-	-	-	-	-	< 0.01	-	-
	PCB 118		mg/kg	<0.01	-	-	<0.01	-	-	-	-	-	< 0.01	-	-
	PCB 138		mg/kg	<0.01	-	-	<0.01	-	-	-	-	-	< 0.01	-	-
	PCB 153		mg/kg	<0.01	-	-	<0.01	-	-	-	-	-	< 0.01	-	-
	PCB 180		mg/kg	<0.01	-	-	<0.01	-	-	-	-	-	< 0.01	-	-
	PCB 28 + PCB 31		mg/kg	<0.01	-	-	<0.01	-	-	-	-	-	< 0.01	-	-
	PCB 52		mg/kg	< 0.01	-	-	<0.01	-	-	-	-	-	< 0.01	-	-
	Pentachlorobiphenyl, 2,3,3,4,4- (PCB 105)		mg/kg	<0.01	-	-	<0.01	-	-	-	-	-	< 0.01	-	-
	Pentachlorobiphenyl, 2,3,4,4,5- (PCB 114)		mg/kg	<0.01	-	-	<0.01	-	-	-	-	-	< 0.01	-	-
	Pentachlorobiphenyl, 2,3,4,4,5- (PCB 123)		mg/kg	< 0.01	-	-	<0.01	-	-	-	-	-	< 0.01	-	-
	Pentachlorobiphenyl, 3,3,4,4,5- (PCB 126)		mg/kg	<0.01	-	-	<0.01	-	-	-	-	-	< 0.01	-	-
	Tetrachlorobiphenyl, 3,3,4,4- (PCB 77)		mg/kg	<0.01	-	-	< 0.01	-	-	-	-	-	<0.01	-	-
	Tetrachlorobiphenyl, 3,4,4,5- (PCB 81)		mg/kg	<0.01	-	-	< 0.01	-	-	-	-	-	<0.01	-	-
	Total PCB 7 Congeners		mg/kg	< 0.01	-	-	<0.01	-	-	-	-	-	< 0.01	-	-
Phenolics	3-&4-methylphenol		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
	Phenol		mg/kg	<0.3	< 0.3	<0.3	0.7	<0.3	<0.01 - 0.4	<0.3	<0.3	<0.3	< 0.3	<0.3	<0.3
SVOC TIC	Aniline		mg/kg	-	-	-	-	-	<0.1	-	-	-	-	-	-
NA	4-chloro-2-methylphenol		mg/kg	-	-	-	-	-	< 0.01	-	-	-	-	-	-
NI - 4															

Notes

Exceeds - Adopted Screening Criteria

Annendix H · C	Comparison of Measured Concentrations of Co	C in Soil with GAC (m												
	omparison of medsured opneentiations of oc				Worksho	p/Stores								
			F-BH116	F-TP115	F-TP115	F-TP115	F-TP116	F-TP116	F-TP116	F-TP116	F-TP116	F-TP116	F-TP117	F-TP117
Chemical	Compound	Redcar Remediation	20.55	0.3	1.5	2.3	0.2	0.8	1.5	3.1	4.1	4.5	0.5	1.5
Group		Criteria - Soli	00/09/2022	21109/2022	21109/2022	21109/2022	06/10/2022	00/10/2022	0//10/2022 SMC	07/10/2022 SMC	0//10/2022 SMC	SMC	21/09/2022	21/09/2022 SMC
Madala			RIVIE	GMG	GIVIG			GING	SMG	5WG		SING	GIVIG	
wetais	Aiuminium	640	71	9600	-	11,000	22,000	91	23,000	19,000	20	- 18	5800	4200
	Beryllium	040	1	1.1	-	1.4	2.3	2.3	2.4	1.6	1.6	1.1	0.9	0.5
	Boron	240000	7.4	2.2	-	2.4	5.3	13	11	3	2.9	3.1	1.7	1.1
	Cadmium Chromium (hoxovalant)	190	0.1	0.5	-	0.5	0.1	1.3	0.2	0.6	0.5	1	0.8	0.4
	Chromium	8600	-	-		-	-	-	-	-	-	-	-	
	Chromium (Trivalent)		31	120	-	240	120	90	93	120	90	51	110	240
	Copper	68000	25	41	-	38	11	16	33	46	33	29	72	37
	Iron Lead	- 2300	- 13	35,000	-	38,000	64	- 23	35,000	95 95	45,000	82	58,000	50,000
	Manganese	-	-	3600	-	5900	10,000	-	37,000	3900	4300	-	7300	10,000
	Mercury	58*	< 0.05	0.14	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Molybdenum Nickol	090	- 22	1.6	-	2	0.9	- 5.0	4.2	4.9	1.5	- 10	1.2	1
	Selenium	900	<0.5	2.2	-	2.4	4.4	4.7	19	2.1	1.9	1.3	3.2	4.5
	Tin		-	4.3	-	5.8	1.2	-	2.4	3.4	3.3	-	4.9	4.8
Achester		730000	42	170	-	160	24	72	31	170	340	1100	160	54
ASDESTOS	Aspestos Quantification Total		-	0.003	0.003	0.003	- 0	- 0	- 0	- 0	-	-	- 0	
Inorganics	Chloride		-	89.5	-	63.9	66	-	281	161	165	-	371	334
	Orthophosphate as P		-	0.23	-	0.22	0.39	-	0.69	0.74	0.24	-	0.95	0.29
PAH	PAH 16 Total	1000	<0.1	5.8	-	4.7	9.4	8.3	3.2	3	3.2	10	15	0.32
	Acenaphthene	84000**	< 0.03	0.03		<0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.05	0.05	<0.03
	Acenaphthylene	83000**	-	-	-	-	-	-	-	-	-	-	-	-
	Fluoranthene	23000	< 0.03	1.3	-	0.99	2.2	1.9	0.62	0.65	0.86	2.4	3.2	0.06
	Phenanthrene	63000**	< 0.03	0.49	-	0.4	1.1	0.61	0.25	<0.037	0.33	2.2	1.6	0.04
	Pyrene	54000	< 0.03	1.2	-	0.97	1.5	1.6	0.5	0.48	0.62	1.8	2.4	0.04
	Benzo(a)anthracene	170	< 0.03	0.45	-	0.36	0.91	0.83	0.32	0.27	0.3	0.83	1.4	< 0.03
	Benzo(b)fluoranthene	44	< 0.03	0.56	-	0.5	0.94	0.83	0.43	0.33	0.27	0.57	1.6	0.05
	Benzo(a)pyrene	77	< 0.03	0.32		0.22	0.68	0.30	0.18	0.12	0.11	0.25	1	<0.03
	Dibenz(a,h)anthracene	3.5	< 0.03	0.06	-	0.04	0.07	0.05	< 0.03	< 0.03	<0.03	0.04	0.18	< 0.03
	Benzo(g,h,i)perylene	3900	< 0.03	0.2	-	0.17	0.29	0.29	0.13	0.11	0.09	0.15	0.51	0.04
TPH CWG	Indeno(1,2,3-c,d)pyrene	500	<0.03	0.17 <0.01	-	0.16	0.27	0.25	0.14	0.1	<0.06	0.12	<u>0.46</u>	0.04
in in one	>C6-C8 Aliphatics	7800**	< 0.01	< 0.01	-	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01
	>C8-C10 Aliphatics	2000**	< 0.01	< 0.01	-	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
	>C10-C12 Aliphatics	9700**	<1.5	<1.5	-	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
	>C16-C21 Aliphatics	33000	<1.5	35	-	<1.5	4.2	<1.5	1.9	<1.5	<1.5	<1.5	<1.5	<1.5
	>C21-C35 Aliphatics		<3.4	200	-	<3.4	110	14	38	<3.4	<3.4	<3.4	<3.4	<3.4
	Total >C5 - C40 Aliphatics	26000**	-	250	-	<10	140	16	45	<10	<10	<10	<10	<10
	>EC3-EC7 Aromatics	56000**	< 0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	>EC8-EC10 Aromatics	3500**	< 0.01	< 0.01	-	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	>EC10-EC12 Aromatics	16000**	< 0.9	<0.9	-	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	< 0.9	< 0.9
	>EC12-EC16 Aromatics	36000**	<0.5	<u> </u>	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
	>EC21-EC35 Aromatics	28000	<1.4	460	-	42	65	4.4	22	1.5	<1.4	1.9	85	<1.4
	>EC35 - EC40 Aromatics		<1.4	-	-	-	-	-	-	-	-	-	-	-
	>EC40-EC44 Aromatics		<1.4	- 610	-	-	-	-	-	-	-	-	- 100	-
	Total Aliphatics + Aromatics (>C5 - C40)		-	850	-	61	220	24	71	<10	<10	<10	120	<10
BTEX and	Benzene		-	< 0.002	-	-	-	< 0.002	-	< 0.002	<0.002	=	<0.01 - 0.005	-
МТВЕ	Toluene		-	< 0.005	-	_	-	< 0.005	-	< 0.005	< 0.005	-	< 0.005	
	Ethylbenzene Xvlene (m & n)		-	<0.002	-	-	-	<0.002	-	< 0.002	<0.002	-	<0.002	
	Xylene (o)		-	< 0.002	-	-	-	< 0.002	-	< 0.002	< 0.002	-	< 0.002	
	Xylene Total		-	-	-	-	-	-	-	-	-	-	-	-
	МТВЕ		-	< 0.005	-	-	-	< 0.005	-	<0.005	< 0.005	-	<0.005	-

Change of the second				F-BH116	F-TP115	F-TP115	F-TP115	F-TP116	F-TP116	F-TP116	F-TP116	F-TP116	F-TP116	F-TP117	F-TP117
Group Contents - base	Chemical		Redcar Remediation	20.55	0.3	1.5	2.3	0.2	0.8	1.5	3.1	4.1	4.5	0.5	1.5
Not Nume Num Nume Nume N	Group	Compound	Criteria - Soil	06/09/2022	27/09/2022	27/09/2022	27/09/2022	06/10/2022	06/10/2022	07/10/2022	07/10/2022	07/10/2022	07/10/2022	27/09/2022	27/09/2022
None None None No o No <th< th=""><th></th><th></th><th></th><th>RMF</th><th>GMG</th><th>GMG</th><th>GMG</th><th>GMG</th><th>GMG</th><th>SMG</th><th>SMG</th><th>SMG</th><th>SMG</th><th>GMG</th><th>SMG</th></th<>				RMF	GMG	GMG	GMG	GMG	GMG	SMG	SMG	SMG	SMG	GMG	SMG
op:13-schloroporten i	VOC	Styrene		-	-	-	-	-	-	-	-	-	-	< 0.01	-
Tara 1-3 doi:100 Tara 1-3 doi:1000000000000000000000000000000000000		cis-1,3-dichloropropene		-	-	-	-	-	-	-	-	-	-	< 0.01	-
1.1.4 zetes horsebane		trans-1,3-dichloropropene		-	-	-	-	-	-	-	-	-	-	< 0.01	-
1.1.1-decisionethnine - - - - - - - - 0.01 - 1.1.1-decisionethnine - - - - - - 0.01 - 0.01 - 1.1.1-decisionethnine - - - - 0.0 - 0.01 - 0.01 - 1.1.1-decisionethnine - 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2.4-deficionethnine - 0.0 <th></th> <th>1,1,1,2-tetrachloroethane</th> <th></th> <th>-</th> <th>< 0.01</th> <th>-</th>		1,1,1,2-tetrachloroethane		-	-	-	-	-	-	-	-	-	-	< 0.01	-
11.2 database 1 <		1,1,1-trichloroethane		-	-	-	-	-	-	-	-	-	-	<0.01	-
1.1.den/norgettime <th></th> <th>1,1,2-trichloroethane</th> <th></th> <th>-</th> <th><0.01</th> <th>-</th>		1,1,2-trichloroethane		-	-	-	-	-	-	-	-	-	-	<0.01	-
1.1-dichicrosphere -		1,1-dichloroethane		-	-	-	-	-	-	-	-	-	-	<0.01	-
11.4de/incorponent -<		1,1-dichloroethene		-	-	-	-	-	-	-	-	-	-	<0.01	-
12.3-Wichlogophane -		1,1-dichloropropene		-	-	-	-	-	-	-	-	-	-	< 0.01	-
12.4 timelyberizere - - - - - - - - - 0.0 - 0.0 - 0.0 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <th< th=""><th></th><th>1,2,3-trichloropropane</th><th></th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>< 0.01</th><th>-</th></th<>		1,2,3-trichloropropane		-	-	-	-	-	-	-	-	-	-	< 0.01	-
1.2-documos-schiorogogone . <th></th> <th>1,2,4-trimethylbenzene</th> <th></th> <th>-</th> <th>< 0.01</th> <th>-</th>		1,2,4-trimethylbenzene		-	-	-	-	-	-	-	-	-	-	< 0.01	-
1.2-dicinceshane 1		1,2-dibromo-3-chloropropane		-	-	-	-	-	-	-	-	-	-	< 0.01	-
1.2 decisionestina - - - - - - - - - 0		1,2-dibromoethane		-	-	-	-	-	-	-	-	-	-	< 0.01	-
1.2 definitoryopane - - - - - - - - 0.0 - 0.0		1,2-dichloroethane		-	-	-	-	-	-	-	-	-	-	<0.01	-
1.3.schmeinhuberzene - - - - - - - - 0.0 - 2.3.delingroppane - - - - - - - - 0.0 - - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 </th <th></th> <th>1,2-dichloropropane</th> <th></th> <th>-</th> <th>< 0.01</th> <th>-</th>		1,2-dichloropropane		-	-	-	-	-	-	-	-	-	-	< 0.01	-
1.4-dictorgroppine - - - - - - - - 0.001 - 2-dictordorgroppine - - - - - - - - - - - 0.001 - - 0.001 - - 0.001 - - 0.001 - 0		1,3,5-trimethylbenzene		-	-	-	-	-	-	-	-	-	-	< 0.01	-
22-denicotolucene - - - - - - - - - - - 0.011 - 4-chiorotolucene - - - - - - - - 0.011 <		1,3-dichloropropane		-	-	-	-	-	-	-	-	-	-	< 0.01	-
2-chiorobleme - - - - - - - 0.01 - Bromobenzene - - - - - - 0.01 - 0.01 <th></th> <th>2,2-dichloropropane</th> <th></th> <th>-</th> <th>< 0.01</th> <th>-</th>		2,2-dichloropropane		-	-	-	-	-	-	-	-	-	-	< 0.01	-
4-chioroluene - - - - - - - - 0 <		2-chlorotoluene		-	-	-	-	-	-	-	-	-	-	<0.01	-
Bromochloromethane - - - - - - - - - - 0 0 - 0 0 - 0		4-chlorotoluene		-	-	-	-	-	-	-	-	-	-	<0.01	-
Bromode/informe#hane -		Bromobenzene		-	-	-	-	-	-	-	-	-	-	<0.01	-
Bromodomonethane - - - - - - - - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 0.01 - 0.01		Bromochloromethane		-	-	-	-	-	-	-	-	-	-	<0.01	-
Brondord C<		Bromodichloromethane		-	-	-	-	-	-	-	-	-	-	< 0.01	-
Carbon letrachioned - - - - - - - - - - 0.011 - Chioroiformomethane - - - - - - - - - 0.011 - - 0.011 - - 0.011		Bromoform		-	-	-	-	-	-	-	-	-	-	<0.01	-
Chorodoromomenane Chorodoromomenane		Carbon tetrachloride		-	-	-	-	-	-	-	-	-	-	< 0.01	-
Choirorom Choirorom <t< th=""><th></th><th>Chlorodibromomethane</th><th></th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th><0.01</th><th>-</th></t<>		Chlorodibromomethane		-	-	-	-	-	-	-	-	-	-	<0.01	-
bis-1/2-dictione/enee -		Chloroform		-	-	-	-	-	-	-	-	-	-	<0.01	
Dioromethane - <t< th=""><th></th><th>cis-1,2-dichloroethene</th><th></th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th><0.01</th><th>-</th></t<>		cis-1,2-dichloroethene		-	-	-	-	-	-	-	-	-	-	<0.01	-
Isopropyloenzene -		Dibromomethane		-	-	-	-	-	-	-	-	-	-	<0.01	-
In-program Image: Construction of the construc		Isopropylbenzene		-	-	-	-	-	-	-	-	-	-	<0.01	-
In-propryoenzene Image: Constraint of the co				-	-	-	-	-	-	-	-	-	-	<0.01	-
Pisophognicidentie Image: Section of the sectin of the section of the section of the section of the s				-	-	-	-	-	-	-	-	-	-	<0.01	-
Sec-dulyberizerie Image: Construction of the second s				-	-	-	-	-	-	-	-	-	-	<0.01	-
Includentine Image: Constraint of the constr				-	-	-	-	-	-	-	-	-	-	<0.01	-
Intercharge Intercharge				-	-	-	-	-	-	-	-	-	-	<0.01	
Instaction of the field Image: Second S		Totrophoroothono		-	-	-	-	-	-	-	-	-	-	<0.01	-
Hais-1-2uction definite Image: 1-2uction definit Image: 1-2uction definite Image		trans 1.2 dichloroothono		-	-	-	-	-	-	-	-	-	-	<0.01	-
Vinverticibilitie Image: Constraint of the second of the sec		Vinul obleride		-	-	-	-	-	-	-	-	-	-	<0.01	
VOC/SVOC 1,2,3-trichlorobenzene - - - - - - - <		tert-Amyl methyl ether		-	<0.005		-		<0.005		<0.005	<0.005	-	<0.01	-
1,2,0-trainedocitation - <th>VOC/SVOC</th> <th>1 2 3-trichlorobenzene</th> <th></th> <th>-</th> <th>~0.005</th> <th>-</th> <th>-</th> <th>-</th> <th>~0.005</th> <th></th> <th>~0.000</th> <th>~0.000</th> <th>-</th> <th><0.000</th> <th>-</th>	VOC/SVOC	1 2 3-trichlorobenzene		-	~0.005	-	-	-	~0.005		~0.000	~0.000	-	<0.000	-
1,2-training operation - <th>100/0400</th> <th>1.2.4-trichlorobenzene</th> <th></th> <th></th> <th>-</th> <th>-</th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th><0.01</th> <th>-</th>	100/0400	1.2.4-trichlorobenzene			-	-	-					-		<0.01	-
1,2-division of the construction - - -				-		-	-	-	-		-	-	-	<0.01	-
1,0-divide Definition		1 3-dichlorobenzene		-										<0.01	-
Chlorobenzene Image: Construction of the state of		1 4-dichlorobenzene			-	-	-					-		<0.01	-
Hexachlorobutadiene		Chlorobenzene				_	_			_				<0.01	
		Hexachlorobutadiene			=	-	-	=	=	=	=			<0.01	

Chemical Group	Compound	Redcar Remediation Criteria - Soil	F-BH116 20.55 06/09/2022	F-TP115 0.3 27/09/2022	F-TP115 1.5 27/09/2022	F-TP115 2.3 27/09/2022	F-TP116 0.2 06/10/2022	F-TP116 0.8 06/10/2022	F-TP116 1.5 07/10/2022	F-TP116 3.1 07/10/2022	F-TP116 4.1 07/10/2022	F-TP116 4.5 07/10/2022	F-TP117 0.5 27/09/2022	F-TP117 1.5 27/09/2022
Croup			RMF	GMG	GMG	GMG	GMG	GMG	SMG	SMG	SMG	SMG	GMG	SMG
SVOC	1,4-dinitrobenzene		-	-	-	-	-	-	-	-	-	-	<0.1	-
	Benzyl alcohol		-	-	-	-	-	-	-	-	-	-	<0.1	-
	4-bromophenyl phenyl ether		-	-	-	-	-	-	-	-	-	-	<0.1	-
	4-nitroaniline		-	-	-	-	-	-	-	-	-	-	<0.1	-
	4-nitrophenol		-	-	-	-	-	-	-	-	-	-	<0.1	-
	1,2-Dinitrobenzene		-	-	-	-	-	-	-	-	-	-	<0.1	-
	1,3-Dinitrobenzene		-	-	-	-	-	-	-	-	-	-	<0.1	-
	2,3,4,6-tetrachlorophenol		-	-	-	-	-	-	-	-	-	-	<0.1	-
	2,3,5,6-Tetrachlorophenol		-	-	-	-	-	-	-	-	-	-	<0.1	-
	2,4,5-trichlorophenol		-	-	-	-	-	-	-	-	-	-	<0.1	-
	2,4,6-trichlorophenol		-	-	-	-	-	<0.01	-	-	< 0.01	-	<0.1	<0.01
	2,4-dichlorophenol		-	-	-	-	-	<0.01	-	-	< 0.01	-	<0.1	<0.01
	2,4-dimethylphenol		-	-	-	-	-	<0.01	-	-	< 0.01	-	<0.1	<0.01
	2,4-dinitrotoluene		-	-	-	-	-	-	-	-	-	-	<0.1	-
	2,6-dichlorophenol		-	-	-	-	-	< 0.01	-	-	< 0.01	-	-	<0.01
	2,6-Dimethylphenol		-	-	-	-	-	<0.01	-	-	< 0.01	-	-	<0.01
	2,6-dinitrotoluene		-	-	-	-	-	-	-	-	-	-	<0.1	-
	2-chloronaphthalene		-	-	-	-	-	-	-	-	-	-	<0.1	-
	2-chlorophenol		-	-	-	-	-	-	-	-	-	-	<0.1	-
	2-methylnaphthalene		-	-	-	-	-	-	-	-	-	-	0.2	-
	2-methylphenol		-	-	-	-	-	-	-	-	-	-	<0.1	-
	2-nitroaniline		-	-	-	-	-	-	-	-	-	-	<0.1	-
	3-nitroaniline		-	-	-	-	-	-	-	-	-	-	<0.1	-
	4,6-Dinitro-2-methylphenol		-	-	-	-	-	-	-	-	-	-	<0.1	-
	4-chlorophenyl phenyl ether		-	-	-	-	-	-	-	-	-	-	<0.1	-
	4-methylphenol		-	-	-	-	-	<0.01	-	-	<0.01	-	-	<0.01
	Azobenzene		-	-	-	-	-	-	-	-	-	-	<0.1	-
	Bis(2-chloroethoxy) methane		-	-	-	-	-	-	-	-	-	-	<0.1	-
	Bis(2-chioroisopropyi) ether		-	-	-	-	-	-	-	-	-	-	<0.1	-
	Bis(2-ethylnexyl) phinalate		-	-	-	-	-	-	-	-	-	-	<0.1	-
	Butyl benzyl phthalate		-	-	-	-	-	-	-	-	-	-	<0.1	-
	Dihanzafuran		-	-	-	-	-	-	-	-	-	-	0.5	-
	Dipenzolulari		-	-	-	-	-	-	-	-	-	-	0.2	-
	Diethylphthalate		-	-	-	-	-	-	-	-	-	-	<0.1	-
	Dineury philalate		-	-	-	-	-	-	-	-	-	-	<0.1	-
	Di n octul phthalate		-	-	-	-	-	-	-	-	-	-	<0.1	-
			-	-	-	-	-	-	-	-	-	-	<0.1	-
			-	-	-	-	-	-	-	-	-	-	<0.1	-
	Hexachlorocyclopentadione		-	-	-	-	-	-	-	-	-	-	<0.1	-
	Pentachlorophenol		-	-	-	-	-	-	-	-	-	-	<0.1	-
	генаснююрнены		-	-	-	-	-	-	-		-	-	<u>\</u> U. I	-

			F-BH116	F-TP115	F-TP115	F-TP115	F-TP116	F-TP116	F-TP116	F-TP116	F-TP116	F-TP116	F-TP117	F-TP117
Chemical		Redcar Remediation	20.55	0.3	1.5	2.3	0.2	0.8	1.5	3.1	4.1	4.5	0.5	1.5
Group	Compound	Criteria - Soil	06/09/2022	27/09/2022	27/09/2022	27/09/2022	06/10/2022	06/10/2022	07/10/2022	07/10/2022	07/10/2022	07/10/2022	27/09/2022	27/09/2022
			RMF	GMG	GMG	GMG	GMG	GMG	SMG	SMG	SMG	SMG	GMG	SMG
РСВ	Heptachlorobiphenyl, 2,3,3,4,4,5,5- (PCB 189)		-	-	-	-	-	< 0.01	-	-	< 0.01	-	< 0.01	-
	Hexachlorobiphenyl, 2,3,3,4,4,5- (PCB 156)		-	-	-	-	-	< 0.01	-	-	< 0.01	-	< 0.01	-
	Hexachlorobiphenyl, 2,3,4,4,5,5- (PCB 167)		-	-	-	-	-	< 0.01	-	-	< 0.01	-	< 0.01	-
	Hexachlorobiphenyl, 3,3,4,4,5,5- (PCB 169)		-	-	-	-	-	< 0.01	-	-	< 0.01	-	< 0.01	-
	PCB 101		-	-	-	-	-	< 0.01	-	-	< 0.01	-	< 0.01	-
	PCB 118		-	-	-	-	-	< 0.01	-	-	< 0.01	-	< 0.01	-
	PCB 138		-	-	-	-	-	< 0.01	-	-	< 0.01	-	< 0.01	-
	PCB 153		-	-	-	-	-	< 0.01	-	-	< 0.01	-	< 0.01	-
	PCB 180		-	-	-	-	-	< 0.01	-	-	< 0.01	-	< 0.01	-
	PCB 28 + PCB 31		-	-	-	-	-	< 0.01	-	-	< 0.01	-	< 0.01	-
	PCB 52		-	-	-	-	-	< 0.01	-	-	< 0.01	-	< 0.01	-
	Pentachlorobiphenyl, 2,3,3,4,4- (PCB 105)		-	-	-	-	-	< 0.01	-	-	< 0.01	-	< 0.01	-
	Pentachlorobiphenyl, 2,3,4,4,5- (PCB 114)		-	-	-	-	-	< 0.01	-	-	< 0.01	-	< 0.01	-
	Pentachlorobiphenyl, 2,3,4,4,5- (PCB 123)		-	-	-	-	-	< 0.01	-	-	< 0.01	-	< 0.01	-
	Pentachlorobiphenyl, 3,3,4,4,5- (PCB 126)		-	-	-	-	-	< 0.01	-	-	< 0.01	-	< 0.01	-
	Tetrachlorobiphenyl, 3,3,4,4- (PCB 77)		-	-	-	-	-	< 0.01	-	-	< 0.01	-	< 0.01	-
	Tetrachlorobiphenyl, 3,4,4,5- (PCB 81)		-	-	-	-	-	< 0.01	-	-	< 0.01	-	< 0.01	-
	Total PCB 7 Congeners		-	-	-	-	-	< 0.01	-	-	< 0.01	-	< 0.01	-
Phenolics	3-&4-methylphenol		-	-	-	-	-	-	-	-	-	-	<0.1	-
	Phenol		< 0.3	<0.3	-	< 0.3	<0.3	< 0.01	< 0.3	< 0.3	< 0.01	< 0.3	<0.1	< 0.01
SVOC TIC	Aniline		-	-	-	-	-	-	-	-	-	-	<0.1	-
NA	4-chloro-2-methylphenol		-	-	-	-	-	< 0.01	-	-	< 0.01	-	<0.1	< 0.01
Notes														

10100

Exceeds - Adopted Scre

Appendix H : C	Comparison of Measured Concentrations of C	oC in Soil with GAC (m	c											
Chamiaal		Dadaar Damadiatian	F-TP117	F-BH120	F-BH120	F-BH120	F-BH120	F-BH120	F-BH124	F-BH124	F-BH124	F-BH124	F-BH124	F-BH125
Group	Compound	Criteria - Soil	2.5	3.5 02/08/2022	4.5 02/08/2022	5.5 02/08/2022	03/08/2022	03/08/2022	<u>3.8</u> 01/08/2022	01/08/2022	01/08/2022	02/08/2022	02/08/2022	<u>3.8</u> 04/08/2022
			SMG	SMG	SMG	TED	GT	RME	GMG	TED	TED	TED	RME	GMG
Metala			4000	57,000	Child	2400	01		Cinc	ii b				42,000
wetais	Arsenic	640	20	4,7	-	4.7	6.5	24	9	9.4	6.5	3.6	26	43,000
	Beryllium	010	0.5	6.3	-	< 0.2	1	0.7	1.9	<0.2	<0.2	<0.2	0.6	5.9
	Boron	240000	1.2	1.3	-	<0.2	3.5	3.4	1.1	0.4	0.6	0.8	2	6
	Cadmium	190	0.2	<0.1	-	<0.1	0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.1	<0.1
	Chromium (hexavalent)	33	<1	<1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1
	Chromium (Trivalent)	0000	160	2.3		3.3	31	- 28	410	4 1	4.9	27	- 18	- 14
	Copper	68000	28	3.3	-	4.4	36	34	130	3.7	3.2	2.9	18	5
	Iron	-	52,000	3200	-	8400	-	-	-	-	-	-	-	5100
	Lead	2300	15	2.6	-	22	18	13	17	34	4.4	3.1	23	1.4
	Manganese	-	11,000	550	-	1/0	-	-	-	-	-	-	-	1500
	Molybdenum	50	0.7	0.8		0.05						-0.05	-0.05	0.9
	Nickel	980	14	<1	-	3.1	33	30	12	3.2	3.4	2.6	26	1.2
	Selenium	-	4.5	0.7	-	<0.5	<0.5	0.6	4.1	<0.5	<0.5	<0.5	<0.5	1.2
	Tin		2.8	<1	-	<1	-	-	-	-	-	-	-	<1
Achastas	ZINC Ashestos Quantification Total	730000	28	7.1	-	16	59	54	38	32	20	13	120	4.1
Aspesios	Asbestos Quantincation Total		0	0	0	-	-	_	0	-				0
Inorganics	Chloride		64.5	29.9	-	28		_	-	_			_	5.3
J	Orthophosphate as P		1.6	<0.1	-	0.13	-	-	-	-	-	-	-	<0.1
PAH	PAH 16 Total		0.74	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.13
	Naphthalene	1900	< 0.03	< 0.03	-	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
	Acenaphthene	84000**	< 0.03	< 0.03	-	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
	Fluoranthene	23000	0.17	<0.03		<0.03	<0.03	<0.03	0.04	<0.03	<0.03	<0.03	<0.03	0.05
	Phenanthrene	22000	0.1	< 0.03	-	< 0.03	< 0.03	< 0.03	0.04	< 0.03	< 0.03	< 0.03	< 0.03	0.03
	Fluorene	63000**	< 0.03	< 0.03	-	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
	Pyrene	54000	0.11	< 0.03	-	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.04
	Benzo(a)anthracene	170	0.07	< 0.03	-	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
	Benzo(k)fluoranthene	44	0.08	< 0.03	-	<0.03	<0.03	<0.03	< 0.03	<0.03	< 0.03	<0.03	<0.03	< 0.03
	Benzo(a)pyrene	77	0.00	< 0.03	_	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
	Dibenz(a,h)anthracene	3.5	< 0.03	< 0.03	-	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	<0.03
	Benzo(g,h,i)perylene	3900	0.03	<0.03	-	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	<0.03	< 0.03	<0.03
TRULOWO	Indeno(1,2,3-c,d)pyrene	500	0.03	< 0.03	-	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
IPH CWG	>C5-EC6 Aliphatics	7800**	<0.01	< 0.01	-	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01
	>C8-C10 Aliphatics	2000**	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	>C10-C12 Aliphatics	9700**	<1.5	<1.5	-	1.94	<1.5	<1.5	2.63	2.14	2.3	2.61	1.67	<1.5
	>C12-C16 Aliphatics	59000**	<1.2	<1.2	-	<1.2	<1.2	<1.2	2.69	2.55	2.64	2.97	3.44	-
	>C16-C21 Aliphatics		<1.5	<1.5	-	<1.5	<1.5	<1.5	2.71	2.2	2.37	2.83	3.02	<1.5
	>C21-C35 Aliphatics		<3.4	<3.4	-	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4
	>EC5-EC7 Aromatics	26000**	<0.01	<0.01	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	>EC7-EC8 Aromatics	56000**	< 0.01	< 0.01	-	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	>EC8-EC10 Aromatics	3500**	< 0.01	< 0.01	-	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	>EC10-EC12 Aromatics	16000**	<0.9	<0.9	-	<0.9	<0.9	<0.9	1.36	1.22	<0.9	<0.9	<0.9	<0.9
	>EC12-EC16 Aromatics	36000**	< 0.5	< 0.5	-	< 0.5	< 0.5	< 0.5	0.58	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	>EC16-EC21 Aromatics	28000	4./	<0.6	-	< 0.6	<0.6	<0.6	2.04	1./3	1.22	1.26	<0.6	1.58
	>EC35 - EC40 Aromatics	20000		<1.4		<1.4	<1.4	<1.4 <1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4
	>EC40-EC44 Aromatics		-		-	- 1	- 1	- 1T	- 1			- 1		
	Total >EC5 - EC40 Aromatics		50	<10	-	<10	<10	<10	<10	<10	<10	<10	<10	-
	Total Aliphatics + Aromatics (>C5 - C40)		50	18.08	-	19.55	<10	<10	22.53	21.85	21.8	23.56	11.21	-
BTEX and	Benzene		0.006	< 0.002	-	< 0.002	-	-	< 0.002	< 0.002	_	< 0.002	-	-
MTBE			< 0.005	< 0.005	-	< 0.005	-	-	< 0.005	< 0.005	-	< 0.005	-	-
	Xvlene (m & n)		<0.002	< 0.002		<0.002	-	-	<0.002	<0.002	-	<0.002	-	-
	Xylene (o)		< 0.002	< 0.002		< 0.002	_	_	< 0.002	< 0.002		< 0.002	_	
	Xylene Total		=	-	-	=	-	-	=	=	-	=	-	-
	MTBE		< 0.005	< 0.005	-	< 0.005	-	-	< 0.005	< 0.005	-	< 0.005	-	-

			F-TP117	F-BH120	F-BH120	F-BH120	F-BH120	F-BH120	F-BH124	F-BH124	F-BH124	F-BH124	F-BH124	F-BH125
Chemical		Redcar Remediation	2.5	3.5	4.5	5.5	14.8	20	3.8	5.1	7.8	10.8	18.8	3.8
Group	Compound	Criteria - Soil	27/09/2022	02/08/2022	02/08/2022	02/08/2022	03/08/2022	03/08/2022	01/08/2022	01/08/2022	01/08/2022	02/08/2022	02/08/2022	04/08/2022
Croup														
			SMG	SMG	SMG	TFD	GT	RMF	GMG	TFD	TFD	TFD	RMF	GMG
VOC	Styrene		-	-	-	-	-	-	-	-	-	-	-	-
	cis-1,3-dichloropropene		-	-	-	-	-	-	-	-	-	-	-	-
	trans-1,3-dichloropropene		-	-	-	-	-	-	-	-	-	-	-	-
	1,1,1,2-tetrachloroethane		-	-	-	-	-	-	-	-	-	-	-	-
	1,1,1-trichloroethane		-	-	-	-	-	-	-	-	-	-	-	-
	1,1,2-trichloroethane		-	-	-	-	-	-	-	-	-	-	-	-
	1,1-dichloroethane		-	-	-	-	-	-	-	-	-	-	-	-
	1,1-dichloroethene		-	-	-	-	-	-	-	-	-	-	-	-
	1,1-dichloropropene		-	-	-	-	-	-	-	-	-	-	-	-
	1,2,3-tricnioropropane		-	-	-	-	-	-	-	-	-	-	-	-
	1,2,4-trimetryidenzene		-	-	-	-	-	-	-	-	-	-	-	-
	1,2-dibromo-3-chioropropane		-	-	-	-	-	-	-	-	-	-	-	-
	1,2-dibromoethane		-	-	-	-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	-	-	-	-	-	-
	1,2-dichloropropane		-	-	-	-	-	-	-	-	-	-	-	-
	1,3,5-trimetryidenzene		-	-	-	-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	-	-	-	-	-	-
	Bromobenzene		-	-	-	-	-	-	-	-	-	-	-	-
	Bromochloromethane		-	-	-	-	-	-	-	-	-	-	-	-
	Promodiableromethane		-	-	-	-	-	-	-	-	-	-	-	-
	Bromoform		-	-			-			-	-		_	-
	Carbon tetrachloride		-	-	-	-	-	-	-	-	-	-	-	-
	Chlorodibromomethane		-	-			-			-	-		_	-
	Chloroform													
	cis-1 2-dichloroethene													
	Dibromomethane		_				-	_	_	_	-		-	
	Isopropylbenzene		_	_	_	_	-	_	_	_	_	_	-	_
	n-butylbenzene		_	_	-	-	-	-	-	_	-	_	-	_
	n-propylbenzene		_	_	-	-	-	-	-	_	-	_	-	_
	p-isopropyltoluene		-	_	_	_	-	_	_	_	-	_	-	_
	sec-butylbenzene		-	-	-	-	-	-	-	-	-	-	-	-
	Trichloroethene		-	-	-	-	-	-	-	-	-	-	-	-
	tert-butvlbenzene		-	-	-	-	-	-	-	-	-	-	-	-
	Tetrachloroethene		-	-	-	-	-	-	-	-	-	-	-	-
	trans-1.2-dichloroethene		-	-	-	-	-	-	-	-	-	-	-	-
	Vinvl chloride		-	-	-	-	-	-	-	-	-	-	-	-
	tert-Amyl methyl ether		< 0.005	< 0.005	-	< 0.005	-	-	< 0.005	< 0.005	-	< 0.005	-	-
VOC/SVOC	1,2,3-trichlorobenzene		-	-	-	-	-	-	-	-	-	-	-	-
	1,2,4-trichlorobenzene		-	-	-	-	-	-	-	-	-	-	-	-
	1,2-dichlorobenzene		-	-	-	-	-	-	-	-	-	-	-	-
	1,3-dichlorobenzene		-	-	-	-	-	-	-	-	-	-	-	-
	1,4-dichlorobenzene		-	-	-	-	-	-	-	-	-	-	-	-
	Chlorobenzene		-	-	_	-	-	-	-	-	-	-	-	-
	Hexachlorobutadiene		-	-	-	-	-	-	-	-	-	-	-	-

			F-TP117	F-BH120	F-BH120	F-BH120	F-BH120	F-BH120	F-BH124	F-BH124	F-BH124	F-BH124	F-BH124	F-BH125
Chemical		Redcar Remediation	2.5	3.5	4.5	5.5	14.8	20	3.8	5.1	7.8	10.8	18.8	3.8
Group	Compound	Criteria - Soil	27/09/2022	02/08/2022	02/08/2022	02/08/2022	03/08/2022	03/08/2022	01/08/2022	01/08/2022	01/08/2022	02/08/2022	02/08/2022	04/08/2022
			SMG	SMG	SMG	TFD	GT	RMF	GMG	TFD	TFD	TFD	RMF	GMG
SVOC	1.4-dinitrobenzene													
3400	Benzyl alcohol													
	4-bromonhenyl nhenyl ether		-					-		-	_	-	-	
	4-nitroaniline		_	_	-	-	_	-	-	_	_	-	_	_
	4-nitrophenol		_	_	_	-		-	_	-	_	_	_	
	1 2-Dinitrobenzene		_	_	_	_	_	_	_	_	_	_	_	_
	1.3-Dinitrobenzene		-	_	_	_	_	-	_	-	_	-	-	_
	2 3 4 6-tetrachlorophenol		-	_	_	_	_	-	_	-	_	-	-	_
	2.3.5.6-Tetrachlorophenol		-	_	_	_	-	-	-	-	-	-	-	-
	2.4.5-trichlorophenol		-	_	_	_	-	-	-	-	-	-	-	-
	2.4.6-trichlorophenol		-	-	-	-	-	-	< 0.01	-	-	-	-	-
	2,4-dichlorophenol		-	-	-	-	-	-	< 0.01	-	-	-	-	-
	2,4-dimethylphenol		-	-	-	-	-	-	< 0.01	-	-	-	-	-
	2,4-dinitrotoluene		-	-	-	-	-	-	-	-	-	-	-	-
	2,6-dichlorophenol		-	-	-	-	-	-	< 0.01	-	-	-	-	-
	2,6-Dimethylphenol		-	-	-	-	-	-	< 0.01	-	-	-	-	-
	2,6-dinitrotoluene		-	-	-	-	-	-	-	-	-	-	-	-
	2-chloronaphthalene		-	-	-	-	-	-	-	-	-	-	-	-
	2-chlorophenol		-	-	-	-	-	-	-	-	-	-	-	-
	2-methylnaphthalene		-	-	-	-	-	-	-	-	-	-	-	-
	2-methylphenol		-	-	-	-	-	-	-	-	-	-	-	-
	2-nitroaniline		-	-	-	-	-	-	-	-	-	-	-	-
	3-nitroaniline		-	-	-	-	-	-	-	-	-	-	-	-
	4,6-Dinitro-2-methylphenol		-	-	-	-	-	-	-	-	-	-	-	-
	4-chlorophenyl phenyl ether		-	-	-	-	-	-	-	-	-	-	-	-
	4-methylphenol		-	-	-	-	-	-	< 0.01	-	-	-	-	-
	Azobenzene		-	-	-	-	-	-	-	-	-	-	-	-
	Bis(2-chloroethoxy) methane		-	-	-	-	-	-	-	-	-	-	-	-
	Bis(2-chloroisopropyl) ether		-	-	-	-	-	-	-	-	-	-	-	-
	Bis(2-ethylhexyl) phthalate		-	-	-	-	-	-	-	-	-	-	-	-
	Butyl benzyl phthalate		-	-	-	-	-	-	-	-	-	-	-	-
	Carbazole		-	-	-	-	-	-	-	-	-	-	-	-
	Dibenzoturan		-	-	-	-	-	-	-	-	-	-	-	-
	Dietnyiphthalate		-	-	-	-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	-	-	-	-	-	-
	Di-n-butyi phthalate		-	-	-	-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	-	-	-	-	-	-
	Pentachlorocyclopentadiene		-	-	-	-	-	-	-	-	-	-	-	-
	Pentachiorophenoi		-	-	-	-	-	-	-	-	-	-	-	-

			F-TP117	F-BH120	F-BH120	F-BH120	F-BH120	F-BH120	F-BH124	F-BH124	F-BH124	F-BH124	F-BH124	F-BH125
Chemical Group	Compound	Redcar Remediation Criteria - Soil	2.5	3.5	4.5	5.5	14.8	20	3.8	5.1	7.8	10.8	18.8	3.8
			27/09/2022	02/08/2022	02/08/2022	02/08/2022	03/08/2022	03/08/2022	01/08/2022	01/08/2022	01/08/2022	02/08/2022	02/08/2022	04/08/2022
			SMG	SMG	SMG	TFD	GT	RMF	GMG	TFD	TFD	TFD	RMF	GMG
РСВ	Heptachlorobiphenyl, 2,3,3,4,4,5,5- (PCB 189)		-	< 0.01	-	-	-	-	-	-	-	-	-	
	Hexachlorobiphenyl, 2,3,3,4,4,5- (PCB 156)		-	< 0.01	-	-	-	-	-	-	-	-	-	-
	Hexachlorobiphenyl, 2,3,4,4,5,5- (PCB 167)		-	< 0.01	-	-	-	-	-	-	-	-	-	-
	Hexachlorobiphenyl, 3,3,4,4,5,5- (PCB 169)		-	< 0.01	-	-	-	-	-	-	-	-	-	-
	PCB 101		-	< 0.01	-	-	-	-	-	-	-	-	-	-
	PCB 118		-	< 0.01	-	-	-	-	-	-	-	-	-	-
	PCB 138		-	< 0.01	-	-	-	-	-	-	-	-	-	-
	PCB 153		-	< 0.01	-	-	-	-	-	-	-	-	-	-
	PCB 180		-	< 0.01	-	-	-	-	-	-	-	-	-	-
	PCB 28 + PCB 31		-	< 0.01	-	-	-	-	-	-	-	-	-	-
	PCB 52		-	< 0.01	-	-	-	-	-	-	-	-	-	-
	Pentachlorobiphenyl, 2,3,3,4,4- (PCB 105)		-	< 0.01	-	-	-	-	-	-	-	-	-	-
	Pentachlorobiphenyl, 2,3,4,4,5- (PCB 114)		-	< 0.01	-	-	-	-	-	-	-	-	-	-
	Pentachlorobiphenyl, 2,3,4,4,5- (PCB 123)		-	< 0.01	-	-	-	-	-	-	-	-	-	-
	Pentachlorobiphenyl, 3,3,4,4,5- (PCB 126)		-	< 0.01	-	-	-	-	-	-	-	-	-	-
	Tetrachlorobiphenyl, 3,3,4,4- (PCB 77)		-	< 0.01	-	-	-	-	-	-	-	-	-	-
	Tetrachlorobiphenyl, 3,4,4,5- (PCB 81)		-	< 0.01	-	-	-	-	-	-	-	-	-	-
	Total PCB 7 Congeners		-	< 0.01	-	-	-	-	-	-	-	-	-	-
Phenolics	3-&4-methylphenol		-	-	-	-	-	-	-	-	-	-	-	-
	Phenol		<0.3	< 0.3	-	<0.3	<0.3	<0.3	< 0.01	<0.3	<0.3	<0.3	<0.3	<0.3
SVOC TIC	Aniline		-	-	-	-	-	-	-	-	-	-	-	-
NA	4-chloro-2-methylphenol		-	-	-	-	-	-	< 0.01	-	-	-	-	-
Notes														

0103

Exceeds - Adopted Scre

Appendix H : C	parison of Measured Concentrations of CoC in Soil with GAC (mc															
													Blast Furnace Stoc			
			F-BH125	F-BH125	F-BH125	F-BH125	F-BH125	F-BH128	F-BH128	F-BH128	F-BH128	F-TP112	F-TP112	F-TP112		
Group	Compound	Criteria - Soil	4.8 04/08/2022	5.3 04/08/2022	6.3 04/08/2022	11.8 05/08/2022	14.8 05/08/2022	3.9 28/07/2022	4.9 28/07/2022	8.5	13.5 29/07/2022	0.3	1 26/09/2022	2 26/09/2022		
Oroup		ontena - oon	GMG		TED	TED	GT	GMG	TED	TED		GMG	GMG	GMG		
Motolo	Aluminium		5000	1700	0100		17,000	GING	ΠĐ			1000	GINIG	9400		
Metais	Arsenic	640	19	8.2	6.8	20	9	7.3	6.5	6.2	- 18	3.6	-	2.7		
	Beryllium	010	0.3	0.4	0.5	0.5	1.3	0.6	<0.2	<0.2	0.8	<0.2	-	0.9		
	Boron	240000	1.2	0.9	2.7	5.5	3.5	0.8	<0.2	3.4	4.5	0.7	-	1.5		
	Cadmium	190	0.2	<0.1	0.2	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	-	0.3		
	Chromium (hexavalent)	33	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	-	<1		
	Chromium Chromium (Trivelent)	8600	-	- 0.7	-	-	-	- 970	-	-	- 41	- 10	-	-		
	Copper	68000	400	9.7	20 12	12	27	30	3.0	<u>4.4</u> 5.4	41	82	-	41		
	Iron	-	300.000	10.000	33.000	-	42.000		-		-	44.000	_	100.000		
	Lead	2300	14	20	16	12	17	12	20	4.4	15	7.3	-	18		
	Manganese	-	3100	200	180	-	560	-	-	-	-	600	-	29,000		
	Mercury	58*	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	-	<0.05		
	Molybdenum	000	1	0.5	1.2	-	1.1	-	-	-	-	1.6	-	6.2		
	NICKEI	980	25	4.1	16	19	43	10	2.4	4.4	-0.5	4.6	-	5.8		
	Tin	-	18	<1	<1		<1		-0.0	-0.0		<1	_	7 1		
	Zinc	730000	46	18	63	46	61	48	16	22	63	85		73		
Asbestos	Asbestos Quantification Total		-	-								-	-			
	Asbestos fibres		0	-	-	-	-	0	-	-	-	0	0	0		
Inorganics	Chloride		36.9	3.8	50.9	-	266	-	-	-	-	51.9	-	41.6		
DALL	Orthophosphate as P		5.8	0.32	7	-	0.16	-	-	-	-	<0.1	-	<0.1		
РАП	Nanhthalene	1000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.3	-	0.93		
	Acenaphthene	84000**	<0.04	<0.03	< 0.03	<0.03	<0.03	< 0.03	< 0.03	<0.03	<0.03	<0.04	_	< 0.03		
	Acenaphthylene	83000**	-	-	-	-	-	-	-	-	-	-	-	-		
	Fluoranthene	23000	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	<0.03	< 0.03	0.04	0.06	-	0.13		
	Phenanthrene	22000	0.04	<0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	< 0.03	0.03	0.08	-	0.05		
	Fluorene	63000**	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	-	< 0.03		
	Pyrene Denze (a) anthronome	54000	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.05	-	0.12		
	Benzo(b)fluoranthene	170	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	<0.03	-	0.07		
	Benzo(k)fluoranthene	1200	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03		0.08		
	Benzo(a)pyrene	77	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	-	0.11		
	Dibenz(a,h)anthracene	3.5	< 0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	< 0.03	< 0.03	< 0.03	-	<0.03		
	Benzo(g,h,i)perylene	3900	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	-	0.08		
	Indeno(1,2,3-c,d)pyrene	500	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	-	0.05		
IPH CWG	>C5-EC6 Aliphatics	7000**	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	-	< 0.01		
	>C8-C10 Aliphatics	2000**	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	-	< 0.01		
	>C10-C12 Aliphatics	9700**	<1.5	2.01	<1.5	<1.5	<1.5	1.86	2.41	3.77	2.62	<1.5	-	<1.5		
	>C12-C16 Aliphatics	59000**	-	-	-	-	<1.2	2.07	3.01	5.4	3.32	<1.2	-	<1.2		
	>C16-C21 Aliphatics		<1.5	3.36	<1.5	<1.5	<1.5	<1.5	1.99	3.79	2.28	<1.5	-	1.8		
	>C21-C35 Aliphatics		<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	-	12		
	10tal >C5 - C40 Aliphatics	26000**	-	-	-	-	13.48	12.72	15.82	21.62	17.07	<10	-			
	>EC7-EC8 Aromatics	56000**	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	-	< 0.01		
	>EC8-EC10 Aromatics	3500**	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01		< 0.01		
	>EC10-EC12 Aromatics	16000**	<0.9	<0.9	<0.9	< 0.9	< 0.9	<0.9	<0.9	<0.9	<0.9	<0.9	-	< 0.9		
	>EC12-EC16 Aromatics	36000**	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	-	<0.5		
	>EC16-EC21 Aromatics	28000	1.33	1.07	1.57	1.1	1.16	2.33	2.7	18.29	16.43	<0.6	-	<0.6		
	>EC21-EC35 Aromatics	28000	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	<1.4	-	<1.4		
	>EC40_EC44 Aromatics		< 1.4	< 1.4	< .4	< .4	< [.4]	< 1.4	<1.4	<1.4	< 1.4	-	-	-		
	Total >FC5 - FC40 Aromatics		-	-	_	-	- <10	<10	<10	23.66	21.91	<10	_	- <10		
	Total Aliphatics + Aromatics (>C5 - C40)		-	-	-	-	19.8	19.51	23.73	45.28	38.98	<10	-	16		
BTEX and	Benzene		<0.01 - 0.008	< 0.002	-	< 0.002	-	< 0.002	-	-	-	<0.002	-	< 0.002		
МТВЕ	Toluene		<0.01 - 0.01	< 0.005	-	<0.005	-	<0.005	-	-	-	<0.005	-	<0.005		
	Ethylbenzene		<0.01 - 0.006	< 0.002	-	<0.002	-	< 0.002	-	-	-	<0.002	-	<0.002		
	Xylene (m & p)		<0.01	-	-	-	-	-	-	-	-	-	-	-		
	Xylene Total			~0.002	-	~0.002	-	~0.002	-	-		~0.002	-	~0.002		
	MTBE		< 0.005	< 0.005	_	< 0.005	-	< 0.005	-	-	-	< 0.005	-	< 0.005		
				-					I							

			F-BH125	F-BH125	F-BH125	F-BH125	F-BH125	F-BH128	F-BH128	F-BH128	F-BH128	F-TP112	F-TP112	F-TP112
Chemical		Redcar Remediation	4.8	5.3	6.3	11.8	14.8	3.9	4.9	8.5	13.5	0.3	1	2
Group	Compound	Criteria - Soil	04/08/2022	04/08/2022	04/08/2022	05/08/2022	05/08/2022	28/07/2022	28/07/2022	28/07/2022	29/07/2022	26/09/2022	26/09/2022	26/09/2022
			GMG	TED	TED	TED	GT	GMG	TED	TED	TED	GMG	GMG	GMG
voc	Styrene		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	cis-1,3-dichloropropene		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	trans-1,3-dichloropropene		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	1,1,1,2-tetrachloroethane		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	1,1,1-trichloroethane		<0.01	-	-	-	-	-	-	-	-	-	-	-
	1,1,2-UICHIOFOEthane		<0.01	-	-	-	-	-	-	-	-	-	-	-
	1 1-dichloroethene		<0.01	_					-	-		-	_	
	1 1-dichloropropene		<0.01											
	1 2 3-trichloropropane		<0.01	-	_	_	-		_	_	-	_	-	-
	1.2.4-trimethylbenzene		< 0.01	-	_	_	-	_	_	-	_	-	_	-
	1.2-dibromo-3-chloropropane		< 0.01	-	_	_	_	-	_	-	_	-	-	_
	1,2-dibromoethane		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	1,2-dichloroethane		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	1,2-dichloropropane		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	1,3,5-trimethylbenzene		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	1,3-dichloropropane		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	2,2-dichloropropane		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	2-chlorotoluene		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	4-chlorotoluene		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	Bromobenzene		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	Bromochloromethane		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	Bromodichloromethane		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	Bromoform		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	Carbon tetrachloride		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	Chlorodibromomethane		<0.01	-	-	-	-	-	-	-	-	-	-	-
	Chloroform		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	cis-1,2-dichloroethene		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	Dibromomethane		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	Isopropylbenzene		< 0.01	-	-	-	-	-	-	-	-	-	-	-
			<0.01	-	-	-	-	-	-	-	-	-	-	-
			<0.01	-	-	-	-	-	-	-	-	-	-	-
			<0.01	-	-	-	-	-	-	-	-	-	-	-
	Trichloroethene		<0.01	-	-	-	-	-	-	-	-	-	-	-
	tert hut/benzene		<0.01	-	-	-	-	-	-		-	-	-	-
	Tetrachloroothono		<0.01	-	-	-	-	-	-	-	-	-	-	_
	trans_1 2-dichloroethene		<0.01	_					-	-		-	_	
	Vinvl chloride		<0.01											
	tert-Amyl methyl ether		<0.005	<0.005		<0.005		<0.005				<0.005	-	<0.005
VOC/SVOC	1 2 3-trichlorobenzene		<0.01	-0.000		-0.000		-0.000				-0.000		-0.000
	1.2.4-trichlorobenzene		<0.01	_		_	_						_	_
	1.2-dichlorobenzene		< 0.01	-	-	-	-	_	_	_	-	_	-	-
	1 3-dichlorobenzene		< 0.01	-	-	-	-	_	_	-	-	_	-	-
	1.4-dichlorobenzene		< 0.01	-	_	_	-	-	-	-	_	_	_	_
	Chlorobenzene		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	Hexachlorobutadiene		< 0.01	-	-	-	-	-	-	-	-	-	-	-

			F-BH125	F-BH125	F-BH125	F-BH125	F-BH125	F-BH128	F-BH128	F-BH128	F-BH128	F-TP112	F-TP112	F-TP112
Chemical	0	Redcar Remediation	4.8	5.3	6.3	11.8	14.8	3.9	4.9	8.5	13.5	0.3	1	2
Group	Compound	Criteria - Soil	04/08/2022	04/08/2022	04/08/2022	05/08/2022	05/08/2022	28/07/2022	28/07/2022	28/07/2022	29/07/2022	26/09/2022	26/09/2022	26/09/2022
			GMG	TED	TED	TED	ст	GMG	TED	TED	TED	GMG	GMG	GMG
			GING	iii b	IID		61	GIMG	iii b			GING	GIMG	GIMG
SVOC	1,4-dinitrobenzene		<0.1	-	-	-	-	-	-	-	-	-	-	-
	Benzyl alcohol		<0.1	-	-	-	-	-	-	-	-	-	-	-
	4-bromophenyl phenyl ether		<0.1	-	-	-	-	-	-	-	-	-	-	-
	4-nitroaniline		<0.1	-	-	-	-	-	-	-	-	-	-	-
	4-nitrophenol		<0.1	-	-	-	-	-	-	-	-	-	-	-
	1,2-Dinitrobenzene		<0.1	-	-	-	-	-	-	-	-	-	-	-
	1,3-Dinitrobenzene		<0.1	-	-	-	-	-	-	-	-	-	-	-
	2,3,4,6-tetrachlorophenol		<0.1	-	-	-	-	-	-	-	-	-	-	-
	2,3,5,6-Tetrachlorophenol		<0.1	-	-	-	-	-	-	-	-	-	-	-
	2,4,5-trichlorophenol		<0.1	-	-	-	-	-	-	-	-	-	-	-
	2,4,6-trichlorophenol		<0.1	-	-	-	-	-	-	-	-	-	-	-
	2,4-dichlorophenol		<0.1	-	-	-	-	-	-	-	-	-	-	-
	2,4-dimethylphenol		<0.1	-	-	-	-	-	-	-	-	-	-	-
	2,4-dinitrotoluene		<0.1	-	-	-	-	-	-	-	-	-	-	-
	2,6-dichlorophenol		-	-	-	-	-	-	-	-	-	-	-	-
	2,6-Dimethylphenol		-	-	-	-	-	-	-	-	-	-	-	-
	2,6-dinitrotoluene		<0.1	-	-	-	-	-	-	-	-	-	-	-
	2-chloronaphthalene		<0.1	-	-	-	-	-	-	-	-	-	-	-
	2-chlorophenol		<0.1	-	-	-	-	-	-	-	-	-	-	-
	2-methylnaphthalene		<0.1	-	-	-	-	-	-	-	-	-	-	-
	2-methylphenol		<0.1	-	-	-	-	-	-	-	-	-	-	-
	2-nitroaniline		<0.1	-	-	-	-	-	-	-	-	-	-	-
	3-nitroaniline		<0.1	-	-	-	-	-	-	-	-	-	-	-
	4,6-Dinitro-2-methylphenol		<0.1	-	-	-	-	-	-	-	-	-	-	-
	4-chlorophenyl phenyl ether		<0.1	-	-	-	-	-	-	-	-	-	-	-
	4-methylphenol		-	-	-	-	-	-	-	-	-	-	-	-
	Azobenzene		<0.1	-	-	-	-	-	-	-	-	-	-	-
	Bis(2-chloroethoxy) methane		<0.1	-	-	-	-	-	-	-	-	-	-	-
	Bis(2-chloroisopropyl) ether		<0.1	-	-	-	-	-	-	-	-	-	-	-
	Bis(2-ethylhexyl) phthalate		<0.1	-	-	-	-	-	-	-	-	-	-	-
	Butyl benzyl phthalate		<0.1	-	-	-	-	-	-	-	-	-	-	-
	Carbazole		<0.1	-	-	-	-	-	-	-	-	-	-	-
	Dibenzofuran		<0.1	-	-	-	-	-	-	-	-	-	-	-
	Diethylphthalate		<0.1	-	-	-	-	-	-	-	-	-	-	-
	Dimethyl phthalate		<0.1	-	-	-	-	-	-	-	-	-	-	-
	Di-n-butyl phthalate		<0.1	-	-	-	-	-	-	-	-	-	-	-
	Di-n-octyl phthalate		<0.1	-	-	-	-	-	-	-	-	-	-	-
	Diphenylamine		<0.1	-	-	-	-	-	-	-	-	-	-	-
	Hexachlorobenzene		<0.1	-	-	-	-	-	-	-	-	-	-	-
	Hexachlorocyclopentadiene		<0.1	-	-	-	-	-	-	-	-	-	-	-
	Pentachlorophenol		<0.1	-	-	-	-	-	-	-	-	-	-	-

			F-BH125	F-BH125	F-BH125	F-BH125	F-BH125	F-BH128	F-BH128	F-BH128	F-BH128	F-TP112	F-TP112	F-TP112
Chemical	0 annual d	Redcar Remediation	4.8	5.3	6.3	11.8	14.8	3.9	4.9	8.5	13.5	0.3	1	2
Group	Compound	Criteria - Soil	04/08/2022	04/08/2022	04/08/2022	05/08/2022	05/08/2022	28/07/2022	28/07/2022	28/07/2022	29/07/2022	26/09/2022	26/09/2022	26/09/2022
			GMG	TFD	TFD	TFD	GT	GMG	TFD	TFD	TFD	GMG	GMG	GMG
РСВ	Heptachlorobiphenyl, 2,3,3,4,4,5,5- (PCB 189)		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	Hexachlorobiphenyl, 2,3,3,4,4,5- (PCB 156)		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	Hexachlorobiphenyl, 2,3,4,4,5,5- (PCB 167)		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	Hexachlorobiphenyl, 3,3,4,4,5,5- (PCB 169)		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	PCB 101		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	PCB 118		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	PCB 138		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	PCB 153		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	PCB 180		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	PCB 28 + PCB 31		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	PCB 52		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	Pentachlorobiphenyl, 2,3,3,4,4- (PCB 105)		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	Pentachlorobiphenyl, 2,3,4,4,5- (PCB 114)		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	Pentachlorobiphenyl, 2,3,4,4,5- (PCB 123)		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	Pentachlorobiphenyl, 3,3,4,4,5- (PCB 126)		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	Tetrachlorobiphenyl, 3,3,4,4- (PCB 77)		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	Tetrachlorobiphenyl, 3,4,4,5- (PCB 81)		< 0.01	-	-	-	-	-	-	-	-	-	-	-
	Total PCB 7 Congeners		< 0.01	-	-	-	-	-	-	-	-	-	-	-
Phenolics	3-&4-methylphenol		<0.1	-	-	-	-	-	-	-	-	-	-	-
	Phenol		<0.1	<0.3	<0.3	< 0.3	< 0.3	<0.3	<0.3	<0.3	<0.3	0.5	-	<0.3
SVOC TIC	Aniline		<0.1	-	-	-	-	-	-	-	-	-	-	-
NA	4-chloro-2-methylphenol		<0.1	-	-	-	-	-	-	-	-	-	-	-
Notes														

0103

Exceeds - Adopted Scre

	Comparison of Measured Concentrations of Co	oC in Soil with GAC (m	r											
			khouse											
			F-TP112	F-TP113	F-TP113	F-TP113	F-TP113	F-TP113	F-TP114	F-TP114	F-TP114	F-TP114	F-TP114	F-BH119
Chemical	Compound	Redcar Remediation	3.7	0.2	0.5	2.5	3.3	4.5	0.3	1	3.3	4	4.3	2.9
Group		Criteria - Soil	26/09/2022	23/09/2022	23/09/2022	23/09/2022	23/09/2022	23/09/2022	22/09/2022	22/09/2022	22/09/2022	22/09/2022	22/09/2022	09/08/2022
			TFD	GMG	GMG	GMG	GMG	TFD	GMG	SMG	GMG	GMG	TFD	GMG
Metals	Aluminium		2200	10,000	-	23,000	13,000	-	-	9900	10,000	4500	2700	8400
	Arsenic	640	8.3	2.5	-	16	39	9.9	-	6.8	16	7	8.1	8.4
	Beryllium	0.40000	0.3	1.2	-	2.9	1.9	< 0.2	-	0.8	1.6	0.5	0.3	0.5
	Boron	240000	0.3	4./	-	1.3	1.2	0.3	-	1.5	1.2	0.9	0.5	1.2
	Chromium (beyavalent)	33	<0.1	<1	-	<1	<1	<1	-	<1	<1	<1	<1	<1
	Chromium	8600	-	-	_	=	-	-		-	=	=	=	=
	Chromium (Trivalent)		22	64	-	150	97	3.8	-	1300	540	310	63	720
	Copper	68000	8	10	-	79	160	6.7	-	52	54	27	14	63
	Iron	-	10,000	8600	-	37,000	73,000	-	-	83,000	55,000	42,000	24,000	96,000
	Lead	2300	15	9.6	-	130	3900	57	-	31	130	61	47	26
	Manganese	- E0*	370	1700	-	4200	2300	-	-	22,000	9300	5700	1800	27,000
	Molybdenum	50	<0.05	14	-	24	3.3	-0.05	-	5.6	<u> </u>	17	0.05	3.1
	Nickel	980	6.1	3	-	15	37	3.1		9.1	19	11	7.4	14
	Selenium	-	<0.5	0.9	-	2.1	<0.5	< 0.5	-	7	2.5	1.9	<0.5	5.9
	Tin		<1	1.2	-	11	24	-	-	6.4	7	2.4	1.8	4.9
	Zinc	730000	34	19	-	270	1300	56	-	59	140	61	51	54
Asbestos	Asbestos Quantification Total		-	-	-	-	-	-	-	-	-	-	-	-
	Asbestos fibres		-	-	0	0	0	-	0	0	0	-	-	0
inorganics	Chioride Orthophosphoto os P		4.1	25.2	-	50.1	/8.3	-	-	<u>54.9</u>	50.4	0.15	33	70.1
РАН	PAH 16 Total		<0.2	0.39		21	20	<0.1	-	<0.1	29	0.13	0.15	0.25
	Naphthalene	1900	< 0.03	< 0.03	-	0.09	0.07	< 0.03	_	< 0.03	0.03	< 0.03	<0.03	< 0.03
	Acenaphthene	84000**	< 0.03	< 0.03	-	< 0.03	0.06	< 0.03	-	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
	Acenaphthylene	83000**	-	-	-	-	-	-	-	-	-	-	-	-
	Fluoranthene	23000	< 0.03	0.1	-	4.6	5.1	0.03	-	< 0.03	0.47	0.13	0.1	0.15
	Phenanthrene	22000	< 0.03	0.04	-	1.3	2.2	< 0.03	-	< 0.03	0.31	0.09	0.09	0.06
	Fluorene	63000**	< 0.03	< 0.03	-	0.07	0.18	< 0.03	-	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
	Pyrene Benzo(a)anthracene	170	<0.03	0.1	-	3.7	3.9	<0.03	-	<0.03	0.39	0.11	0.09	0.11
	Benzo(b)fluoranthene	44	<0.03	0.04	_	2.2	1.7	<0.03	_	<0.03	0.38	0.1	0.09	0.04
	Benzo(k)fluoranthene	1200	< 0.03	< 0.03	-	1.1	0.74	< 0.03	-	< 0.03	0.18	0.04	0.04	< 0.03
	Benzo(a)pyrene	77	< 0.03	< 0.03	-	1.8	1.2	< 0.03	-	< 0.03	0.19	0.05	0.06	0.03
	Dibenz(a,h)anthracene	3.5	< 0.03	< 0.03	-	0.25	0.15	< 0.03	-	< 0.03	0.03	<0.03	<0.03	<0.03
	Benzo(g,h,i)perylene	3900	< 0.03	< 0.03	-	0.83	0.49	< 0.03	-	< 0.03	0.17	0.04	0.04	< 0.03
	Indeno(1,2,3-c,d)pyrene	500	< 0.03	< 0.03	-	0.88	0.56	< 0.03	-	< 0.03	0.14	0.04	0.03	< 0.03
IPHCWG	>C6 C8 Aliphatics	7800**	<0.01	< 0.01	-	< 0.01	<0.01	<0.01	-	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	>C8-C10 Aliphatics	2000**	<0.01	<0.01		<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01
	>C10-C12 Aliphatics	9700**	<1.5	<1.5	-	<1.5	<1.5	<1.5	_	<1.5	<1.5	<1.5	<1.5	<1.5
	>C12-C16 Aliphatics	59000**	<1.2	<1.2	-	<1.2	<1.2	<1.2	-	<1.2	<1.2	<1.2	<1.2	<1.2
	>C16-C21 Aliphatics		<1.5	<1.5	-	<1.5	<1.5	<1.5	-	<1.5	<1.5	<1.5	<1.5	<1.5
	>C21-C35 Aliphatics		<3.4	<3.4	-	<3.4	<3.4	<3.4	-	<3.4	<3.4	<3.4	<3.4	<3.4
	I OTAL >C5 - C4U Aliphatics	26000**	<10	<10	-	<10	<10	<10	-	<10	<10	<10	<10	11.56
	>FC7-FC8 Aromatics	56000**	<0.01	<0.01		<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01
	>EC8-EC10 Aromatics	3500**	<0.01	<0.01	_	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01
	>EC10-EC12 Aromatics	16000**	< 0.9	< 0.9	-	< 0.9	<0.9	< 0.9	-	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
	>EC12-EC16 Aromatics	36000**	<0.5	<0.5	-	<0.5	<0.5	< 0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5
	>EC16-EC21 Aromatics	28000	<0.6	<0.6	-	7.9	22	<0.6	-	<0.6	<0.6	<0.6	<0.6	3.59
	>EC21-EC35 Aromatics	28000	<1.4	<1.4	-	26	54	<1.4	-	<1.4	<1.4	<1.4	<1.4	<1.4
	>EC35 - EC40 Aromatics		-	-	-	-	-	-	-	-	-	-	-	<1.4
	Total SEC5 - EC40 Aromatics		- <10		-	- 2/	- 76		-	-	- 10	10	10	10
	Total Aliphatics + Aromatics (>C5 - C40)		<10	<10	-	34	76	<10	-	<10	<10	<10	<10	19.59
BTEX and	Benzene			0.041	-	<0.002	-			0.04	- 10	0.041	- 10	-
MTBE	Toluene		-	0.012	-	< 0.085	-	-		0.011	-	0.012	-	-
	Ethylbenzene		-	0.041	-	< 0.002	-	-	-	0.038	-	0.124	-	-
	Xylene (m & p)		-	-	-	-	-	-	-	-	-	-	-	-
	Xylene (o)		-	0.01	-	<0.002	-	-	-	0.011	-	0.026	-	-
	Xyiene I otal		-	-	-	-	-	-	-	-	-	-	-	-
	INIDE		-	<0.005	-	<0.005	-	-	-	<0.005	-	<0.005	-	-

			F-TP112	F-TP113	F-TP113	F-TP113	F-TP113	F-TP113	F-TP114	F-TP114	F-TP114	F-TP114	F-TP114	F-BH119
Chemical		Redcar Remediation	3.7	0.2	0.5	2.5	3.3	4.5	0.3	1	3.3	4	4.3	2.9
Group	Compound	Criteria - Soil	26/09/2022	23/09/2022	23/09/2022	23/09/2022	23/09/2022	23/09/2022	22/09/2022	22/09/2022	22/09/2022	22/09/2022	22/09/2022	09/08/2022
			TFD	GMG	GMG	GMG	GMG	TFD	GMG	SMG	GMG	GMG	TFD	GMG
VOC	Styrene		-	-	-	-	-	-	-	-	-	-	-	-
	cis-1,3-dichloropropene		-	-	-	-	-	-	-	-	-	-	-	-
	trans-1,3-dichloropropene		-	-	-	-	-	-	-	-	-	-	-	-
	1,1,1,2-tetrachloroethane		-	-	-	-	-	-	-	-	-	-	-	-
	1,1,1-trichloroethane		-	-	-	-	-	-	-	-	-	-	-	-
	1,1,2-trichloroethane		-	-	-	-	-	-	-	-	-	-	-	-
	1,1-dichloroethane		-	-	-	-	-	-	-	-	-	-	-	-
	1,1-dichloroethene		-	-	-	-	-	-	-	-	-	-	-	-
	1,1-dichloropropene		-	-	-	-	-	-	-	-	-	-	-	-
	1,2,3-trichloropropane		-	-	-	-	-	-	-	-	-	-	-	-
	1,2,4-trimethylbenzene		-	-	-	-	-	-	-	-	-	-	-	-
	1,2-dibromo-3-chloropropane		-	-	-	-	-	-	-	-	-	-	-	-
	1,2-dibromoethane		-	-	-	-	-	-	-	-	-	-	-	-
	1,2-dichloroethane		-	-	-	-	-	-	-	-	-	-	-	-
	1,2-dichloropropane		-	-	-	-	-	-	-	-	-	-	-	-
	1,3,5-trimethylbenzene		-	-	-	-	-	-	-	-	-	-	-	-
	1,3-dichloropropane		-	-	-	-	-	-	-	-	-	-	-	-
	2,2-dichloropropane		-	-	-	-	-	-	-	-	-	-	-	-
	2-chlorotoluene		-	-	-	-	-	-	-	-	-	-	-	-
	4-chlorotoluene		-	-	-	-	-	-	-	-	-	-	-	-
	Bromobenzene		-	-	-	-	-	-	-	-	-	-	-	-
	Bromochloromethane		-	-	-	-	-	-	-	-	-	-	-	-
	Bromodichloromethane		-	-	-	-	-	-	-	-	-	-	-	-
	Bromotorm		-	-	-	-	-	-	-	-	-	-	-	-
	Carbon tetrachloride		-	-	-	-	-	-	-	-	-	-	-	-
	Chlorodibromomethane		-	-	-	-	-	-	-	-	-	-	-	-
	Chloroform		-	-	-	-	-	-	-	-	-	-	-	-
	cis-1,2-dichloroethene		-	-	-	-	-	-	-	-	-	-	-	-
	Dibromomethane		-	-	-	-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	-	-	-	-	-	-
	Triphleroothono		-	-	-	-	-	-	-	-	-	-	-	-
	tert hut/benzene		-	-	-	-	-	-	-	-	-	-	-	-
	Totrophoroothono		-	-	-	-	-	-	-	-	-	-	-	-
	trans 1.2 dichloroothono		-	-	-	-	-	-	-	-	-	-	-	-
	Vinul ablarida		-	-	-	-	-	-	-	-	-	-	-	-
	tert-Amyl methyl ether			<0.005		<0.005		-	-	<0.005		-	-	
VOC/SVOC	1.2.3-trichlorobenzene		-	~0.005	-	~0.005	-	-	-	~0.005	-	~0.005	-	-
100/3100	1.2.4_trichlorobenzene							-	-	-		-	-	
	1.2-dichlorobenzene		-	-	-	-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	-	-	-	-	-	-
	Chlorobenzene		-	-	-	-	-	-	-	-	-	-	-	-
	Heyachlorobutadiene		-	-	-	-	-	-	-	-	-	-	-	-
			-	-	-	-	-	-	-	-	-	-	-	-

			F-TP112	F-TP113	F-TP113	F-TP113	F-TP113	F-TP113	F-TP114	F-TP114	F-TP114	F-TP114	F-TP114	F-BH119
Chemical		Redcar Remediation	3.7	0.2	0.5	2.5	3.3	4.5	0.3	1	3.3	4	4.3	2.9
Group	Compound	Criteria - Soil	26/09/2022	23/09/2022	23/09/2022	23/09/2022	23/09/2022	23/09/2022	22/09/2022	22/09/2022	22/09/2022	22/09/2022	22/09/2022	09/08/2022
			TFD	GMG	GMG	GMG	GMG	TFD	GMG	SMG	GMG	GMG	TFD	GMG
SVOC	1,4-dinitrobenzene		-	-	-	-	-	-	-	-	-	-	-	-
	Benzyl alcohol		-	-	-	-	-	-	-	-	-	-	-	-
	4-bromophenyl phenyl ether		-	-	-	-	-	-	-	-	-	-	-	-
	4-nitroaniline		-	-	-	-	-	-	-	-	-	-	-	-
	4-nitrophenol		-	-	-	-	-	-	-	-	-	-	-	-
	1,2-Dinitrobenzene		-	-	-	-	-	-	-	-	-	-	-	-
	1,3-Dinitrobenzene		-	-	-	-	-	-	-	-	-	-	-	-
	2,3,4,6-tetrachlorophenol		-	-	-	-	-	-	-	-	-	-	-	-
	2,3,5,6-Tetrachlorophenol		-	-	-	-	-	-	-	-	-	-	-	-
	2,4,5-trichlorophenol		-	-	-	-	-	-	-	-	-	-	-	-
	2,4,6-trichlorophenol		-	-	-	<0.01	-	-	-	<0.01	-	-	-	-
	2,4-dichlorophenol		-	-	-	<0.01	-	-	-	<0.01	-	-	-	-
	2,4-dimethylphenol		-	-	-	<0.01	-	-	-	< 0.01	-	-	-	-
	2,4-dinitrotoluene		-	-	-	-	-	-	-	-	-	-	-	-
	2,6-dichlorophenol		-	-	-	< 0.01	-	-	-	< 0.01	-	-	-	-
	2,6-Dimethylphenol		-	-	-	<0.01	-	-	-	< 0.01	-	-	-	-
	2,6-dinitrotoluene		-	-	-	-	-	-	-	-	-	-	-	-
	2-chloronaphthalene		-	-	-	-	-	-	-	-	-	-	-	-
	2-chlorophenol		-	-	-	-	-	-	-	-	-	-	-	-
	2-methylnaphthalene		-	-	-	-	-	-	-	-	-	-	-	-
	2-methylphenol		-	-	-	-	-	-	-	-	-	-	-	-
	2-nitroaniline		-	-	-	-	-	-	-	-	-	-	-	-
	3-nitroaniline		-	-	-	-	-	-	-	-	-	-	-	-
	4,6-Dinitro-2-methylphenol		-	-	-	-	-	-	-	-	-	-	-	-
	4-chlorophenyl phenyl ether		-	-	-	-	-	-	-	-	-	-	-	-
	4-methylphenol		-	-	-	< 0.01	-	-	-	< 0.01	-	-	-	-
	Azobenzene		-	-	-	-	-	-	-	-	-	-	-	-
	Bis(2-chloroethoxy) methane		-	-	-	-	-	-	-	-	-	-	-	-
	Bis(2-chloroisopropyl) ether		-	-	-	-	-	-	-	-	-	-	-	-
	Bis(2-ethylhexyl) phthalate		-	-	-	-	-	-	-	-	-	-	-	-
	Butyl benzyl phthalate		-	-	-	-	-	-	-	-	-	-	-	-
	Carbazole		-	-	-	-	-	-	-	-	-	-	-	-
	Dibenzofuran		-	-	-	-	-	-	-	-	-	-	-	-
	Diethylphthalate		-	-	-	-	-	-	-	-	-	-	-	-
	Dimethyl phthalate		-	-	-	-	-	-	-	-	-	-	-	-
	Di-n-butyl phthalate		-	-	-	-	-	-	-	-	-	-	-	-
	Di-n-octyl phthalate		-	-	-	-	-	-	-	-	-	-	-	-
	Diphenylamine		-	-	-	-	-	-	-	-	-	-	-	-
	Hexachlorobenzene		-	-	-	-	-	-	-	-	-	-	-	-
	Hexachlorocyclopentadiene		-	-	-	-	-	-	-	-	-	-	-	-
	Pentachlorophenol		-	-	-	-	-	-	-	-	-	-	-	-

			F-TP112	F-TP113	F-TP113	F-TP113	F-TP113	F-TP113	F-TP114	F-TP114	F-TP114	F-TP114	F-TP114	F-BH119
Chemical	Commonwed	Redcar Remediation	3.7	0.2	0.5	2.5	3.3	4.5	0.3	1	3.3	4	4.3	2.9
Group	Compound	Criteria - Soil	26/09/2022	23/09/2022	23/09/2022	23/09/2022	23/09/2022	23/09/2022	22/09/2022	22/09/2022	22/09/2022	22/09/2022	22/09/2022	09/08/2022
			TFD	GMG	GMG	GMG	GMG	TFD	GMG	SMG	GMG	GMG	TFD	GMG
DCP	Hantachlarabinhanyl 2.2.2.4.4.5.5 (DCR 180)					<0.01								
FCB	Heycohlerohiphenyl 222445 (PCB 169)		-	-	-	<0.01	-	-	-	-	-	-	-	-
	Hexachlorobiphenyl, 2,3,3,4,4,5- (FCB 150)		-	-	-	<0.01	-	-	-	-	-	-	-	-
	Hexachiolopiphenyl, $2,3,4,4,5,5$ - (PCB 107)		-	-	-	<0.01	-	-	-	-	-	-	-	-
	DCP 101		-	-	-	<0.01	-	-	-	-	-	-	-	-
			-	-	-	<0.01	-	-	-	-	-	-	-	-
			-	-	-	<0.01	-	-	-	-	-	-	-	-
	PCB 150		-	-	-	<0.01	-	-	-	-	-	-	-	-
	PCD 133		-	-	-	<0.01	-	-	-	-	-	-	-	-
			-	-	-	<0.01	-	-	-	-	-	-	-	-
			-	-	-	<0.01	-	-	-	-	-	-	-	-
	PCD 52 Dentechlershiphenyd 2.2.2.4.4 (DCD 405)		-	-	-	<0.01	-	-	-	-	-	-	-	-
	Pentachiorobiphenyl, 2,3,3,4,4- (PCB 105)		-	-	-	<0.01	-	-	-	-	-	-	-	-
	Pentachiorobiphenyl, 2,3,4,4,5- (PCB 114)		-	-	-	< 0.01	-	-	-	-	-	-	-	-
	Pentachiorobiphenyl, 2,3,4,4,5- (PCB 123)		-	-	-	< 0.01	-	-	-	-	-	-	-	-
	Tetrachioropiphenyl, 3,3,4,4,5- (PCB 120)		-	-	-	< 0.01	-	-	-	-	-	-	-	-
	Tetrachiorobiphenyl, 3,3,4,4- (PCB 77)		-	-	-	< 0.01	-	-	-	-	-	-	-	-
	Tetrachiorobiphenyl, 3,4,4,5- (PCB 81)		-	-	-	< 0.01	-	-	-	-	-	-	-	-
Dhanallaa	10tal PCB / Congeners		-	-	-	<0.01	-	-	-	-	-	-	-	-
Phenolics			-	-	-	-	-	-	-	-	-	-	-	-
	Phenoi Anilina		<0.3	< 0.3	-	< 0.01	<0.3	<0.3	-	<0.01	<0.3	<0.3	<0.3	<0.3
	Aniline		-	-	-	-	-	-	-	-	-	-	-	-
NA	4-chioro-2-methylphenol		-	-	-	< 0.01	-	-	-	<0.01	-	-	-	-
Notes														

Exceeds - Adopted Scre

Appendix H : C	Comparison of Measured Concentrations of Co	oC in Soil with GAC (mo												
			F-BH119	F-BH119	LWW-TP5	LWW-TP5	LWW-TP5	F-TP120	F-TP120	F-TP120	F-TP120	F-TP120	F-TP121	F-TP121
Chemical	Compound	Redcar Remediation	4.3	12.9	2	4	1	0	0.5	1.5	2.3	3	0	0.5
Group		Criteria - Soli	09/06/2022	10/06/2022	00/12/2022	00/12/2022	06/12/2022	00/10/2022	00/10/2022	00/10/2022	00/10/2022	06/10/2022	06/10/2022	00/10/2022
			IFD	GI				GMG	GMG	GMG	GMG	GMG	GMG	GMG
Metals	Aluminium	640	1200	-	29580	42860	62430	4400	5000	-	5800	5200		10,000
	Beryllium	040	9.5	1.3	12.9	48.3	11.0	4	3.8 0.3	-	0.4	4.0	-	0.1
	Boron	240000	<0.2	6.3	3.1	5.1	2.2	1.7	1.8		1.8	2.2	-	0.7
	Cadmium	190	<0.1	<0.1	0.7	1.6	0.2	0.4	0.3	-	0.5	0.4	-	0.1
	Chromium (hexavalent)	33	<1	<1	<0.3	<0.3	<0.3	<1	<1	-	<1	<1	-	<1
	Chromium	8600	-	-	805.2	130.7	115.4	-	-	-	-	-	-	-
	Chromium (Trivalent)	69000	4./	35	-	- 120	- 24	1/0	940	-	<u> </u>	810	-	48
	Iron	00000	7300	21	132600	93510	24 96870	25,000	42	-	130,000	47	-	38,000
	Lead	2300	21	18	78	247	36	100	20		30	33		14
	Manganese	-	200	-	17700	3744	5244	3100	20,000	-	22,000	19,000	-	1000
	Mercury	58*	< 0.05	< 0.05	<0.1	0.2	<0.1	0.05	< 0.05	-	0.08	0.1	-	< 0.05
	Molybdenum		0.4	-	3.6	3	1.4	1.7	6.3	-	6.8	5.3		1.2
	Nickel	980	2.9	35	29.1	54.8	19.8	8.1	11	-	23	14		23
		-	<0.5	<0.5	4	3	3	6	5.9	-	0. <i>1</i>	5.5 0.7	-	<0.5
	Zinc	730000	31	63	247	598	109	160	49	-	56	86	-	54
Asbestos	Asbestos Quantification Total	100000	-	-	-	-	-	-	=	-	-	-	-	-
	Asbestos fibres		-	-	0	0	1	0	0	0	0	-	0	0
Inorganics	Chloride		33.2	-	183	111	140	63.5	79.9	-	70.1	61.8	-	20.1
DALL	Orthophosphate as P		0.12	-	-	-	-	<0.1	0.41	-	0.13	0.35	-	0.12
PAH	PAH 16 10tal	1000	<0.1	<0.1	-	-	-	98	18	-	0.62	0.24	-	<0.1
	Acenaphthene	84000**	<0.03	<0.03	<0.027 - 0.18	<0.027 = 0.13	<0.027 = 0.03	16	0.04		<0.03	<0.03		<0.03
	Acenaphthylene	83000**	-	-	0.24	0.14	< 0.03	-	-	-	-	-	-	-
	Fluoranthene	23000	<0.03	< 0.03	1.26	1.88	0.14	12	3.5	-	0.13	0.08	-	0.04
	Phenanthrene	22000	<0.03	<0.03	0.75	1.01	0.11	15	0.95	-	0.07	0.13	-	<0.03
	Fluorene	63000**	< 0.03	< 0.03	0.1	0.07	< 0.04	3.4	0.06	-	< 0.03	<0.03	-	< 0.03
	Pyrene Ponze(a)anthracana	54000	< 0.03	<0.03	1.08	1.66	0.12	12	3.3	-	0.1	0.04	-	< 0.03
	Benzo(h)fluoranthene	44	<0.03	<0.03	0.07	1.32	0.1	69	2		0.04	<0.03		<0.03
	Benzo(k)fluoranthene	1200	< 0.03	< 0.03	0.38	0.52	0.04	3.5	0.79	_	0.03	< 0.03	-	< 0.03
	Benzo(a)pyrene	77	< 0.03	<0.03	0.73	0.4 - 0.95	<0.04	6.6	2	-	0.05	<0.03	-	< 0.03
	Dibenz(a,h)anthracene	3.5	<0.03	<0.03	0.12	0.14	<0.04	0.52	0.13	-	<0.03	< 0.03	-	< 0.03
	Benzo(g,h,i)perylene	3900	< 0.03	< 0.03	0.51	0.64	0.08	2.8	0.79	-	0.03	< 0.03	-	< 0.03
	Indeno(1,2,3-c,d)pyrene	500	< 0.03	< 0.03	0.55	0.73	0.08	2.4	0.6	-	0.03	<0.03	-	<0.03
IFICWO	>C6-C8 Aliphatics	7800**	<0.01	<0.01	<0.1	<0.1	<0.1	<0.04	<0.01		<0.01	<0.01		<0.01
	>C8-C10 Aliphatics	2000**	< 0.01	< 0.01	<0.1	<0.1	<0.1	< 0.01	< 0.01	-	< 0.01	< 0.01	-	< 0.01
	>C10-C12 Aliphatics	9700**	<1.5	<1.5	<0.2	<0.2	1.9	<1.5	<1.5	-	<1.5	<1.5	-	<1.5
	>C12-C16 Aliphatics	59000**	<1.2	<1.2	<4	<4	14	<1.2	<1.2	-	<1.2	<1.2		<1.2
	>C16-C21 Aliphatics		<1.5	<1.5	<7	<7	41	<1.5	2.4	-	<1.5	<1.5		<1.5
	Total >C5 - C40 Aliphatics		<3.4 13.1	<3.4 13.54	20	00	158	<3.4	10 24	-	<3.4	<3.4	-	< 3.4
	>EC5-EC7 Aromatics	26000**	<0.01	<0.01	<0.1	<0.1	<0.1	<0.01	<0.01	-	<0.01	< 0.01	-	<0.01
	>EC7-EC8 Aromatics	56000**	< 0.01	< 0.01	<0.1	<0.1	<0.1	< 0.01	< 0.01	-	< 0.01	< 0.01	-	< 0.01
	>EC8-EC10 Aromatics	3500**	<0.01	<0.01	<0.1	<0.1	<0.1	<0.01	<0.01	-	< 0.01	< 0.01	-	< 0.01
	>EC10-EC12 Aromatics	16000**	<0.9	<0.9	<0.2	<0.2	<0.2	<0.9	<0.9	-	<0.9	<0.9	-	<0.9
	>EC12-EC16 Aromatics	36000**	<0.5	<0.5	<4	7	<4	24	<0.5	-	< 0.5	< 0.5	-	< 0.5
	>EC10-EC21 Aromatics	28000	3.90	4.04	27 82	42	57	30	2.7	-	<0.0	<0.0		<0.0
	>EC35 - EC40 Aromatics	20000	<1.4	<1.4	-	-			-	-			-	
	>EC40-EC44 Aromatics		-	-	-	-	-	-	-	-	-	-	-	-
	Total >EC5 - EC40 Aromatics		<10	<10	-	-	-	89	<10	-	<10	<10	-	<10
	Total Aliphatics + Aromatics (>C5 - C40)		22.08	22.78	-	-	-	90	31	-	<10	<10		<10
BTEX and	Benzene		-	-	< 0.003	< 0.003	< 0.003	-	< 0.002	-	< 0.002	-		< 0.002
WIBE	Ethylbenzene		-	-	<0.003	<0.003	<0.003	-	<0.005	-	<0.005	-		<0.005
	Xylene (m & p)		-	-	< 0.005	< 0.005	<0.005 - 0.011	-	-0.002	-	-0.002	-	-	-0.002
	Xylene (o)		-	-	< 0.003	< 0.003	< 0.003	-	< 0.002	-	< 0.002	-	-	< 0.002
	Xylene Total		-	-	-	-	-	-	-	-	-	-	-	-
	МТВЕ		-	-	< 0.002	<0.002	< 0.002	-	<0.005	-	< 0.005	-	-	< 0.005

			F-BH119	F-BH119	LWW-TP5	LWW-TP5	LWW-TP5	F-TP120	F-TP120	F-TP120	F-TP120	F-TP120	F-TP121	F-TP121
Chemical		Redcar Remediation	4.3	12.9	2	4	1	0	0.5	1.5	2.3	3	0	0.5
Group	Compound	Criteria - Soil	09/08/2022	10/08/2022	06/12/2022	06/12/2022	06/12/2022	06/10/2022	06/10/2022	06/10/2022	06/10/2022	06/10/2022	06/10/2022	06/10/2022
			TFD	GT				GMG						
VOC	Styrene				<0.003	<0.003	<0.003							
VOC	cis_1 3-dichloropropene				< 0.003	<0.003	< 0.003							
	trans-1.3-dichloropropene				<0.004	<0.004	<0.004							
	1 1 1 2-tetrachloroethane		-	_	<0.003	<0.003	<0.003	-	_	-	_	-	_	_
	1,1,1,1,2 totalenerootalane		-	_	< 0.003	< 0.003	< 0.003	_	_	_	_	_	-	_
	1,1,2-trichloroethane		-	-	< 0.003	< 0.003	< 0.003	-	-	-	_	-	-	-
	1.1-dichloroethane		-	-	< 0.003	< 0.003	< 0.003	-	-	-	-	-	-	-
	1.1-dichloroethene		-	-	< 0.006	< 0.006	< 0.006	-	-	-	-	-	-	-
	1.1-dichloropropene		-	-	< 0.003	< 0.003	< 0.003	-	-	-	-	-	-	-
	1,2,3-trichloropropane		-	-	< 0.004	< 0.004	< 0.004	-	-	-	-	-	-	-
	1,2,4-trimethylbenzene		-	-	< 0.006	< 0.006	< 0.006	-	-	-	-	-	-	-
	1,2-dibromo-3-chloropropane		-	-	< 0.004	< 0.004	< 0.004	-	-	-	-	-	-	-
	1,2-dibromoethane		-	-	< 0.003	< 0.003	< 0.003	-	-	-	-	-	-	-
	1,2-dichloroethane		-	-	<0.004	< 0.004	< 0.004	-	-	-	-	-	-	-
	1,2-dichloropropane		-	-	<0.006	<0.006	< 0.006	-	-	-	-	-	-	-
	1,3,5-trimethylbenzene		-	-	< 0.003	< 0.003	< 0.003	-	-	-	-	-	-	-
	1,3-dichloropropane		-	-	< 0.003	< 0.003	< 0.003	-	-	-	-	-	-	-
	2,2-dichloropropane		-	-	< 0.004	< 0.004	< 0.004	-	-	-	-	-	-	-
	2-chlorotoluene		-	-	< 0.003	< 0.003	< 0.003	-	-	-	-	-	-	-
	4-chlorotoluene		-	-	< 0.003	< 0.003	< 0.003	-	-	-	-	-	-	-
	Bromobenzene		-	-	< 0.002	< 0.002	< 0.002	-	-	-	-	-	-	-
	Bromochloromethane		-	-	< 0.003	< 0.003	< 0.003	-	-	-	-	-	-	-
	Bromodichloromethane		-	-	< 0.003	< 0.003	< 0.003	-	-	-	-	-	-	-
	Bromoform		-	-	< 0.003	< 0.003	< 0.003	-	-	-	-	-	-	-
	Carbon tetrachloride		-	-	< 0.004	< 0.004	< 0.004	-	-	-	-	-	-	-
	Chlorodibromomethane		-	-	< 0.003	< 0.003	< 0.003	-	-	-	-	-	-	-
	Chloroform		-	-	< 0.003	< 0.003	< 0.003	-	-	-	-	-	-	-
	cis-1,2-dichloroethene		-	-	< 0.003	< 0.003	< 0.003	-	-	-	-	-	-	-
	Dibromomethane		-	-	< 0.003	< 0.003	< 0.003	-	-	-	-	-	-	-
	Isopropylbenzene		-	-	< 0.003	< 0.003	< 0.003	-	-	-	-	-	-	-
	n-butylbenzene		-	-	<0.004	<0.004	< 0.004	-	-	-	-	-	-	-
	n-propylbenzene		-	-	< 0.004	< 0.004	< 0.004	-	-	-	-	-	-	-
	p-isopropyltoluene		-	-	<0.004	<0.004	< 0.004	-	-	-	-	-	-	-
	sec-butylbenzene		-	-	<0.004	<0.004	< 0.004	-	-	-	-	-	-	-
	Trichloroethene		-	-	< 0.003	< 0.003	< 0.003	-	-	-	-	-	-	-
	tert-butylbenzene		-	-	<0.005	<0.005	< 0.005	-	-	-	-	-	-	-
	Tetrachloroethene		-	-	< 0.003	< 0.003	< 0.003	-	-	-	-	-	-	-
	trans-1,2-dichloroethene		-	-	< 0.003	< 0.003	< 0.003	-	-	-	-	-	-	-
	Vinyl chloride		-	-	< 0.002	<0.002	< 0.002	-	-	-	-	-	-	-
	tert-Amyl methyl ether		-	-	-	-	-	-	< 0.005	-	< 0.005	-	-	< 0.005
VOC/SVOC	1,2,3-trichlorobenzene		-	-	<0.007	< 0.007	< 0.007	-	-	-	-	-	-	-
	1,2,4-trichlorobenzene		-	-	< 0.007	< 0.007	< 0.007	-	-	-	-	-	-	-
	1,2-dichlorobenzene		-	-	<0.004	<0.004	< 0.004	-	-	-	-	-	-	-
	1,3-dichlorobenzene		-	-	<0.004	<0.004	< 0.004	-	-	-	-	-	-	-
	1,4-dichlorobenzene		-	-	<0.004	<0.004	<0.004	-	-	-	-	-	-	-
	Chlorobenzene		-	-	< 0.003	< 0.003	< 0.003	-	-	-	-	-	-	-
	Hexachlorobutadiene		-	-	< 0.004	< 0.004	< 0.004	-	-	-	-	-	-	-

			F-BH119	F-BH119	LWW-TP5	LWW-TP5	LWW-TP5	F-TP120	F-TP120	F-TP120	F-TP120	F-TP120	F-TP121	F-TP121
Chemical	Compound	Redcar Remediation	4.3	12.9	2	4	1	0	0.5	1.5	2.3	3	0	0.5
Group	Compound	Criteria - Soil	09/08/2022	10/08/2022	06/12/2022	06/12/2022	06/12/2022	06/10/2022	06/10/2022	06/10/2022	06/10/2022	06/10/2022	06/10/2022	06/10/2022
			TFD	GT				GMG						
SVOC	1,4-dinitrobenzene		-	-	-	-	-	-	-	-	-	-	-	-
	Benzyl alcohol		-	-	-	-	-	-	-	-	-	-	-	-
	4-bromophenyl phenyl ether		-	-	< 0.01	< 0.01	< 0.01	-	-	-	-	-	-	-
	4-nitroaniline		-	-	< 0.01	< 0.01	< 0.01	-	-	-	-	-	-	-
	4-nitrophenol		-	-	< 0.01	< 0.01	< 0.01	-	-	-	-	-	-	-
	1,2-Dinitrobenzene		-	-	-	-	-	-	-	-	-	-	-	-
	1,3-Dinitrobenzene		-	-	-	-	-	-	-	-	-	-	-	-
	2,3,4,6-tetrachlorophenol		-	-	-	-	-	-	-	-	-	-	-	-
	2,3,5,6-Tetrachlorophenol		-	-	-	-	-	-	-	-	-	-	-	-
	2,4,5-trichlorophenol		-	-	< 0.01	< 0.01	< 0.01	-	-	-	-	-	-	-
	2,4,6-trichlorophenol		-	-	< 0.01	< 0.01	< 0.01	-	< 0.01	-	-	-	-	< 0.01
	2,4-dichlorophenol		-	-	< 0.01	< 0.01	< 0.01	-	< 0.01	-	-	-	-	< 0.01
	2,4-dimethylphenol		-	-	< 0.01	< 0.01	< 0.01	-	< 0.01	-	-	-	-	< 0.01
	2,4-dinitrotoluene		-	-	< 0.01	< 0.01	< 0.01	-	-	-	-	-	-	-
	2,6-dichlorophenol		-	-	-	-	-	-	< 0.01	-	-	-	-	< 0.01
	2,6-Dimethylphenol		-	-	-	-	-	-	< 0.01	-	-	-	-	< 0.01
	2,6-dinitrotoluene		-	-	< 0.01	< 0.01	< 0.01	-	-	-	-	-	-	-
	2-chloronaphthalene		-	-	< 0.01	< 0.01	< 0.01	-	-	-	-	-	-	-
	2-chlorophenol		-	-	< 0.01	< 0.01	< 0.01	-	-	-	-	-	-	-
	2-methylnaphthalene		-	-	0.07	0.22	0.04	-	-	-	-	-	-	-
	2-methylphenol		-	-	< 0.01	< 0.01	<0.01	-	-	-	-	-	-	-
	2-nitroaniline		-	-	< 0.01	< 0.01	< 0.01	-	-	-	-	-	-	-
	3-nitroaniline		-	-	< 0.01	< 0.01	<0.01	-	-	-	-	-	-	-
	4,6-Dinitro-2-methylphenol		-	-	-	-	-	-	-	-	-	-	-	-
	4-chlorophenyl phenyl ether		-	-	< 0.01	< 0.01	< 0.01	-	-	-	-	-	-	-
	4-methylphenol		-	-	< 0.01	< 0.01	< 0.01	-	0.01	-	-	-	-	0.01
	Azobenzene		-	-	< 0.01	< 0.01	< 0.01	-	-	-	-	-	-	-
	Bis(2-chloroethoxy) methane		-	-	<0.01	< 0.01	<0.01	-	-	-	-	-	-	-
	Bis(2-chloroisopropyl) ether		-	-	-	-	-	-	-	-	-	-	-	-
	Bis(2-ethylnexyl) phthalate		-	-	<0.1	<0.1	<0.1	-	-	-	-	-	-	-
	Butyl benzyl phthalate		-	-	<0.1	<0.1	<0.1	-	-	-	-	-	-	-
			-	-	0.04	0.18	0.02	-	-	-	-	-	-	-
	Dibenzoturan		-	-	0.06	0.13	0.03	-	-	-	-	-	-	-
	Dietnylphthalate		-	-	<0.1	<0.1	<0.1	-	-	-	-	-	-	-
	Dimetriyi phthalate		-	-	<0.1	<0.1	<0.1	-	-	-	-	-	-	-
	Di-n-butyl phthalate		-	-	0.3	<0.1	<0.1	-	-	-	-	-	-	-
	Di-h-oclyi phinalale		-	-	<0.1	<0.1	<u.1< th=""><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th></u.1<>	-	-	-	-	-	-	-
			-	-	=	=	-	-	-	-	-	-	-	-
			-	-	<0.01	<0.01	<0.01	-	-	-	-	-	-	-
			-	-	<0.01	<0.01	<0.01	-	-	-	-	-	-	-
	Pentachiorophenol		-	-	<0.01	<0.01	<0.01	-	-	-	-	-	-	-

			F-BH119	F-BH119	LWW-TP5	LWW-TP5	LWW-TP5	F-TP120	F-TP120	F-TP120	F-TP120	F-TP120	F-TP121	F-TP121
Chemical	Commonweak	Redcar Remediation	4.3	12.9	2	4	1	0	0.5	1.5	2.3	3	0	0.5
Group	Compound	Criteria - Soil	09/08/2022	10/08/2022	06/12/2022	06/12/2022	06/12/2022	06/10/2022	06/10/2022	06/10/2022	06/10/2022	06/10/2022	06/10/2022	06/10/2022
			TED	GT				GMG	GMG	GMG	GMG	GMG	GMG	GMG
				Ű,				Child	Child	Child		Cinc	Child	
РСВ	Heptachlorobiphenyl, 2,3,3,4,4,5,5- (PCB 189)		-	-	-	-	-	-	< 0.01	-	-	-	-	< 0.01
	Hexachlorobiphenyl, 2,3,3,4,4,5- (PCB 156)		-	-	-	-	-	-	< 0.01	-	-	-	-	< 0.01
	Hexachlorobiphenyl, 2,3,4,4,5,5- (PCB 167)		-	-	-	-	-	-	< 0.01	-	-	-	-	< 0.01
	Hexachlorobiphenyl, 3,3,4,4,5,5- (PCB 169)		-	-	-	-	-	-	< 0.01	-	-	-	-	< 0.01
	PCB 101		-	-	-	-	-	-	< 0.01	-	-	-	-	< 0.01
	PCB 118		-	-	-	-	-	-	< 0.01	-	-	-	-	< 0.01
	PCB 138		-	-	-	-	-	-	< 0.01	-	-	-	-	< 0.01
	PCB 153		-	-	-	-	-	-	< 0.01	-	-	-	-	< 0.01
	PCB 180		-	-	-	-	-	-	< 0.01	-	-	-	-	< 0.01
	PCB 28 + PCB 31		-	-	-	-	-	-	< 0.01	-	-	-	-	< 0.01
	PCB 52		-	-	-	-	-	-	< 0.01	-	-	-	-	< 0.01
	Pentachlorobiphenyl, 2,3,3,4,4- (PCB 105)		-	-	-	-	-	-	< 0.01	-	-	-	-	< 0.01
	Pentachlorobiphenyl, 2,3,4,4,5- (PCB 114)		-	-	-	-	-	-	< 0.01	-	-	-	-	< 0.01
	Pentachlorobiphenyl, 2,3,4,4,5- (PCB 123)		-	-	-	-	-	-	< 0.01	-	-	-	-	< 0.01
	Pentachlorobiphenyl, 3,3,4,4,5- (PCB 126)		-	-	-	-	-	-	< 0.01	-	-	-	-	< 0.01
	Tetrachlorobiphenyl, 3,3,4,4- (PCB 77)		-	-	-	-	-	-	< 0.01	-	-	-	-	< 0.01
	Tetrachlorobiphenyl, 3,4,4,5- (PCB 81)		-	-	-	-	-	-	< 0.01	-	-	-	-	< 0.01
	Total PCB 7 Congeners		-	-	-	-	-	-	< 0.01	-	-	-	-	< 0.01
Phenolics	3-&4-methylphenol		-	-	-	-	-	-	-	-	-	-	-	-
	Phenol		< 0.3	<0.3	< 0.01	< 0.01	< 0.01	<0.3	<0.3 - 0.02	-	< 0.3	<0.3	-	< 0.01
SVOC TIC	Aniline		-	-	-	-	-	-	-	-	-	-	-	-
NA	4-chloro-2-methylphenol		-	-	-	-	-	-	< 0.01	-	-	-	-	< 0.01
NL 1 1 1														

Notes

Exceeds - Adopted Scre

Appendix H : 0	Comparison of Measured Concentrations of Co	oC in Soil with GAC (m												
						Re	sidual Former I	Redcar Works						
			F-TP121	F-TP121	F-TP121	F-BH102	F-BH102	F-BH102	F-BH102	F-BH102	F-BH104	F-BH104	F-BH104	F-BH104
Chemical	Compound	Redcar Remediation	0.8	1.8	3.8	1	1.5	6.6	8.2	14.5	3	4	5	6
Group		Criteria - Soli	06/10/2022	00/10/2022	00/10/2022	09/09/2022	05/05/2022	09/09/2022	09/09/2022	12/09/2022	11/06/2022	11/06/2022	17/06/2022	17/06/2022
			GMG	GMG	GMG	SMG	SMG	SMG	IFD	IFD	SMG	SMG	SMG	IFD
Metals	Aluminium	640	9900	8800	19,000	49,000	-	-	- 7.5	2500	8900	6500		820
	Beryllium	040	0.9	11	1.9	4.0	-	92	7.5 0.2	<0.2	0.3	29		0.3
	Boron	240000	0.9	1.1	3.2	1.6		8.6	1.2	0.7	1.3	0.7	-	0.3
	Cadmium	190	0.2	0.2	0.4	0.2	-	<0.1	<0.1	<0.1	<0.1	0.2	-	<0.1
	Chromium (hexavalent)	33	<1	<1	<1	<1	-	<1	<1	<1	<1	<1	-	<1
	Chromium	8600	-	-	-	-	-	-	-	-	-	-	-	-
	Chromium (Trivalent)	68000	22	28	36	53	-	5.9	5.2	5.6	35	360	-	3.4
	Iron	-	31,000	20.000	14,000	14,000	-	- 4.5		18,000	94,000	62,000	-	4800
	Lead	2300	23	42	49	12	-	1	34	4.8	13	21	-	6.2
	Manganese	-	900	1000	1500	2900	-	-	-	320	1400	68,000	-	120
	Mercury	58*	< 0.05	< 0.05	< 0.05	< 0.05	-	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	-	< 0.05
	Molybdenum		0.8	0.8	0.5	1.4	-	-	-	1.2	2.3	1.4	-	<0.4
	NICKE	980	<u>31</u>	15	<u>б</u> 07	2./	-	<1 0	4./	<u>6.6</u>	10	1/		2.5
	Tin	-	12	24	0.7	1.0				<1	1 9	23		<0.0
	Zinc	730000	72	86	260	55	-	5.5	29	24	29	78	-	12
Asbestos	Asbestos Quantification Total		-	-	-	-	-	-	-	-	-	-		-
	Asbestos fibres		0	0	-	0	0	0	-	-	0	0	0	-
Inorganics	Chloride		18.8	131	74.1	36.7	-	-	-	532	31.7	29.6	-	45.5
DAU	Orthophosphate as P		<0.1	0.25	<0.1	<0.1	-	-	-	0.52	0.16	<0.1		<0.1
PAH	Nanhthalene	1000	<0.1	<u>Z.1</u>	0.03	0.11	-	0.39	<0.1	<0.1	0.51	0.04		<0.1
	Acenaphthene	84000**	<0.03	<0.03	0.05	4.9		<0.03	<0.03	<0.03	<0.03	<0.04		<0.03
	Acenaphthylene	83000**	-	-	-	-	-	-	-	-	-	-	-	-
	Fluoranthene	23000	0.03	0.55	2.4	72	-	0.07	< 0.03	< 0.03	0.06	0.19	-	< 0.03
	Phenanthrene	22000	< 0.03	0.43	1.5	28	-	< 0.03	< 0.03	<0.03	0.03	0.13	-	< 0.03
	Fluorene	63000**	< 0.03	< 0.03	0.07	2.1	-	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	-	< 0.03
	Pyrene Ponze(a)anthracono	54000	<0.03	0.39	1.6	69	-	0.07	<0.03	< 0.03	0.12	0.17	-	< 0.03
	Benzo(b)fluoranthene	44	0.03	0.29	0.73	20		0.05	<0.03	<0.03	0.03	0.07	-	<0.03
	Benzo(k)fluoranthene	1200	< 0.03	0.20	0.43	16	_	0.03	< 0.03	< 0.03	< 0.03	0.05	-	< 0.03
	Benzo(a)pyrene	77	< 0.03	0.21	0.27	27	-	0.05	< 0.03	< 0.03	0.04	0.05	-	< 0.03
	Dibenz(a,h)anthracene	3.5	< 0.03	<0.03	0.03	4.2	-	< 0.03	< 0.03	<0.03	<0.03	<0.03	-	<0.03
	Benzo(g,h,i)perylene	3900	< 0.03	0.08	0.11	15	-	< 0.03	< 0.03	< 0.03	< 0.03	0.05	-	< 0.03
	Indeno(1,2,3-c,d)pyrene	500	< 0.03	0.07	0.11	16	-	0.03	< 0.03	< 0.03	< 0.03	0.04		< 0.03
IPHCWG	>C6-C8 Aliphatics	7800**	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	<0.01
	>C8-C10 Aliphatics	2000**	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	< 0.01
	>C10-C12 Aliphatics	9700**	<1.5	<1.5	2.1	1.68	1.87	1.9	2.59	1.83	5.01	4.88	-	5.37
	>C12-C16 Aliphatics	59000**	<1.2	<1.2	2.1	1.79	1.52	<1.2	2.47	1.4	1.99	2.29		3.26
	>C16-C21 Aliphatics		<1.5	2.8	8.8	2.75	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	-	1.95
	>C21-C35 Aliphatics		< 3.4	9.1	21	177.1	< 3.4	< 3.4	<3.4 15.17	< 3.4	< <u>3.4</u> 16.11	<3.4	-	<3.4
	>EC5-EC7 Aromatics	26000**	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01
	>EC7-EC8 Aromatics	56000**	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	< 0.01
	>EC8-EC10 Aromatics	3500**	<0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	-	< 0.01
	>EC10-EC12 Aromatics	16000**	<0.9	2.9	<0.9	1.22	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	-	<0.9
	>EC12-EC16 Aromatics	36000**	< 0.5	3	1.7	20.59	< 0.5	< 0.5	< 0.5	< 0.5	0.97	< 0.5	-	<0.5
	>EC16-EC21 Aromatics	28000	<0.6	9.4	23	227.4	1.04	2.37	1.28	1.1/	52.62	4.56	-	4.93
	>EC35 - EC40 Aromatics	20000				58 48	<1.4	<1.4	<1.4	<1.4	124.3	<1 4		<1.4
	>EC40-EC44 Aromatics		-	-	-	-	- 11			- 17	-		-	
	Total >EC5 - EC40 Aromatics		<10	38	59	1187	<10	<10	<10	<10	593.4	11.2	-	10.29
	Total Aliphatics + Aromatics (>C5 - C40)		<10	51	94	1643	17.94	18.75	21.59	18.92	609.5	27.24	-	29.52
BTEX and	Benzene		< 0.01	< 0.002	< 0.002	< 0.002	-	-	< 0.002	-	< 0.002	< 0.01		< 0.002
MTBE			< 0.01	< 0.005	<0.005	< 0.005	-	-	< 0.005	-	< 0.005	< 0.01	- /	< 0.005
	Xvlene (m & n)		<0.01				-	-		-	<0.002	<0.01		<0.002
	Xylene (o)		<0.01	< 0.002	< 0.002	<0.002		-	<0.002		< 0.002	<0.01		< 0.002
	Xylene Total		=	=	=	=	-	-	=	-	=	=	-	=
	МТВЕ		< 0.01	< 0.005	< 0.005	< 0.005	-	-	< 0.005	-	< 0.005	<0.01	-	< 0.005

			F-TP121	F-TP121	F-TP121	F-BH102	F-BH102	F-BH102	F-BH102	F-BH102	F-BH104	F-BH104	F-BH104	F-BH104
Chemical		Redcar Remediation	0.8	1.8	3.8	1	1.5	6.6	8.2	14.5	3	4	5	6
Group	Compound	Criteria - Soil	06/10/2022	06/10/2022	06/10/2022	09/09/2022	09/09/2022	09/09/2022	09/09/2022	12/09/2022	17/08/2022	17/08/2022	17/08/2022	17/08/2022
i i			GMG	GMG	GMG	SMG	SMG	SMG	TFD	TFD	SMG	SMG	SMG	TFD
VOC	Styrene		<0.01	_	_	_	_	-	_	-	-	<0.01	-	_
	cis-1 3-dichloropropene		< 0.01	_	_	_	_	_	-	-	_	<0.01	-	-
	trans-1.3-dichloropropene		< 0.01	_	_	_	_	_	_	-	-	< 0.01	-	_
	1,1,1,2-tetrachloroethane		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	1,1,1-trichloroethane		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	1,1,2-trichloroethane		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	1,1-dichloroethane		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	1,1-dichloroethene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	1,1-dichloropropene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	1,2,3-trichloropropane		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	1,2,4-trimethylbenzene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	1,2-dibromo-3-chloropropane		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	1,2-dibromoethane		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	1,2-dichloroethane		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	1,2-dichloropropane		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	1,3,5-trimethylbenzene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	1,3-dichloropropane		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	2,2-dichloropropane		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	2-chlorotoluene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	4-chlorotoluene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	Bromobenzene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	Bromochloromethane		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	Bromodichloromethane		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	Bromoform		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	Carbon tetrachloride		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	Chlorodibromomethane		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	Chloroform		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	cis-1,2-dichloroethene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	Dibromomethane		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	Isopropylbenzene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	n-butylbenzene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	n-propylbenzene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	p-isopropyltoluene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	sec-butylbenzene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	Trichloroethene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	tert-butylbenzene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	Tetrachloroethene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	trans-1,2-dichloroethene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	Vinyl chloride		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	tert-Amyl methyl ether		-	< 0.005	< 0.005	< 0.005	-	-	< 0.005	-	< 0.005	-	-	< 0.005
VOC/SVOC	1,2,3-trichlorobenzene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	1,2,4-trichlorobenzene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	1,2-dichlorobenzene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	1,3-dichlorobenzene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	1,4-dichlorobenzene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	Chlorobenzene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-
	Hexachlorobutadiene		< 0.01	-	-	-	-	-	-	-	-	< 0.01	-	-

			F-TP121	F-TP121	F-TP121	F-BH102	F-BH102	F-BH102	F-BH102	F-BH102	F-BH104	F-BH104	F-BH104	F-BH104
Chemical	0	Redcar Remediation	0.8	1.8	3.8	1	1.5	6.6	8.2	14.5	3	4	5	6
Group	Compound	Criteria - Soil	06/10/2022	06/10/2022	06/10/2022	09/09/2022	09/09/2022	09/09/2022	09/09/2022	12/09/2022	17/08/2022	17/08/2022	17/08/2022	17/08/2022
			GMG	GMG	GMG	SMG	SMG	SMG	TFD	TFD	SMG	SMG	SMG	TFD
SVOC	1 4-dinitrobenzene		<0.1	-	-	-	_	_	_	_	_	<0.1	_	_
	Benzyl alcohol		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	4-bromophenyl phenyl ether		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	4-nitroaniline		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	4-nitrophenol		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	1,2-Dinitrobenzene		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	1,3-Dinitrobenzene		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	2,3,4,6-tetrachlorophenol		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	2,3,5,6-Tetrachlorophenol		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	2,4,5-trichlorophenol		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	2,4,6-trichlorophenol		<0.1	-	-	-	-	-	-	-	< 0.01	< 0.01	-	< 0.01
	2,4-dichlorophenol		<0.1	-	-	-	-	-	-	-	< 0.01	< 0.01	-	< 0.01
	2,4-dimethylphenol		<0.1	-	-	-	-	-	-	-	< 0.01	< 0.01	-	< 0.01
	2,4-dinitrotoluene		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	2,6-dichlorophenol		-	-	-	-	-	-	-	-	< 0.01	< 0.01	-	< 0.01
	2,6-Dimethylphenol		-	-	-	-	-	-	-	-	< 0.01	< 0.01	-	<0.01
	2,6-dinitrotoluene		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	2-chloronaphthalene		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	2-chlorophenol		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	2-methylnaphthalene		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	2-methylphenol		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	2-nitroaniline		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	3-nitroaniline		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	4,6-Dinitro-2-methylphenol		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	4-chlorophenyl phenyl ether		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	4-methylphenol		-	-	-	-	-	-	-	-	< 0.01	< 0.01	-	<0.01
	Azobenzene		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	Bis(2-chloroethoxy) methane		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	Bis(2-chloroisopropyl) ether		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	Bis(2-ethylnexyl) phthalate		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	Butyl benzyl phthalate		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
			<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	Dipenzoturan		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	Dietnylphthalate		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	Dimetry phthalate		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	Di-n-bulyi phinalale		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
			<u. i<="" th=""><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th><u. i<="" th=""><th>-</th><th>-</th></u.></th></u.>	-	-	-	-	-	-	-	-	<u. i<="" th=""><th>-</th><th>-</th></u.>	-	-
			<u. i<br=""><0.1</u.>	-	-	-	-	-	-	-	-	<u.i< th=""><th>-</th><th>-</th></u.i<>	-	-
			<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
			<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	remachiorophenoi		SU. I	-	-	-	-	-	-	-	-	<u>∽∪.</u> ⊺	-	-

			F-TP121	F-TP121	F-TP121	F-BH102	F-BH102	F-BH102	F-BH102	F-BH102	F-BH104	F-BH104	F-BH104	F-BH104
Chemical		Redcar Remediation	0.8	1.8	3.8	1	1.5	6.6	8.2	14.5	3	4	5	6
Group	Compound	Criteria - Soil	06/10/2022	06/10/2022	06/10/2022	09/09/2022	09/09/2022	09/09/2022	09/09/2022	12/09/2022	17/08/2022	17/08/2022	17/08/2022	17/08/2022
			0110	0110		0110		0110				0110	0110	
			GMG	GMG	GMG	SMG	SMG	SMG	IFD	IFD	SMG	SMG	SMG	IFD
РСВ	Heptachlorobiphenyl, 2.3.3.4.4.5.5- (PCB 189)		-	< 0.01	_	-	-	-	-	-	< 0.01	-	_	< 0.01
	Hexachlorobiphenyl, 2,3,3,4,4,5- (PCB 156)		-	< 0.01	-	-	-	-	-	-	< 0.01	-	-	< 0.01
	Hexachlorobiphenyl, 2,3,4,4,5,5- (PCB 167)		-	< 0.01	-	-	-	-	-	-	< 0.01	-	-	< 0.01
	Hexachlorobiphenyl, 3,3,4,4,5,5- (PCB 169)		-	< 0.01	-	-	-	-	-	-	< 0.01	-	-	< 0.01
	PCB 101		-	< 0.01	-	-	-	-	-	-	< 0.01	-	-	< 0.01
	PCB 118		-	< 0.01	-	-	-	-	-	-	< 0.01	-	-	< 0.01
	PCB 138		-	< 0.01	-	-	-	-	-	-	< 0.01	-	-	< 0.01
	PCB 153		-	< 0.01	-	-	-	-	-	-	< 0.01	-	-	< 0.01
	PCB 180		-	< 0.01	-	-	-	-	-	-	< 0.01	-	-	< 0.01
	PCB 28 + PCB 31		-	< 0.01	-	-	-	-	-	-	< 0.01	-	-	< 0.01
	PCB 52		-	< 0.01	-	-	-	-	-	-	< 0.01	-	-	< 0.01
	Pentachlorobiphenyl, 2,3,3,4,4- (PCB 105)		-	< 0.01	-	-	-	-	-	-	< 0.01	-	-	< 0.01
	Pentachlorobiphenyl, 2,3,4,4,5- (PCB 114)		-	< 0.01	-	-	-	-	-	-	< 0.01	-	-	< 0.01
	Pentachlorobiphenyl, 2,3,4,4,5- (PCB 123)		-	< 0.01	-	-	-	-	-	-	< 0.01	-	-	< 0.01
	Pentachlorobiphenyl, 3,3,4,4,5- (PCB 126)		-	< 0.01	-	-	-	-	-	-	< 0.01	-	-	< 0.01
	Tetrachlorobiphenyl, 3,3,4,4- (PCB 77)		-	< 0.01	-	-	-	-	-	-	< 0.01	-	-	< 0.01
	Tetrachlorobiphenyl, 3,4,4,5- (PCB 81)		-	< 0.01	-	-	-	-	-	-	< 0.01	-	-	< 0.01
	Total PCB 7 Congeners		-	< 0.01	-	-	-	-	-	-	< 0.01	-	-	< 0.01
Phenolics	3-&4-methylphenol		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
	Phenol		<0.1	<0.3	<0.3	0.4	-	0.5	0.9	< 0.3	< 0.01	< 0.01	-	< 0.01
SVOC TIC	Aniline		<0.1	-	-	-	-	-	-	-	-	<0.1	-	-
NA	4-chloro-2-methylphenol		<0.1	-	-	-	-	-	-	-	< 0.01	< 0.01	-	< 0.01

Notes

Exceeds - Adopted Scre

Appendix H :	Comparison of Measured Concentrations of	CoC in Soil with GAC (mg	:				
Chemical		Pedcar Remediation	F-BH104	F-BH104	14AT7	LWW-TP1	LWW-TP1
Group	Compound	Criteria - Soil	18/08/2022	18/08/2022	21/04/2004	05/12/2022	05/01/2023
			GT	RMF			
Matala			20,000			11050	11000
Metals		640	20,000	42	8.1	73	0.8
	Bervllium	0+0	1.3	0.9	-	-	-
	Boron	240000	6.4	5.2	0.6	3	2.7
	Cadmium	190	<0.1	1.6	0.6	0.2	<0.1
	Chromium (hexavalent)	33	<1	<1	-	< 0.3	<0.3
	Chromium	8600	-	-	18.8	1484	1850
	Chromium (Trivalent)	00000	45	19	-		-
	Copper	68000	27	33	2.1	/3	76
	Iron	- 2200	37,000	- 26	- 11.0	100800	142000
	Manganese	2300	570	20	11.9	29580	31300
	Manganese	58*	<0.05	0.07	<0.1	<0.1	<0.1
	Molybdenum		1	-	-	6.2	6.1
	Nickel	980	40	33	2.6	16.4	22.1
	Selenium	-	<0.5	<0.5	7.4	10	8
	Tin		1.1	-	-	-	-
	Zinc	730000	53	46	75	158	182
Asbestos	Asbestos Quantification Total		-	-	-	-	-
	Asbestos fibres		-	-	-	0	1
Inorganics	Chloride Orthophoophoto on D		321	-	-	47	45
	PAH 16 Total		0.18	- <0.1	-		-
ГАП	Nanhthalene	1900	<0.1	<0.03	<1		-
	Acenaphthene	84000**	< 0.03	<0.03	<1	0.05	<0.05
	Acenaphthylene	83000**	=	-	<1	0.07	< 0.03
	Fluoranthene	23000	< 0.03	< 0.03	6	1.08	0.17
	Phenanthrene	22000	< 0.03	< 0.03	3	0.42	0.09
	Fluorene	63000**	< 0.03	< 0.03	<1	<0.04	<0.04
	Pyrene	54000	< 0.03	< 0.03	5	0.91	0.14
	Benzo(a)anthracene	170	< 0.03	< 0.03	3	0.62	0.12
	Benzo(b)fluoranthene	44	<0.03	< 0.03	2	0.96	0.14
	Benzo(a)nyrene	77	<0.03	< 0.03	2	0.30	<0.00
	Dibenz(a h)anthracene	35	<0.03	<0.03	<1	0.15	<0.04
	Benzo(g.h.i)pervlene	3900	< 0.03	< 0.03	1	0.57	0.09
	Indeno(1,2,3-c,d)pyrene	500	< 0.03	< 0.03	1	0.6	0.11
TPH CWG	>C5-EC6 Aliphatics		< 0.01	< 0.01	-		-
	>C6-C8 Aliphatics	7800**	< 0.01	< 0.01	-	<0.1	<0.1
	>C8-C10 Aliphatics	2000**	< 0.01	< 0.01	-	<0.1	<0.1
	>C10-C12 Aliphatics	9700**	5.26	4.69	-	<0.2	< 0.2
	>C12-C16 Aliphatics	59000**	3.25	1.61	-	<4	<4
	>C10-C21 Aliphatics		<1.0	<1.5	-	<7	21
	Total >C5 - C40 Aliphatics		18 85	15.66			-
	>EC5-EC7 Aromatics	26000**	< 0.01	< 0.01	_	<0.1	<0.1
	>EC7-EC8 Aromatics	56000**	< 0.01	< 0.01	-	<0.1	<0.1
	>EC8-EC10 Aromatics	3500**	< 0.01	< 0.01	-	<0.1	<0.1
	>EC10-EC12 Aromatics	16000**	<0.9	<0.9	-	<0.2	<0.2
	>EC12-EC16 Aromatics	36000**	< 0.5	<0.5	-	<4	<4
	>EC16-EC21 Aromatics	28000	4.85	4.53	-	<7	<7
	>EC21-EC35 Aromatics	28000	<1.4	<1.4	-	38	<7
	>EC35 - EC4U Aromatics		<1.4	<1.4	-		-
	Total SEC5 - EC40 Aromatics		10.00	- <10	-	-	-
	Total Aliphatics + Aromatics (>C5 - C40)		28.94	24 94	-	+ -	_
BTEX and	Benzene		<0.002		<10	<0.003	<0.003
MTBE	Toluene		< 0.005	-	<10	< 0.003	< 0.003
	Ethylbenzene		< 0.002	-	<10	< 0.003	< 0.003
	Xylene (m & p)		-	-	-	< 0.005	<0.005
	Xylene (o)		< 0.002	-	-	< 0.003	<0.003
	Xylene Total		-	-	<20		-
1	MIBE		< 0.005	-	-	< 0.002	<0.002

Chemical	Commound	Redcar Remediation	F-BH104 15.75	F-BH104 21.8	<u>14AT7</u> 4-4	LWW-TP1 1	LWW-TP1 2
Group	Compound	Criteria - Soil	18/08/2022	18/08/2022	21/04/2004	05/12/2022	05/01/2023
			GT	RMF			
VOC	Styrene		-	-	-	< 0.003	<0.003
	cis-1,3-dichloropropene		-	-	-	< 0.004	< 0.004
	trans-1,3-dichloropropene		-	-	-	< 0.003	< 0.003
	1,1,1,2-tetrachloroethane		-	-	-	< 0.003	< 0.003
	1,1,1-trichloroethane		-	-	-	< 0.003	< 0.003
	1,1,2-trichloroethane		-	-	-	< 0.003	< 0.003
	1,1-dichloroethane		-	-	-	< 0.003	< 0.003
	1,1-dichloroethene		-	-	-	< 0.006	< 0.006
	1,1-dichloropropene		-	-	-	< 0.003	< 0.003
	1,2,3-trichloropropane		-	-	-	< 0.004	< 0.004
	1,2,4-trimethylbenzene		-	-	-	< 0.006	< 0.006
	1,2-dibromo-3-chloropropane		-	-	-	< 0.004	< 0.004
	1,2-dibromoethane		-	-	-	< 0.003	< 0.003
	1,2-dichloroethane		-	-	-	< 0.004	< 0.004
	1.2-dichloropropane		-	-	-	< 0.006	< 0.006
	1.3.5-trimethylbenzene		-	-	-	< 0.003	< 0.003
	1 3-dichloropropane		_	_	_	<0.003	<0.003
	2 2-dichloropropane		_	_	_	<0.004	<0.004
	2-chlorotoluene		_	_	_	<0.003	<0.003
	4-chlorotoluene					<0.003	<0.000
	Bromobenzene					<0.000	<0.000
	Bromochloromethane					<0.002	<0.002
	Bromodichloromethane					<0.003	<0.003
	Bromoform		-	-	-	<0.003	<0.003
	Carbon tetraphlarida			-	-	<0.003	<0.003
	Chloradibromomothana		-	-	-	<0.004	<0.004
	Chloroformethane		-	-	-	<0.003	< 0.003
	chioroiorm		-	-	-	<0.003	< 0.003
	cis-1,2-dichloroethene		-	-	-	<0.003	< 0.003
	Dibromomethane		-	-	-	< 0.003	< 0.003
	Isopropylbenzene		-	-	-	< 0.003	< 0.003
	n-butylbenzene		-	-	-	< 0.004	< 0.004
	n-propylbenzene		-	-	-	< 0.004	<0.004
	p-isopropyltoluene		-	-	-	< 0.004	<0.004
	sec-butylbenzene		-	-	-	<0.004	<0.004
	Trichloroethene		-	-	-	< 0.003	<0.003
	tert-butylbenzene		-	-	-	< 0.005	<0.005
	Tetrachloroethene		-	-	-	< 0.003	<0.003
	trans-1,2-dichloroethene		-	-	-	< 0.003	<0.003
	Vinyl chloride		-	-	-	< 0.002	< 0.002
	tert-Amyl methyl ether		<0.005	-	-		-
VOC/SVOC	1,2,3-trichlorobenzene		-	-	-	< 0.007	< 0.007
	1,2,4-trichlorobenzene		-	-	-	< 0.007	< 0.007
	1,2-dichlorobenzene		-	-	-	< 0.004	<0.004
	1,3-dichlorobenzene		-	-	-	< 0.004	< 0.004
	1,4-dichlorobenzene		-	-	-	< 0.004	< 0.004
	Chlorobenzene		-	-	-	< 0.003	< 0.003
	Hexachlorobutadiene		-	-	-	< 0.004	< 0.004

			F-BH104	F-BH104	14AT7	LWW-TP1	LWW-TP1
Chemical	0 - mar - mark	Redcar Remediation	15.75	21.8	4-4	1	2
Group	Compound	Criteria - Soil	18/08/2022	18/08/2022	21/04/2004	05/12/2022	05/01/2023
			GT	RMF			
SVOC	1,4-dinitrobenzene		-	-	-	-	-
	Benzyl alcohol		-	-	-	-	-
	4-bromophenyl phenyl ether		-	-	-	< 0.01	< 0.01
	4-nitroaniline		-	-	-	< 0.01	< 0.01
	4-nitrophenol		-	-	-	< 0.01	< 0.01
	1,2-Dinitrobenzene		-	-	-	-	-
	1,3-Dinitrobenzene		-	-	-	-	-
	2,3,4,6-tetrachlorophenol		-	-	-	-	-
	2,3,5,6-Tetrachlorophenol		-	-	-	-	-
	2,4,5-trichlorophenol		-	-	-	< 0.01	< 0.01
	2,4,6-trichlorophenol		-	-	-	< 0.01	< 0.01
	2,4-dichlorophenol		-	-	-	< 0.01	< 0.01
	2,4-dimethylphenol		-	-	-	< 0.01	< 0.01
	2,4-dinitrotoluene		-	-	-	< 0.01	< 0.01
	2,6-dichlorophenol		-	-	-	-	-
	2,6-Dimethylphenol		-	-	-	-	-
	2,6-dinitrotoluene		-	-	-	< 0.01	< 0.01
	2-chloronaphthalene		-	-	-	< 0.01	< 0.01
	2-chlorophenol		-	-	-	< 0.01	< 0.01
	2-methylnaphthalene		-	-	-	0.04	< 0.01
	2-methylphenol		-	-	-	< 0.01	< 0.01
	2-nitroaniline		-	-	-	< 0.01	< 0.01
	3-nitroaniline		-	-	-	< 0.01	< 0.01
	4,6-Dinitro-2-methylphenol		-	-	-	-	-
	4-chlorophenyl phenyl ether		-	-	-	< 0.01	< 0.01
	4-methylphenol		-	-	-	< 0.01	< 0.01
	Azobenzene		-	-	-	< 0.01	< 0.01
	Bis(2-chloroethoxy) methane		-	-	-	< 0.01	< 0.01
	Bis(2-chloroisopropyl) ether		-	-	-	-	-
	Bis(2-ethylhexyl) phthalate		-	-	-	<0.1	< 0.1
	Butyl benzyl phthalate		-	-	-	<0.1	< 0.1
	Carbazole		-	-	-	0.03	< 0.01
	Dibenzofuran		-	-	-	0.05	0.01
	Diethylphthalate		-	-	-	< 0.1	< 0.1
	Dimethyl phthalate		-	-	-	<0.1	<0.1
	Di-n-butyl phthalate		-	-	-	< 0.1	< 0.1
	Di-n-octyl phthalate		-	-	-	< 0.1	< 0.1
	Diphenylamine		-	-	-	-	-
	Hexachlorobenzene		-	-	-	<0.01	< 0.01
	Hexachlorocyclopentadiene		-	-	-	< 0.01	< 0.01
	Pentachlorophenol		-	-	-	< 0.01	< 0.01

Chamical		Redeer Demodiation	F-BH104	F-BH104	14AT7	LWW-TP1	LWW-TP1
Group	Compound	Criteria - Soil	15.75	<u></u> 18/08/2022	<u>4-4</u> 21/04/2004	05/12/2022	∠ 05/01/2023
			GT	RMF			
РСВ	Heptachlorobiphenyl, 2,3,3,4,4,5,5- (PCB 189)		-	-	-	-	-
	Hexachlorobiphenyl, 2,3,3,4,4,5- (PCB 156)		-	-	-	-	-
	Hexachlorobiphenyl, 2,3,4,4,5,5- (PCB 167)		-	-	-	-	-
	Hexachlorobiphenyl, 3,3,4,4,5,5- (PCB 169)		-	-	-	-	-
	PCB 101		-	-	-	-	-
	PCB 118		-	-	-	-	-
	PCB 138		-	-	-	-	-
	PCB 153		-	-	-	-	-
	PCB 180		-	-	-	-	-
	PCB 28 + PCB 31		-	-	-	-	-
	PCB 52		-	-	-	-	-
	Pentachlorobiphenyl, 2,3,3,4,4- (PCB 105)		-	-	-	-	-
	Pentachlorobiphenyl, 2,3,4,4,5- (PCB 114)		-	-	-	-	-
	Pentachlorobiphenyl, 2,3,4,4,5- (PCB 123)		-	-	-	-	-
	Pentachlorobiphenyl, 3,3,4,4,5- (PCB 126)		-	-	-	-	-
	Tetrachlorobiphenyl, 3,3,4,4- (PCB 77)		-	-	-	-	-
	Tetrachlorobiphenyl, 3,4,4,5- (PCB 81)		-	-	-	-	-
	Total PCB 7 Congeners		-	-	-	-	-
Phenolics	3-&4-methylphenol		-	-	-	-	-
	Phenol		< 0.3	0.6	<0.5	< 0.01	< 0.01
SVOC TIC	Aniline		-	-	-	-	-
NA	4-chloro-2-methylphenol		-	-	-	-	-
Notos						-	

Notes

Exceeds - Adopted Scre

Appendix I

Comparison of Measured Concentrations of Contaminants of Concern in Soil Leachate with GAC

Appendix I: Co	omparison of Measured Concentrations of	CoC in Leachate wit	th GAC (µg/L)	l a settion								Worksho	n/Stores								
Chemical Grou	Compound	Redcar - Adopted Saline EQS	UK Drinking Water Standards	Location Location ID Sample Depth Range	F-BH114 0.5	F-BH114 1.8	F-BH114 3.8	F-BH115 4.3	F-BH116 4.9	F-TP115 2.3	F-TP115 0.3	Worksho F-TP115 2.3	p/Stores F-TP116 1.5	F-TP116 1.5	F-TP116 3.1	F-TP116 3.1	F-TP116 4.1	F-TP117 1.5	F-BH120 3.5	F-BH120 5.5	F-TP112 F-TP112 2
Metals	Aluminium Arsenic	25	200	Sampled Date	16/09/2022 - 3 3	16/09/2022 280 2	16/09/2022	25/08/2022	02/09/2022 130 7.8	27/09/2022	27/09/2022 570	27/09/2022 670 3.6	07/10/2022 130 9.6	-	-	07/10/2022 98 3.2	07/10/2022 100 3.2	27/09/2022 51 5.7	02/08/2022 18 1 9	02/08/2022 350 5.8	26/09/2022 840 - 2.3
	Beryllium			µg/L	-	<0.1	-	-	<0.1	-	<0.1	<0.1	< 0.1	-	-	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1 -
	Boron	7000	1000	µg/L	170	64	120	46	21	-	29	46	330	-	-	110	45	81	34	<12	- 20
	Cadmium	0.2	5	µg/L	<0.03	< 0.03	< 0.03	<0.03	0.05	-	< 0.03	< 0.03	< 0.03	-	-	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	<0.03 -
	Chromium (nexavalent)	0.0		µg/L	<1	11	17	<1	<1	<2	<1	<1	61	~_	<	18	<1	20	<1	<1	<1 20
	Copper	3.76	2000	µg/L	11	5	2.8	2.9	3.5	-	2.3	2.6	1.9	-	-	1.4	2.6	2.2	6.2	4.6	2.5 -
	Iron	1000	200	µq/L	<5.5	<5.5	<5.5	6.8	350	-	9.9	14	7.7	-	-	<5.5	<5.5	<5.5	<5.5	47	- 16
	Lead	1.3	10	µq/L	25	24	20	1.9	5.7	-	0.53	1.3	0.78	-	-	0.22	0.17	6.7	1.3	3.8	3.1 -
	Manganese	0.07	1	ua/L	0.02	0.07	0.03	0.01	0.01	-	0.02	0.08	0.04	-	-	0.02	0.02	< 0.01	0.04	0.01	0.04 -
	Molybdenum		70	µg/L	-	5.8	-	-	3.7	-	<1.1	1.4	17	-	-	3.7	1.9	1.2	3.9	16	1.1 -
	Nickel	8.6	20	µg/L	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	-	< 0.5	< 0.5	< 0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5 -
	Tin		10	µg/L	1.3	1.4	9.1	2.3	1.2	-	<0.4	<0.4	3.3	-	-	1.6 <0.4	1.1	0.97 <0.4	14	2.4	<0.26 -
	Vanadium	100		µg/L	-	45	-	-	4.6	-	36	89	27	-	-	24	9.7	120	18	16	21 -
	Zinc	7.9	3000	µg/L	<1.3	<1.3	<1.3	2.1	4.7	-	2.2	2.9	<1.3	-	-	<1.3	<1.3	<1.3	<1.3	1.3	3.8 -
Inorganics	Ammoniacal N as NH4	0.001		mg/L	0.08	0.11	< 0.02	0.03	1.4	-	0.06	0.06	< 0.02	-	-	< 0.02	< 0.02	0.06	0.94	0.11	0.04 -
	Ammoniacal Nitrogen as NH3	0.021		mg/L mg/l	0.064	0.087	<0.015	0.022	1.1	-	0.047	0.05	<0.015	-	-	<0.015	<0.015	0.043	0.73	0.084	0.033 -
	Calcium Carbonate			µg/L	516,000	357,000	136,000	44,900	23,500	-	57,600	82,400	318,000	-	-	173,000	101,000	79,700	99,300	32,700	78,800 -
	Chloride		250	mg/L	-	13	-	-	9.1	-	12	2.4	55	-	-	22	8.7	38	3.1	3.4	4.1 -
	Cyanide (Free)	4	50	µg/L	<0.1	<0.1	<0.1	0.3	<0.1	-	<0.1	<0.1	<0.1	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 -
	Eluoride	1	1500	µg/L µg/l	1.8	<100	0.2	5.9	160	-	110	200	200	-	-	1500	760	<100	360	<100	430 -
	Nitrate (as NO3-)		50(NO3)	mg/L	<0.1	0.99	<0.1	1	0.21	-	0.4	0.35	0.41	-	-	2	1.3	3.4	0.18	0.16	2.3 -
	Nitrite (as NO2-)		0.5(NO2)	mg/L	0.48	<0.1	<0.1	0.53	<0.1	-	0.14	<0.1	0.47	-	-	< 0.1	0.2	0.35	<0.1	<0.1	2 -
	Phosphorus			pH Units	9.4	9.5	10.6	8	1.3	-	8.4	9.7	250	-	-	8.7	8.1	9	10.1	<u>8.9</u> 51	10.8 - 22 -
	Sulphate as SO4			mg/L	560	310	22	55	14	-	40	31	63	-	-	22	12	82	52	11	22 -
	Thiocvanate (as SCN)	9		ua/L	150	30	<20	<20	280	-	27	28	51	-	-	<20	<20	<20	160	230	<20 -
	Orthophosphate as P			µg/L	-	<10	-	-	50	-	30	30	40	-	-	<10	<10	90	20	50	<10 -
PAH	PAH (total, NSW Waste 2008)	2		µg/L	0.39	0.34	< 0.2	0.28	<0.2	-	1.1	0.71	0.29	-	-	0.35	0.24	0.28	< 0.2	0.26	<0.2 -
	Acenaphthene	2		ug/L	<0.01	0.02	<0.01	<0.03	<0.01	-	0.07	0.08	0.09		-	0.05	0.04	0.02	0.08	0.12	<0.01 -
	Fluoranthene	0.0063		µg/L	0.06	0.06	< 0.01	0.06	0.01	-	0.1	0.06	0.05	-	-	0.03	0.02	0.02	< 0.01	0.01	0.03 -
	Anthracene	0.1		µg/L	0.03	0.01	< 0.01	<0.01	< 0.01	-	0.04	0.06	0.02	-	-	0.01	< 0.01	0.04	< 0.01	<0.01	0.01 -
	Phenanthrene			µg/L	0.1 <0.01	<0.03	<0.01	<0.01	<0.02	-	0.17	0.14	<0.04	-	-	0.05	0.02	0.12	<0.02	0.02	<0.02 -
	Chrysene			µg/L	0.02	0.03	< 0.01	0.03	< 0.01	-	0.07	0.04	0.02	-	-	0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01 -
	Pyrene			µg/L	0.04	0.05	< 0.01	0.03	< 0.01	-	0.13	0.08	0.04	-	-	0.02	0.02	0.02	< 0.01	0.01	0.02
	Benzo(a)anthracene		0.025	µg/L	0.02	0.03	<0.01	0.03	<0.01	-	0.06	0.04	0.02	-	-	0.01	<0.01	<0.01	< 0.01	<0.01	<0.01 -
	Benzo(k)fluoranthene		0.025	µg/L	0.02	0.04	<0.01	0.03	<0.01	-	0.04	0.02	<0.01	-	-	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01 -
	Benzo(a)pyrene	0.00017	0.01	µg/L	0.01	0.02	< 0.01	0.02	< 0.01	-	0.06	0.03	< 0.01	-	-	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01 -
	Dibenz(a,h)anthracene		0.025	µg/L	< 0.01	< 0.01	<0.01	<0.01	<0.01	-	<0.01	< 0.01	<0.01	-	-	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01 -
	Indeno(1.2.3-c.d)pyrene		0.025	ug/L	<0.01	0.02	<0.01	0.02	<0.01	-	0.05	0.03	<0.01	-	-	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01 -
TPH CWG	>C5-C6 Aliphatics			µq/l	-	<0.1	-	-	<0.1	-	-	-	-	-	-	19	-	-	-	-	<0.1 -
	>C6-C8 Aliphatics	4.55	See TPH	µg/L	-	<0.1	-	-	20	-	-	-	-	-	-	<0.1	-	-	-	-	<0.1 -
	>C10-C12 Aliphatics	4.55	See TPH	µg/L µa/L	-	<1	-	-	<1	-	-	-	-		-	<1	-	-	-	-	<1 -
	>C12-C16 Aliphatics	4.55	See TPH	µg/L	-	<1	-	-	<1	-	-	-	-	-	-	<1	-	-	-	-	<1 -
	>C16-C21 Aliphatics		See TPH	µg/L	-	<1	-	-	<1	-	-	-	-	-	-	<1	-	-	-	-	<1 -
	Total >C5-C35 Aliphatics		See TPH	µg/L µg/l	-	<10	-	-	20	-	-	-	-	-	-	19	-	-	-	-	<10 -
	>EC5-EC7 Aromatics		See TPH	µg/L	-	<0.1	-	-	<0.1	-	-	-	-	-	-	<0.1	-	-	-	-	<0.1 -
	>EC7-EC8 Aromatics		See TPH	µg/L	-	<0.1	-	-	<0.1	-	-	-	-	-	-	< 0.1	-	-	-	-	<0.1 -
	>EC8-EC10 Aromatics	4.55	See TPH	µg/L µg/l	-	<0.1	-	-	<0.1	-	-	-	-	-	-	<0.1	-	-	-	-	<0.1 -
	>EC12-EC16 Aromatics	4.55	See TPH	µg/L	-	<1	-	-	<1	-	-	-	-	-	-	<1	-	-	-	-	<1 -
	>EC16-EC21 Aromatics	4.55	See TPH	µg/L	-	<1	-	-	<1	-	-	-	-	-	-	<1	-	-	-	-	<1 -
	>EC21-EC35 Aromatics	4.55	See TPH	µq/L	-	<1	-	-	<1	-	-	-	-	-	-	<1	-	-	-	-	<1 -
	TPH >C5-C35 Aliphatics/Aromatics		10	µg/L	-	<10	-	-	21	-	-	-	-	-	-	19	-	-	-	-	<10 -
BTEX and	Benzene	8	1	µg/L	-	<1	-	-	<1	-	-	-	-	-	-	<1	-	-	-	-	<1 -
MTBE	Touene Ethylbenzene	20	700	µg/L	-	<1	-	-	<1	-	-	-	-	-	-	<1	-	-	-	-	<1 -
	Xylene Total	30	500	µg/L	-	<1	-	-	<1	-	-	-	-	-	-	<1	-	-	-	-	<1 -
SVOC	2,4,6-trichlorophenol			µg/L	-	<0.1	-	-	<0.1	-	-	-	-	-	-	<0.1	-	-	-	-	<0.1 -
	2.4-dicnioropnenol			µg/L	-	<0.1	-	-	<0.1	-	-	-	-	-	-	<0.1	-	-	-	-	<0.1 -
	2,6-dichlorophenol			µg/L	_	<0.1	-	-	<0.1	-	-		-	-	-	<0.1	-	-	-	-	<0.1 -
	2.6-Dimethylphenol			µq/L	-	<0.1	-	-	<0.1	-	-	-	-	-	-	<0.1	-	-	-	-	<0.1 -
PCP	4-methylphenol			µq/L	-	<0.1	-	-	<0.1	-	-	-	-	-	-	<0.1	-	-	-	-	<0.1 -
FUB	Hexachlorobiphenyl, 2,3,3,4,4,5- (PCB 156)			µq/L µq/L	-	<0.3	-	-	<0.3	-	-	-	-	-	-	< 0.3	-	-	-	-	<0.3 -
	Hexachlorobiphenyl, 2,3,3,4,4,5- (PCB 157)			µg/L	-	<0.2	-	-	<0.2	-	-	-	-	-	-	<0.2	-	-	-	-	<0.2 -
	Hexachlorobiphenyl, 2,3,4,4,5,5- (PCB 167)			µg/L	-	< 0.3	-	-	<0.3	-	-	-	-	-	-	< 0.3	-	-	-	-	<0.3 -
	PCB 101			ug/L	-	<0.2	-	-	<0.2	-	-	-	-		-	<0.2	-	-	-	-	<0.3 -
	PCB 138			µg/L	-	<0.2	-	-	<0.2	-	-	-	-	-	-	<0.2	-	-	-	-	<0.2 -
	PCB 118 + PCB 123			mg/L	-	< 0.0006	-	-	< 0.0006	-	-	-	-	-	-	< 0.0006	-	-	-	-	< 0.0006 -
	PCB 180			µg/L µa/l	-	<0.2	-	-	<0.2	-	-	-	-	-	-	<0.2	-	-	-	-	<0.2 -
	PCB 52			µg/L	-	<0.2	-	-	<0.2	-	-	-	-	-	-	<0.2	-	-	-	-	<0.2 -
	PCB 28 + PCB 31			mg/L	-	< 0.0003	-	-	< 0.0003	-	-	-	-	-	-	< 0.0003	-	-	-	-	< 0.0003 -
	Pentachlorobiphenyl, 2,3,3,4,4- (PCB 105)			µq/L	-	<0.2	-	-	<0.2	-	-	-	-	-	-	<0.2	-	-	-	-	<0.2 -
	Pentachlorobiphenyl. 3.3.4.4.5- (PCB 114)			ua/L	-	<0.5	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-	-	-	<0.5 -
	Tetrachlorobiphenyl, 3,3,4,4- (PCB 77)			µg/L	-	<0.3	-	-	<0.3	-	-	-	-	-	-	<0.3	-	-	-	-	<0.3 -
	Tetrachlorobiphenyl, 3,4,4,5- (PCB 81)			µg/L	-	< 0.2	-	-	< 0.2	-	-	-	-	-	-	< 0.2	-	-	-	-	< 0.2 -
	Total PCB WHO 12			µg/L µa/L	-	<1	-	-	<1	-	-	-	-	-	-	<1	-	-	-	-	<1 -
Phenolics	Phenol	7.7	5800	µg/L	-	<0.1	-	-	<0.1	-	-		-		-	<0.1	-		-	-	<0.1 -
NA	4-chloro-2-methylphenol			µg/L	-	<0.1	-	-	<0.1	-	-	-	-	-	-	<0.1	-	-	-	-	<0.1 -
Other Notes	Total Organic Carbon			mg/l	11	6.2	5.6	2.4	4.8	-	3.9	4.3	6.2	-	-	3	2.2	3.4	2.9	3.1	43 -
140185		Exceeds - Adopted Sa Exceeds - Adopted Sa	aline EQS and the U aline EQS.	K Drinking Water Standar	rd.																

Appendix I: Co	mparison of Measured Concentrations of	f CoC in Leachate wi	th GAC (ua/L)																		
		Redcar - Adopted	UK Drinking Water	F-BH119	Blast F-BH124	F-BH125	house F-BH125	F-BH128	F-TP113	F-TP114	I WW-TP5	I WW-TP5	I WW-TP5	F-TP120	F-TP121	F-TP121	Residual Form	er Redcar Work F-BH102	S F-BH104	I WW-TP1	I WW-TP1
Chemical Group	Compound	Saline EQS	Standards	2.9	3.8	4.8	5.3	3.9	2.5	1	2	4	1	0.5	0.8	0.8	1	1	4	1	2
Metals	Aluminium		200	09/08/2022 1200	01/08/2022	04/08/2022 760	04/08/2022 610	28/07/2022	23/09/2022 450	22/09/2022 630	06/12/2022 206	06/12/2022 118	06/12/2022 <20	06/10/2022 370	06/10/2022 21	10/06/2022	09/09/2022	09/09/2022 850	17/08/2022	05/12/2022 1275	05/01/2023 1020
	Arsenic	25	10	0.65	0.91	53	11	0.76	2.8	1.8	3.3	2.9	5.5	0.86	0.18	-	-	0.44	<0.16	<2.5	<2.5
	Boron	7000	1000	<12	<12	34	<12	15	17	34	157	121	72	<0.1	27	-	-	<0.1	<12	<12	<12
	Cadmium	0.2	5	0.06	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.5	< 0.5	< 0.5	0.14	< 0.03		-	< 0.03	< 0.03	<0.5	< 0.5
	Chromium (Trivalent)	0.0		6.6	2	<1	<1	3.4	<1	4.2	-	-	-	41	<1	-	-	<1	<1	-	- 52
	Copper	3.76	2000	15	5.4	5	2.1	4	5.8	2.6	<7	<7	<7	6.2	1.6	-	-	4.8	<0.4	19	13
	Lead	1.3	10	15	0.68	4.6	1.6	0.82	3.8	0.89	<4.7	<5	<4.7	7.5	0.11	-	-	6.3	<0.09	7	<4.7
	Manganese	0.07	50	0.26	- 0.09	0.75	0.28	0.27	7.4	0.35	<2	<2	<2	1.3	2.5	-	-	1.1	<0.22	<2	<2
	Molybdenum	0.07	70	2.3	-	6.8	3.6	-	<1.1	1.2	<2	4	3	310	1.7	-	-	4.7	<1.1	5	7
	Nickel	8.6	20	< 0.5	< 0.5	2.5	1.4	0.6	0.6	< 0.5	<2	<2	<2	<0.5	< 0.5	-	-	< 0.5	< 0.5	<2	<2
	Tin		10	<0.4	-	<0.4	<0.4	- 0.74	<0.4	<0.4	-	-	-	<0.4	<0.4	-	-	<0.4	<0.25	-	
	Vanadium	100	0000	7.1	-	52	12	-	14	48	239	62.6	64.7	2.5	< 0.6	-	-	19	<0.6	3.4	5.1
Inorganics	Zinc Ammoniacal N as NH4	7.9	3000	0.03	0.26	0.14	<1.3 0.23	0.03	0.19	0.12	<3	<3	<3	9.5	<1.3	-	-	3.5 0.3	0.03	-	<3
	Ammoniacal Nitrogen as N	0.021		0.025	0.2	0.11	0.18	0.024	0.14	0.095	< 0.03	< 0.03	< 0.03	< 0.015	< 0.015	-	-	0.24	0.024	0.12	0.04
	Ammoniacal Nitrogen as NH3			0.03	0.24	0.13	0.22	0.029	0.18	0.12	-	-	-	<0.015	<0.015	-	-	0.29	0.029 <100	-	-
	Chloride		250	5.2	-	1.8	2.8	-	4.4	40,100	1.1	3.9	1.3	10	3.5	-	_	1.4	3.8	3.7	4.3
	Cyanide (Free)	1	50	0.8	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<1	<1	<0.1	<0.1	-	-	0.2	2.1	<1	<1
	Fluoride	1	1500	1200		160	180	-	440	470	-	-	- -	620	1100	-	-	120	690	-	-
	Nitrate (as NO3-)		50(NO3)	1.3	0.36	< 0.1	<0.1	0.93	0.28	0.51	2.1	5.2	0.6	2.3	0.17	-	-	< 0.1	1.2	<0.2	1.4
	pH (aqueous extract)		0.5(1102)	11.8	10.7	7.8	8.5	11	8.7	9			-0.02	12.2	8.5	-	-	10.8	10.9	-	
	Phosphorus			47	-	600	170	-	38	24	-	-	-	110	<18	-	-	36	<18	-	-
	Thiocvanate (as SCN)	9		2.8	<20	160	48	42	<20	9.4 <20	<20	<20	<20	<20	25	-	-	160	<20	- <20	<20
	Orthophosphate as P			<10	-	40	30	-	20	20	-	-	-	<10	<10	-	-	20	20	-	-
PAH	PAH (total, NSW Waste 2008)	0		0.21	< 0.2	< 0.2	< 0.2	< 0.2	1.3	< 0.2	-	-	-	0.3	< 0.2	-	-	5.7	<0.2	-	-
	Acenaphthene	2		<0.05	<0.05	0.05	<0.05 0.02	0.05	0.09	<0.09	0.011	0.049	0.006	0.08	<0.05	-		2.5	<0.05	0.03	0.033
	Fluoranthene	0.0063		0.05	< 0.01	0.02	0.02	< 0.01	0.23	< 0.01	0.178	1.3	0.194	0.03	< 0.01	-	-	0.21	0.02	0.057	0.104
	Phenanthrene	0.1		0.02	0.01	0.02	0.03	<0.01	0.03	<0.01	0.032	0.628	0.019	0.04	<0.01	-	-	0.9	0.01	0.008	0.068
	Fluorene			< 0.01	< 0.01	0.01	0.02	< 0.01	0.01	< 0.01	0.019	0.052	0.006	< 0.01	< 0.01	-	-	0.38	< 0.01	0.007	0.011
	Pyrene			0.03	<0.01	0.02	0.01	<0.01	0.09	<0.01	0.075	1.108	0.115	0.01	<0.01	-		0.04	0.01	0.012	0.041
	Benzo(a)anthracene			0.02	<0.01	< 0.01	< 0.01	< 0.01	0.08	< 0.01	0.07	0.547	0.129	< 0.01	< 0.01	-	-	0.03	< 0.01	0.006	0.038
	Benzo(b)fluoranthene Benzo(k)fluoranthene		0.025	<0.01	<0.01	<0.01	<0.01	<0.01	0.11	<0.01	0.098	0.757	0.193	<0.01	<0.01	-		0.04	<0.01	<0.008	0.057
	Benzo(a)pyrene	0.00017	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.08	< 0.01	0.06	0.488	0.107	< 0.01	< 0.01	-	-	0.03	< 0.01	< 0.005	0.031
	Dibenz(a,h)anthracene Benzo(a,h)pervlene		0.025	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	<0.005	0.039	0.011	<0.01	<0.01	-	-	<0.01	<0.01	<0.005	<0.005 0.018
	Indeno(1,2,3-c,d)pyrene		0.025	< 0.01	<0.01	< 0.01	<0.01	< 0.01	0.08	< 0.01	0.046	0.346	0.099	< 0.01	<0.01	-	-	0.02	<0.01	< 0.005	0.024
TPH CWG	>C5-C6 Aliphatics >C6-C8 Aliphatics	4 55	See TPH	-	-	-	-	-	-	-	- <10	- <10	- <10	-	<0.1	-	-	-	-	- <10	- <10
	>C8-C10 Aliphatics	4.55	See TPH	-	-	-	-	-	-	-	<10	<10	<10	-	<0.1	-	-	-	-	<10	<10
	>C10-C12 Aliphatics >C12-C16 Aliphatics	4.55	See TPH See TPH	-	-	-	-	-	-	-	<5	<5	<5	-	<1	-	-	-	-	<5	<5
	>C16-C21 Aliphatics		See TPH	-	-	-	-	-	-	-	<10	<10	<10	-	<1	-	-	-	-	<10	<10
	>C21-C35 Aliphatics Total >C5-C35 Aliphatics		See TPH See TPH	-	-	-	-	-	-	-	<10	<10	<10	-	<1	-	-	-	-	<10	<10
	>EC5-EC7 Aromatics		See TPH	-	-	-	-	-	-	-	<10	<10	<10	-	<0.1	-	-	-	-	<10	<10
	>EC7-EC8 Aromatics >EC8-EC10 Aromatics	4 55	See TPH		-	-	-	-	-	-	<10	<10	<10	-	<0.1	-		-	-	<10	<10
	>EC10-EC12 Aromatics	4.55	See TPH	-	-	-	-	-	-	-	<5	<5	<5	-	<1	-	-	-	-	<5	<5
	>EC12-EC16 Aromatics	4.55	See TPH	-	-	-	-	-	-	-	<10	<10	<10	-	<1	-	-	-	-	<10	<10
	>EC21-EC35 Aromatics	4.55	See TPH	-		-	-	-	-	-	<10	<10	<10	-	<1	-	-	-		<10	<10
	Total >EC5-EC35 Aromatics		See TPH	-	-	-	-	-	-	-	-	-	-	-	<10	-	-	-	-	-	-
BTEX and	Benzene	8	1	-		-	-	-	-	-	<0.5	<0.5	< 0.5	-	<1	-		-		<0.5	<0.5
MTBE	Toluene	74	700	-	-	-	-	-	-	-	<5	<5	<5	-	<1	-	-	-	-	<5	<5
	Xylene Total	30	500	-			-	-	-	-	-	-	-	-	<1	-		-		-	-
SVOC	2,4,6-trichlorophenol			-	-	-	-	-	-	-	<1	<1	<1	-	<0.1	-		-	-	<1	<1
	2,4-dimethylphenol			-		-	-	-	-	-	<1	<1	<1	-	<0.1	-		-	-	<1	<1
	2,6-dichlorophenol			-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-
	4-methylphenol			-	-	-	-	-	-	-	<1	<1	<1	-	<0.1	-	-	-	-	<1	<1
РСВ	Heptachlorobiphenyl, 2,3,3,4,4,5,5- (PCB			-	-	-	-	-	-	-	-	-	-	-	< 0.3	-	-	-	-	-	-
	Hexachlorobiphenyl, 2,3,3,4,4,5- (PCB 150)			-	-	-	-	-	-	-	-	-	-	-	<0.2	-	-	-	-	-	-
	Hexachlorobiphenyl, 2,3,4,4,5,5- (PCB 167)			-	-	-	-	-	-	-	-	-	-	-	< 0.3	-	-	-	-	-	-
	PCB 101	·		-	-	-	-	-	-	-	-	-	-	-	<0.2	-	-	-	-	-	-
	PCB 138			-	-	-	-	-	-	-	-	-	-	-	< 0.2	-	-	-	-	-	-
	PCB 118 + PCB 123 PCB 153			-	-	-	-	-	-	-	-	-	-	-	<0.2	-	-	-	-	-	
	PCB 180			-	-	-	-	-	-	-	-	-	-	-	<0.2	-	-	-	-	-	-
	PCB 52 PCB 28 + PCB 31				-	-	-	-	-	-	-	-	-	-	<0.2	-	-	-	-	-	
	Pentachlorobiphenyl, 2,3,3,4,4- (PCB 105)			-	-	-	-	-	-	-	-	-	-	-	<0.2	-	-	-	-	-	-
	Pentachlorobiphenyl, 2,3,4,4,5- (PCB 114) Pentachlorobiphenyl, 3,3,4,4,5- (PCB 126)			-	-	-	-	-	-	-	-	-	-	-	<0.3	-	-	-	-	-	-
	Tetrachlorobiphenyl, 3,3,4,4- (PCB 77)			-	-	-	-	-	-	-	-	-	-	-	<0.3	-	-	-	-	-	-
	Tetrachlorobiphenyl, 3,4,4,5- (PCB 81)			-	-	-	-	-	-	-	-	-	-	-	<0.2	-	-	-	-	-	-
	Total PCB WHO 12			-	-	-	-	-	-	-	-	-	-	-	<1	-	-	-	-	-	-
Phenolics	Phenol	7.7	5800	-	-	-	-	-	-	-	<1	<1	<1	-	<0.1	-	-	-	-	<1	<1
Other	Total Organic Carbon			5.6	3.6	3.2	2.2	3.6	4.6	1.8	-	-	-	7.3	4.2	-	-	6.9	6.8	-	
Notes		Eveneda Adarta 10																	_		
		Exceeds - Adopted S Exceeds - Adopted S	Saline EQS and the UP	<u>.</u>															-		

Appendix J

Comparison of Measured Concentrations of Contaminants of Concern in Groundwater with GAC

Appendix J:	Comparison of Measured Co	ncentrations of CoC	in Groundwater/Le	eachate with GAC (ug/L)						
				Location			Residu	al Former Redca	r Works		
hemical Grou	Compound	Redcar - Adopted	UK Drinking	Location ID	F-BH102	F-BH102	F-BH102	F-BH102	F-BH102	F-BH102	F-BH102
	Compound	Saline EQS	Water Standards	Well	S	S	D	D	М	D	S
				Sample Date	05/10/2022	08/11/2022	05/10/2022	09/11	/2022	09/01/2023	10/01/2023
Metals	Aluminium (Filtered)		200	µg/L	-	156	-	92.3	38.4	4.9	13.7
	Arsenic (Filtered)	25	10	µg/L	<2.5	4.3	5	0 - 1.9	5.1	-	-
	Barium (Filtered)		1300	µg/L	96	-	88	-	-	-	-
	Beryllium (Filtered)			µg/L	< 0.5	-	< 0.5	-	-	176	185
	Boron (Filtered)	7000	1000	µg/L	70	219	287	0 - 168	339	< 0.03	0.03
	Cadmium (Filtered)	0.2	5	µg/L	< 0.5	0.11	< 0.5	<0.03 - 0	0.07	-	-
	Chromium (hexavalent)	0.6		µg/L	<6	-	<6	-	-	6.5	3.2
	Chromium (Filtered)	0.6	50	µg/L	12.2	0.3	9.1	0 - 0.9	0.7	<3	<1
	Copper (Filtered)	3.76	2000	µg/L	<7	<1	<7	<3 - 0	<1	22.6	57.2
	Iron (Filtered)	1000	200	µg/L	-	31.3	-	0 - 20.9	11.1	<0.4	<0.4
	Lead (Filtered)	1.3	10	µg/L	<5	<0.4	<5	<0.4 - 0	<0.4	<1.5	7.1
	Manganese (Filtered)		50	µg/L	<2	1.7	<2	<1.5 - 0	<1.5	<0.1	0.02
	Mercury (Filtered)	0.07	1	µg/L	<1	0.12	<1	0.34	< 0.01	187	113
	Molybdenum (Filtered)		70	µg/L	-	208.5	-	248	225.9	4.2	1.2
	Nickel (Filtered)	8.6	20	µg/L	3	2.3	2	0 - 3.9	1.5	-	-
	Selenium (Filtered)		10	µg/L	7	-	9	-	-	1910	7640
	Silicon (Filtered)			µg/L	-	3232	-	896	5219	-	-
	Vanadium (Filtered)	100		µg/L	<1.5	-	9.6	-	-	2.3	3.4
	Zinc (Filtered)	7.9	3000	µg/L	<3	3.4	<3	<1.5 - 0	<1.5	1.72	0.07
Inorganics	Ammoniacal Nitrogen as N	0.021		mg/L	0.37	0.11	0.3	1.48	0.07	424	113
	Calcium (Filtered)			mg/L	-	404.5	-	537.5	182.1	1110	125
	Chloride		250	mg/L	-	178.5	-	982	144.8	64	141
	Cyanide (Free)		50	µg/L	<10	<100	10	8	33	-	-
	Cyanide (Total)	1	50	µg/L	-	114	-	23	64	-	-
	Cyanide (Complex)			mg/l	-	0.114	-	0.015	0.031	<0.1	0.4
	Magnesium (Filtered)			mg/L	-	<0.1	-	<0.1	0.3	< 0.2	<0.2
	Nitrate (as NO3-)		50(NO3)	mg/L	< 0.2	<0.2	<0.2	< 0.2	<0.2	0.08	< 0.02
	Nitrite (as NO2-)		0.5(NO2)	mg/L	< 0.02	< 0.02	< 0.02	0.12	< 0.02	75	32.7
	Potassium (Filtered)		· · ·	mg/L	-	56.1	-	88.4	53.7	802	92.7
	Sodium (Filtered)		200	mg/L	-	165.3	-	903.9	132.4	367	343
	Sulphate		250(SO4)	mg/L	-	633.7	-	343.4	463.2	10	10
	Sulphide			µg/L	-	760	-	20	<10	142	122
	Sulphur as S			mg/L	-	339.617	-	113.135	156.417	60	40
	Thiocyanate (as SCN)	9		μg/L	40	140	110	40	70	<0.1	<0.1

Numical Group Numical Group Numical Group And Status EGA Redcar - Adopted Mainer Stander Descriptions UKC Drinking Waler Stander Descriptions Location ID F-BH102 F					Location			Residua	al Former Redca	r Works		
Number of the Composition Satine EQS Value Standards S D D M D S PAH Naphthalene 2 Sample Date 06/10/2022 06/11/2022 06/11/2023 06/11/20	homical Grau	Compound	Redcar - Adopted	UK Drinking	Location ID	F-BH102	F-BH102	F-BH102	F-BH102	F-BH102	F-BH102	F-BH102
PAH Sample Date 09/10/202 09/11/202 09/11/202 09/11/202 09/11/202 09/11/202 10/11/202 00/11/202 00/11/202 00/11/202 00/11/202 00/11/202 10/11/202 00		Compound	Saline EQS	Water Standards	Well	S	S	D	D	М	D	S
PAH Naphthalene 2 µµQ -0.1 -0.1 -0.1 -0.01 -0.028 0.051 Acenaphthene 0.063 µµQ -0.005					Sample Date	05/10/2022	08/11/2022	05/10/2022	09/11	/2022	09/01/2023	10/01/2023
Acamaphthysine map 40,005 0,011 40,005 0,013 0,013 40,005 0,006 0,017 0,016 0,013 0,012 0,023 0,014 0,005 0,018 0,007 0,016 0,006 0,012 0,034 0,002 0,018 0,006 0,012 0,023 0,014 0,016 0,012 0,034 0,002 0,018 0,0017 0,018 0,012 0,034 0,002 0,018 0,012 0,034 0,012 0,034 0,012 0,034 0,002 0,018 0,018	PAH	Naphthalene	2		µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	0.026	0.051
Acenaphthylene ug/L <0.005		Acenaphthene			µg/L	< 0.005	0.011	< 0.005	0.01	0.01	< 0.005	0.034
Fluoranthene 0.0053 μg/L 0.209 0.024 0.048 0.017 0.05 0.022 0.078 Phernanthrene 0.1 μg/L 0.048 0.018 0.005		Acenaphthylene			µg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.057	0.641
Anthracene 0.1 µq/L 0.019 <0:005		Fluoranthene	0.0063		µg/L	0.209	0.024	0.048	0.017	0.05	0.022	0.076
Phenanthrene µµµL 0.084 0.018 <0.005		Anthracene	0.1		µg/L	0.019	< 0.005	< 0.005	< 0.005	< 0.005	0.123	0.243
Fluorene ualk ualk		Phenanthrene			µg/L	0.084	0.018	< 0.005	< 0.005	< 0.005	0.026	0.038
Chrysene ual ual 0.108 0.008 <0.005		Fluorene			µg/L	< 0.005	< 0.005	< 0.005	< 0.005	0.007	0.021	0.343
Pyrene pyr. 0.185 0.018 0.047 0.015 0.048 0.019 0.294 Benzolahitrasene 0.025 µg/L 0.078 0.006 <0.005 0.008 0.028 0.023 0.0474 Benzolahitrasene 0.025 µg/L 0.057 <0.008 <0.008 0.012 0.034 0.002 0.023 0.024 0.023 0.024 0.023 0.024 0.025 0.025 <0.008 <0.008 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.00		Chrysene			µg/L	0.108	0.008	< 0.005	0.01	0.024	0.053	0.605
Benzo(a) anthracene up(L 0.078 0.006 <0.008		Pyrene			µg/L	0.185	0.018	0.047	0.015	0.048	0.019	0.299
Benzo(h)fluoranthene 0.025 µg/L 0.067 <0.008		Benzo(a)anthracene			µg/L	0.078	0.006	< 0.005	0.008	0.026	0.023	0.474
Benza(k)fluoranthene 0.025 µg/L 0.057 0.013 0.012 0.233 Dibenz(a), jnintracene µg/L <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.007 <0.013 <0.213 <0.414 3.642 Benzo(k)+t/juoranthene µg/L 0.205 <0.008 <0.007 <0.017 <0.473 0.238 <0.659 Co-SC-G Aliphatics 4.55 See TPH µg/L <0.205 <0.008 <0.008 <0.016 <0.047 <45 <22 Co-SC-G Aliphatics 4.55 See TPH µg/L <0.205 <0.008 <0.008 <0.016 <0.047 <45 <22 <0.62.61 <0.61 <0.61 <0.61 <0.61		Benzo(b)fluoranthene		0.025	µg/L	0.148	<0.008	<0.008	0.012	0.034	0.009	0.185
Benza (a) pyrene 0.00017 0.01 µg/L 0.013 0.005 0.005 0.005 0.016 0.016 0.016 0.013 0.014 3.642 PAH 16 Total 0.028 0.069 0.013 0.013 0.014 45 0.626 Alphabits 4.55 See TPH µg/L 0.017 0.45 2.2 0.63 0.017 0.013 0.014 0.023 0.65		Benzo(k)fluoranthene		0.025	µg/L	0.057	<0.008	<0.008	<0.008	0.013	0.012	0.233
Dibenz(a)hjanthracene up/L <0.005		Benzo(a)pyrene	0.00017	0.01	µg/L	0.103	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.041
Benzo(p,h)/pervleme 0.025 µg/L 0.065 <0.005		Dibenz(a,h)anthracene			µg/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.01	0.166
Indeno(1,2,3-c,d)pyrene 0.025 ugl_ 0.069 <0.005		Benzo(g,h,i)perylene		0.025	µg/L	0.065	< 0.005	< 0.005	0.006	0.013	0.013	0.213
PAH 16 Total vmg/L 1125 <0.173		Indeno(1,2,3-c,d)pyrene		0.025	µg/L	0.069	< 0.005	< 0.005	0.007	0.013	0.414	3.642
Benzo(b+k)fluoranthene up(L 0.205 0.008 <0.006		PAH 16 Total			µg/L	1.125	< 0.173	< 0.173	< 0.173	0.238	0.032	0.659
TPH CWG 2C5-C6 Aliphatics 4.55 See TPH µg/L 98 39 24 71 24 88 12 >C6-C6 Aliphatics 4.55 See TPH µg/L 184 11 64 195 57 56 42 >C6-C10 Aliphatics 4.55 See TPH µg/L 989 98 304 987 77 <5 <5 >C10-C12 Aliphatics 4.55 See TPH µg/L <5 <5 <5 <5 <5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10		Benzo(b+k)fluoranthene			µg/L	0.205	0.008	<0.008	0.016	0.047	45	22
>C6C-C8 Aliphatics 4.55 See TPH µg/L 184 11 64 195 57 564 42 >C8-C10 Aliphatics 4.55 See TPH µg/L 989 98 304 987 77 <6 <6 >C10-C12 Aliphatics 4.55 See TPH µg/L <5 <5 <5 <5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	TPH CWG	>C5-C6 Aliphatics	4.55	See TPH	µg/L	98	39	24	71	24	88	12
>C26-C10 Aliphatics 4.55 See TPH µg/L 989 98 304 987 77 <5		>C6-C8 Aliphatics	4.55	See TPH	µg/L	184	11	64	195	57	564	42
b b c10-C12 Aliphatics 4.55 See TPH µg/L <5		>C8-C10 Aliphatics	4.55	See TPH	µg/L	989	98	304	987	77	<5	<5
b C12-C16 Aliphatics 4.55 See TPH µg/L <10		>C10-C12 Aliphatics	4.55	See TPH	µg/L	<5	<5	<5	<5	<5	<10	<10
b C16-C21 Aliphatics See TPH µg/L <10		>C12-C16 Aliphatics	4.55	See TPH	µg/L	<10	<10	<10	<10	<10	<10	<10
>C21-C35 Aliphatics See TPH µg/L <10		>C16-C21 Aliphatics		See TPH	µg/L	<10	<10	<10	<10	<10	<10	<10
>C35-C44 Aliphatics ug/L - <10		>C21-C35 Aliphatics		See TPH	µg/L	<10	<10	<10	<10	<10	<10	<10
Total >C5-C35 Aliphatics See TPH µg/L 1271 148 392 1253 158 <10		>C35-C44 Aliphatics			µg/L	-	<10	-	<10	<10	-	-
>EC5-EC7 Aromatics See TPH µg/L <10		Total >C5-C35 Aliphatics		See TPH	µg/L	1271	148	392	1253	158	<10	<10
>EC7-EC8 Aromatics See TPH µg/L 11 <10		>EC5-EC7 Aromatics		See TPH	µg/L	<10	<10	<10	<10	<10	<10	<10
>EC8-EC10 Aromatics 4.55 See TPH µg/L 52 <10		>EC7-EC8 Aromatics		See TPH	µg/L	11	<10	<10	<10	<10	57	<10
>EC10-EC12 Aromatics 4.55 See TPH µg/L <5		>EC8-EC10 Aromatics	4.55	See TPH	µg/L	52	<10	20	68	14	<5	<5
>EC12-EC16 Aromatics 4.55 See TPH µg/L 10 <10		>EC10-EC12 Aromatics	4.55	See TPH	µg/L	<5	<5	<5	<5	<5	<10	<10
>EC16-EC21 Aromatics 4.55 See TPH µg/L <10		>EC12-EC16 Aromatics	4.55	See TPH	µg/L	10	<10	<10	<10	<10	<10	<10
>EC21-EC35 Aromatics 4.55 See TPH µg/L <10		>EC16-EC21 Aromatics	4.55	See TPH	µg/L	<10	<10	<10	<10	<10	<10	<10
>EC35-EC44 Aromatics image: constraint of the second con		>EC21-EC35 Aromatics	4.55	See TPH	µg/L	<10	<10	<10	<10	<10	<10	<10
Total >EC5-EC44 Aromatics ug/L - <10		>EC35-EC44 Aromatics			µg/L	-	<10	-	<10	<10	57	<10
TPH >C5-C35 I10 µg/L 1344 148 412 1321 172 <0.5		Total >EC5-EC44 Aromatics			µg/L	-	<10	-	68	14	-	-
BTEX and MT Benzene 8 1 µg/L <0.5		TPH >C5-C35		10	µg/L	1344	148	412	1321	172	< 0.5	< 0.5
Toluene 74 700 µg/L 10 <5	BTEX and MT	Benzene	8	1	µg/L	< 0.5	<0.5	< 0.5	<0.5	< 0.5	<5	<5
Ethylbenzene 20 300 µg/L <1		Toluene	74	700	µg/L	10	<5	<5	<5	<5	<1	<1
Xvlene (m & p) 250 ug/l <2 - <2 - <1 <1		Ethylbenzene	20	300	µg/L	<1	<1	<1	<1	<1	<2	<2
		Xylene (m & p)		250	µg/L	<2	-	<2	-	-	<1	<1
Xylene (o) 250 µg/L <1 <1 <1 <1 <1 <0.1 <0.1		Xylene (o)		250	µg/L	<1	<1	<1	<1	<1	<0.1	<0.1
MTBE 15 µg/L <0.1 <0.1 <0.1 <0.1 <2 <2		MTBE		15	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<2	<2

				Location			Residu	al Former Redca	r Works		
hemical Grou	Compound	Redcar - Adopted	UK Drinking	Location ID	F-BH102	F-BH102	F-BH102	F-BH102	F-BH102	F-BH102	F-BH102
	Compound	Saline EQS	Water Standards	Well	S	S	D	D	м	D	S
				Sample Date	05/10/2022	08/11/2022	05/10/2022	09/11	/2022	09/01/2023	10/01/2023
VOC	Styrene			µg/L	<2	<2	<2	<2	<2	<2	<2
	cis-1,3-dichloropropene			µg/L	<2	<2	<2	<2	<2	<2	<2
	trans-1,3-dichloropropene			µg/L	<2	<2	<2	<2	<2	<2	<2
	1,1,1,2-tetrachloroethane			µg/L	<2	<2	<2	<2	<2	<2	<2
	1,1,1-trichloroethane		2000	µg/L	<2	<2	<2	<2	<2	<4	<4
	1,1,2,2-tetrachloroethane			µg/L	<4	<4	<4	<4	<4	<2	<2
	1,1,2-trichloroethane			µg/L	<2	<2	<2	<2	<2	<3	<3
	1,1-dichloroethane		2.8	µg/L	<3	<3	<3	<3	<3	<3	<3
	1,1-dichloroethene		140	µg/L	<3	<3	<3	<3	<3	<3	<3
	1,1-dichloropropene			µg/L	<3	<3	<3	<3	<3	<3	<3
	1,2,3-trichloropropane			µg/L	<3	<3	<3	<3	<3	<3	<3
	1,2,4-trimethylbenzene			µg/L	<3	<3	<3	<3	<3	<2	<2
	1,2-dibromo-3-chloropropane			µg/L	<2	<2	<2	<2	<2	<2	<2
	1,2-dibromoethane			µg/L	<2	<2	<2	<2	<2	<2	<2
	1,2-dichloroethane	10	3	µg/L	<2	<2	<2	<2	<2	<2	<2
	1,2-dichloropropane	8		µg/L	<2	<2	<2	<2	<2	<3	<3
	1,3,5-trimethylbenzene			µg/L	<3	<3	<3	<3	<3	<2	<2
	2,2-dichloropropane			µg/L	<1	<1	<1	<1	<1	-	-
	Pyridine			µg/L	<100	-	<100	-	-	<3	<3
	2-chlorotoluene			µg/L	<3	<3	<3	<3	<3	<3	<3
	4-chlorotoluene			µg/L	<3	<3	<3	<3	<3	<2	<2
	Bromobenzene			µg/L	<2	<2	<2	<2	<2	<2	<2
	Bromochloromethane			µg/L	<2	<2	<2	<2	<2	<2	<2
	Bromodichloromethane		25	µg/L	<2	<2	<2	<2	<2	<2	<2
	Bromoform		25	µg/L	<2	<2	<2	<2	<2	<1	<1
	Bromomethane			µg/L	<1	<1	<1	<1	<1	<2	<2
	Carbon tetrachloride		3	µg/L	<2	<2	<2	<2	<2	<2	<2
	Chlorodibromomethane		25	µg/L	<2	<2	<2	<2	<2	<3	<3
	Chloroethane			µg/L	<3	<3	<3	<3	<3	<2	<2
	Chloroform	2.5	25	µg/L	<2	<2	<2	<2	<2	<3	<3
	Chloromethane			µg/L	<3	<3	<3	<3	<3	<3	<3
	cis-1,2-dichloroethene		25	µg/L	<3	<3	<3	<3	<3	<3	<3
	Dibromomethane			µg/L	<3	<3	<3	<3	<3	<2	<2
	Dichlorodifluoromethane			µg/L	<2	<2	<2	<2	<2	<3	<3
	Dichloromethane			µg/L	<3	<3	<3	<3	<3	<3	<3
	Isopropylbenzene			µg/L	<3	<3	<3	<3	<3	<3	<3
	n-butylbenzene			µg/L	<3	<3	<3	<3	<3	<3	<3
	n-propylbenzene			µg/L	<3	<3	<3	<3	<3	107	-
	n-Hexanol			µg/L	-	-	-	139	-	<3	<3
	p-isopropyltoluene			µg/L	<3	<3	<3	<3	<3	<3	<3
	sec-butylbenzene			µg/L	<3	<3	<3	<3	<3	<3	<3
	Trichloroethene		5	µg/L	<3	<3	<3	<3	<3	<3	<3
	tert-butylbenzene			µg/L	<3	<3	<3	<3	<3	<3	<3
	Tetrachloroethene		5	µg/L	<3	<3	<3	<3	<3	<3	<3
	trans-1,2-dichloroethene		25	µg/L	<3	<3	<3	<3	<3	<3	<3
	Trichlorofluoromethane			µg/L	<3	<3	<3	<3	<3	<0.1	<0.1
	Vinyl chloride		0.5	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<3	<3
VOC/SVOC	1,2,3-trichlorobenzene			µg/L	<3	<3	<3	<3	<3	<1	<1
	1,2,4-trichlorobenzene			µg/L	<1	<1	<1	<1	<1	<1	<1
	1,2-dichlorobenzene			µg/L	<1	<1	<1	<1	<1	<1	<1
	1,3-dichlorobenzene			µg/L	<1	<1	<1	<1	<1	<1	<1
	1,4-dichlorobenzene			µg/L	<1	<1	<1	<1	<1	<2	<2
	Chlorobenzene		100	µg/L	<2	<2	<2	<2	<2	<1	<1
	Hexachlorobutadiene			µg/L	<1	<1	<1	<1	<1	<1	<1

Amminiation Number Ammonipoint Number Ammonip	hemical Grou	u Compound	Redcar - Adopted Saline EQS	UK Drinking Water Standards	Location	Residual Former Redcar Works						
Number of the standard in the standard					Location ID	F-BH102	F-BH102	F-BH102	F-BH102	F-BH102	F-BH102	F-BH102
SNOC Arrowschwig/ herey (days) Swapis Date 99:10:202 00:10:202 00:10:202 <th>Well</th> <th>S</th> <th>S</th> <th>D</th> <th>D</th> <th>м</th> <th>D</th> <th>S</th>					Well	S	S	D	D	м	D	S
SVCF Attorneglend planul other, Athinghand upp, upp, upp, Athinghand upp, up, up, up, up, up, up, up, up, up,					Sample Date	05/10/2022	08/11/2022	05/10/2022	09/11	/2022	09/01/2023	10/01/2023
4-introduline (mail)	SVOC	4-bromophenyl phenyl ether			µg/L	<1	<1	<1	<1	<1	<0.5	<0.5
4 nerophend besch		4-nitroaniline			µg/L	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	<10	<10
Catch Catch <th< th=""><th></th><th>4-nitrophenol</th><th></th><th></th><th>µg/L</th><th><10</th><th><10</th><th><10</th><th><10</th><th><10</th><th><10</th><th><10</th></th<>		4-nitrophenol			µg/L	<10	<10	<10	<10	<10	<10	<10
2.3.5 Trimethylohend		Catechol			µg/L	-	<10	-	<10	<10	<10	<10
24.5 troitsophend judt dd5 dd5 dd6 dd5 dd6 dd5 dd1		2,3,5-Trimethylphenol			µg/L	-	<10	-	<10	<10	< 0.5	< 0.5
2.4.6-unic descension 2.6-0-unit descension 2.6-0-unit descension 4.6.1 4.1		2,4,5-trichlorophenol			µg/L	< 0.5	<0.5	<0.5	<0.5	< 0.5	<1	<1
g2-4debingsphend ppdL d05 d05 d05 d05 d05 d05 d1 d1 d1 g2-debingsheme ppdL d1		2,4,6-trichlorophenol			µg/L	<1	<1	<1	<1	<1	< 0.5	< 0.5
2.4-dimethylehend jgdL <1		2,4-dichlorophenol			µg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1	<1
Backet device Log L dds defint disting disting<		2,4-dimethylphenol			µg/L	<1	<1	<1	<1	<1	< 0.5	< 0.5
2.6-initiotures jpl. <pre>classical jpl. <pre>classical classical <thclassical< th=""></thclassical<></pre></pre>		2,4-dinitrotoluene			µg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1	<1
Period Period PagA etc etc <tc< th=""> etc <tc< th=""> etc<th>2,6-dinitrotoluene</th><th></th><th></th><th>µg/L</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th><th><1</th></tc<></tc<>		2,6-dinitrotoluene			µg/L	<1	<1	<1	<1	<1	<1	<1
2-chioroghend		2-chloronaphthalene			µg/L	<1	<1	<1	<1	<1	<1	<1
Participant Part Part Part Part Part Part Part Part		2-chlorophenol			µg/L	<1	<1	<1	<1	<1	<10	<10
Predshubblene pagL cd1		2-Isopropylphenol			µg/L	-	<10	-	<10	<10	<1	<1
Participational Participat		2-methylnaphthalene			µg/L	<1	<1	<1	<1	<1	< 0.5	< 0.5
Particontent 2-infrontine upqL <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 1		2-methylphenol			µg/L	< 0.5	< 0.5	< 0.5	<0.5 - 20	< 0.5	<1	<1
Participation page cd5		2-nitroaniline			µg/L	<1	<1	<1	<1	<1	< 0.5	<0.5
S-Introalline yall <1		2-nitrophenol			µg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1	<1
d-chloros-methylphend upl cd.5 cd.5<		3-nitroaniline			µg/L	<1	<1	<1	<1	<1	< 0.5	< 0.5
4-chloroshine uppL <1		4-chloro-3-methylphenol			µg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1	<1
4-chlorophenyl phenyl ether ug/L <1		4-chloroaniline			µg/L	<1	<1	<1	<1	<1	<1	<1
A-methylphenol ug/L <1		4-chlorophenyl phenyl ether			µg/L	<1	<1	<1	<1	<1	<1	<1
Azoberzene µg/L d0.5		4-methylphenol			µg/L	<1	<1	<1	<1	<1	< 0.5	< 0.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Azobenzene			µg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Bis(2-ch)oroethy)ether 1.3 µg/L <1		Bis(2-chloroethoxy) methane			µg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1	<1
Bis(2-ethylinex)() phthalate 1.3 µg/L <5		Bis(2-chloroethyl)ether			µg/L	<1	<1	<1	<1	<1	<5	<5
Burk bency printiate upl <1		Bis(2-ethylhexyl) phthalate	1.3		µg/L	<5	<5	<5	<5	<5	<1	<1
Larrazole Larrazole μg/L 		Butyl benzyl phthalate			µg/L	<1	<1	<1	<1	<1	<0.5	< 0.5
Diemzoluran ug/L <0,5		Carbazole			µg/L	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
Detertyprintative upl <1		Dibenzoturan			µg/L	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<1
Dimetry primate ug/L <1		Diethylphthalate			µg/L	<1	<1	<1	<1	<1	<1	<1
Di-h-ody primate upl_ <		Dimetnyi phthalate			µg/L	<1	<1	<1	<1	<	<1.5	<1.5
bl-h-dcty primate bg/L <1		Di-n-butyi phthalate			µg/L	<1.5	<1.5	<1.5	<1.5	<1.5	<	<1
Hexachlorobenzene Ug/L <1		Di-n-octyl phthalate			µg/L	<	<1	<1	<1	<	<	<1
Hexachiorocyclopentadiene ug/L <1		Hexachiorobenzene			µg/L	<	<1	<1	<1	<	<	<1
Headdinordentative Logic <1		Hexachiorocyclopentadiene			µg/L	< 1	<1	<1	<1	< 1	< 1	< 1
Nitobenzene µg/L <0.5		Hexachioroethane			µg/L	< 0.5	<0.5	<0.5	<0.5		<0.0	<0.0
Nintoberizene Up/L <1		Nitrobonzono			µg/L	<0.0	<0.0	<0.0	<0.0	C.U>	< 0.5	<0.5
Nerritosoul-repropriating uppL <0.3		Niliopenzene N pitrosodi p propulamino			µg/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
SVOC TIC 1-Vertractino printion 1-Vertraction operation 1-Vertraction 1-Vertraction 1-Vertrac		Pontachlorophonol			µg/L	<0.5	<0.5	<0.5	<0.5	<0.5		
VOC TIC 2-Heptanone ug/l - - - 102 - 104200 -<	SVOC TIC				µg/L				132			-
Vote ric Z-replation Z-replation <thz-replation< th=""> <thz-replation< th=""> <t< th=""><th></th><th>2-Hentanone</th><th></th><th></th><th>ug/l</th><th>-</th><th></th><th></th><th>227 - 267</th><th>-</th><th><60</th><th></th></t<></thz-replation<></thz-replation<>		2-Hentanone			ug/l	-			227 - 267	-	<60	
Ayrential Ayrential Byrl - 600 - 600 <000	Phonolics	Xylenols			ug/l		<60		<60	<60	<30	<30
Phenol 7.7 5800 µg/L <1	I HEHUICS	Cresol Total					30		60	<30	<1	<1
Instruction Instruction		Phenol	77	5800	ua/l	<1	<1	<1	<1	<1	<10	<10
Inspirate Import Impo		1-naphthol	1.1	0000		_	<10	_	<10	<10		
Implement Implement <t< th=""><th></th><th>m/p-cresol</th><th></th><th></th><th>ma/l</th><th>_</th><th>0.03</th><th>_</th><th>0.04</th><th><0.02</th><th><10</th><th><10</th></t<>		m/p-cresol			ma/l	_	0.03	_	0.04	<0.02	<10	<10
Total Speciated Phenols mg/L <100		resorcinol (m-			ua/l	_	<10	-	<10	<10	<100	<100
Other Dissolved Inorganic Carbon µg/L - <2000		Total Speciated Phenols			ug/l	_	<100	_	<100	<100	<2000	2000
Dissolved Organic Carbon µg/L - 80,000 - 699,000 67,000 - - Hexanal µg/L - - - 105 -	Other	Dissolved Inorganic Carbon			ug/L	_	<2000	_	<2000	<2000	390000	99000
Hexanal µg/L 105 -		Dissolved Organic Carbon			ua/l	_	80,000	-	699,000	67.000	-	_
		Hexanal			µg/L	-	-	-	105	-		

Notes

Exceeds - Adopted Saline EQS and the UK Drinking Water Standard. Exceeds - Adopted Saline EQS.

Arcadis (UK) Limited

1 Whitehall Riverside Leeds LS1 4BN United Kingdom T: +44 (0)113 284 5300

arcadis.com